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Abstract: Ultrathin inorganic halogenated perovskites have attracted attention owing to their excel-
lent photoelectric properties. In this work, we designed two types of Ruddlesden–Popper hybrid
perovskites, Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2, and studied their band structures and band gaps
as a function of the number of layers (n = 1–5). The calculation results show that Csn+1SnnBr3n+1 has
a direct bandgap while the bandgap of CsnSnn+1Br3n+2 can be altered from indirect to direct, induced
by the 5p-Sn state. As the layers increased from 1 to 5, the bandgap energies of Csn+1SnnBr3n+1

and CsnSnn+1Br3n+2 decreased from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. In addi-
tion, the optical absorption of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 was blue-shifted as the structure
changed from bulk to nanolayer. Compared with that of Csn+1SnnBr3n+1, the optical absorption of
CsnSnn+1Br3n+2 was sensitive to the layers along the z direction, which exhibited anisotropy induced
by the SnBr2-terminated surface.

Keywords: 2D Ruddlesden–Popper hybrid perovskites; first-principles study; band structures;
optoelectronic properties

1. Introduction

Perovskites have become competitive candidate materials for photovoltaic and op-
toelectronic applications, such as solar cells, optically pumped lasers, detectors and light
emitting diodes [1–5]. At present, the power-conversion efficiency of perovskite solar cells
has reached 25.4% [6]. Over the past several years, the high-performance perovskite light-
emitting diodes have developed rapidly, reaching high external quantum efficiencies of
over 20% [1]. At room temperature, the optically pumped laser made from the lead halide
perovskite nanowires can be tuned in the whole visible spectrum region (420−710 nm)
with high-quality factors and low lasing thresholds [3]. The advantages of these materials
include their long carrier lifetimes and diffusion lengths, large absorption coefficients in
the visible spectrum, small effective masses, tunable bandgaps and high quantum effi-
ciency [7–12]. In addition, compared with other materials, perovskites have the advantage
of low-cost and facile processing [13,14]. Although many achievements in the application
of lead-based perovskites have been obtained, there are still many challenges, especially
due to the presence of toxic lead. The toxicity of lead can cause serious damage to life and
the environment. Therefore, the use of less toxic materials, such as tin and other alkaline
earth metals, to replace lead has been widely investigated [15]. An inorganic substitute can
reduce hysteresis loss that is caused by the presence of methylammonium. Previous work
showed that CsPbBr3 solar cells are as efficient as and have higher levels of environmental
stability than CH3NH3PbBr3 solar cells, even after aging for 2 weeks [16].

Recently, two-dimensional (2D) Ruddlesden–Popper (RP) hybrid perovskite materials
have attracted intensive attention because of their wide applications [17–23]. Compared
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with bulk perovskites, 2D perovskites show many unique properties. For example, 2D RP
perovskites have a narrow full width at half maximum and blue-shift photoluminescence
signal with the decrease in the number of layers owing to the quantum confinement of
carriers [24]. Two-dimensional RP perovskites have a higher chemical stability because of
the linking of organic molecules, such as CH3(CH2)3NH3 and CH3NH3, on the terminated
surface [25]. Ultrathin 2D RP perovskite solar cells can also reduce production costs from
the point of view of mass production [26,27]. Until recently, the layer numbers and the
size of synthesized ultrathin 2D RP films have been accurately controlled experimentally.
Importantly, the bandgap of 2D RP perovskites can be easily adjusted by changing the
number of layers [28]. Therefore, the layer-dependent properties of perovskites further
enrich their applications in optoelectronic and photovoltaic fields [28–30]. In addition, it
is generally known that different terminated surfaces of 2D RP perovskites are important
for optoelectronic properties and applications, such as chemical activity of the surfaces,
sensing effects, and ultrathin film production. Previous work has reported that the iodine
defect improves the efficiency of photoabsorbance in a SnBr2-terminated surface perovskite
solar cell by lowering its energy gap [31]. Ab initio calculations of the structural and
electronic properties of the CsBr- and CaBr2/GeBr2/SnBr2-terminated (001) surfaces of
CsMBr3 (M = Ca, Ge, Sn) perovskites indicated noticeable changes of the surface properties
in comparison with those for bulk materials [32]. Thus far, there have been many literatures
about 2D perovskites with different surface terminations, including the structural and
electronic properties, surface relaxations, energetics, bonding properties, ferroelectrics
and dipole moment [33–40]. The SrTiO3 (100) surface relaxation and rumpling have
been calculated with two different terminations (SrO and TiO2) [39]. Experimentally, the
researchers have already studied the ferroelectric relaxation, surface relaxation, polar
oxide and surface rumpling of perovskites with different surface terminations [41–46].
Particularly, A. Ikeda et al. determined surface rumpling and relaxation of TiO2-terminated
SrTiO3 (001) using the medium energy ion scattering, and found that the occupation
fraction of the TiO2 face ranged from 85 to 95% [45].

Herein, we have designed two models based on CsSnBr3 with different surface termi-
nations: Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2. The terminated surfaces are CsBr and SnBr2
for the two models, respectively. We investigated the structural and optoelectronic prop-
erties, including band structures, surface relaxation effects, density of states and optical
absorption spectra of the two models using the first-principles method. Csn+1SnnBr3n+1
and CsnSnn+1Br3n+2 with different numbers of layers showed different properties in the
bandgap and absorption coefficient. The theoretical calculation results obtained in the
present work can serve as a guideline in the design of different structures and for the
improvement of the efficiency of optical absorbance for 2D inorganic perovskites.

2. Computational Model and Method

The first-principles calculation in this work is based on density functional theory
(DFT) [47]. The calculation method was the all-electron-like projector augmented wave
method and the exchange correlation potential realized by Perdew–Burke–Enserch (PBE) in
the Vienna Ab Initio Simulation Package (VASP) [48–50]. The electron exchange correction
function was described by the generalized gradient approximation parameterized by PBE.
The cut-off energy of the plane wave was set to 500 eV. All atoms were allowed to relax until
the Hellmann–Feynman forces reached the convergence criterion of less than 0.01 eV/Å.
The convergence threshold of energy was set at 10−5 eV. The Monkhorst-Pack scheme
was used to sample k-points in the Brillouin zone [51]. The k-point meshes were set to
6 × 6 × 1 and 8 × 8 × 1 for the electronic structure and density of states, respectively. The
HSE06 hybrid functional used to calculate the bandgap and the fraction of exact exchange
in the Hartree–Fock/DFT hybrid functional-type calculation was 25%. The spin–orbital
coupling (SOC) interaction of the Sn atom is weaker than that of heavy atom lead, so the
SOC interaction is ignored in our calculation.
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As mentioned earlier, a differently terminated surface will change the band structure,
optical absorption and bandgap energy of perovskites. In order to further explore the
layer dependence of different surface terminations, we designed two models, namely,
Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 (n = 1–5), as Type 1 and Type 2 based on the cubic
phase structure (Pm3m space group) of three-dimensional CsSnBr3 [52], shown in Figure 1.
A two-layer Type 2 molecule (Cs2Sn3Br8) was structured by a one-layer Type 1 molecule
(Cs2Sn1Br4), which added one plane composed by one Sn atom and four Br atoms on
both the top and bottom surfaces, respectively. The same rule can be applied to multiple-
layer structures, namely CsnSnn+1Br3n+2 (n = j + 1), which contain Csn+1SnnBr3n+1 (n = j).
A vacuum region of 10 Å in the z direction was set on the bottom and top of the models
to avoid interaction between the atoms. The electronic configurations of the chemical
elements of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 included 4s24p5 (Br), 5s25p66s1 (Cs) and
5s25p2 (Sn) [32].
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Figure 1. Surface models of ultrathin CsSnBr3 perovskites: (left) CsBr termination for Type 1 and (right) SnBr2 termination
for Type 2. The top left corner is a model of bulk CsSnBr3.

3. Results and Discussion

In our simulation, the structures of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 was optimized
and all atoms were allowed to relax. The degree of surface rumpling was quantitatively
described to reveal the difference between the two structures. A variable di,i+1 can be
defined as the interplanar distance between the neighboring atomic planes. The index i
labels the atomic layers of Type 1 and Type 2 in Figure 1. The relative displacements are
described using the following nondimensional quantity equation [32]:

δi,i+1 =
di,i+1 − a0/2

a0
, (1)

where a0 is the theoretical lattice constant calculated for bulk CsSnBr3.
δi,i+1 is related with the vacuum layer. For example, in Cs3Sn2Br7 (n = 2) of Type 1, the

relative displacements δ1,2 and δ2,3 were−1.05 and 1.69%, respectively. All relative displace-
ments, δi,i+1, are shown in Table 1 for layers 1 to 5. The structures of Csn+1SnnBr3n+1 and
CsnSnn+1Br3n+2 were centrosymmetric and δi,i+1 gradually decreased from the terminated
surface to the symmetric center. This trend implies that the stability of the octahedral struc-
ture near the center of symmetry was better than that of the terminated surface. We also
found that the relative displacements δ1,2 for Type 1 were bigger than that for Type 2, which
means Csn+1SnnBr3n+1 with CsBr-termination had better stability than CsnSnn+1Br3n+2.
Our conclusion is consistent with the previous calculation [32].
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Table 1. Calculated relative displacements, δi,i+1 (%, in unit of the calculated bulk CsSnBr3 lattice
constant), and layers rumpling, ηi (%), for Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 (n = 1–5).

Layer (n) 1 2 3 4 5

δi,i+1 (%)

Type 1

Br1Sn2 0.6 −1.05 −1.56 −1.64 −1.71
Sn2Br3 1.69 2.28 2.62 2.6
Br3Sn4 0.004 −0.49 −0.69
Sn4Br5 0.62 0.79
Br5Sn6 0.02

Type 2

Sn1Br2 −1.98 −2.68 −2.87 −2.9 −3
Br2Sn3 0.24 1.14 1.52 1.69
Sn3Br4 −0.74 −1.01 −1.13
Br4Sn5 0.055 0.33
Sn5Br6 −0.25

ηi (%)

Type 1

Cs1Br1Cs1 −6.44 −8.28 −8.89 −8.78 −8.89
Br2Sn2Br2 0 −1.78 −1.94 −1.89 −1.94
Cs3Br3Cs3 0 −2.44 −3.11 −3.44
Br4Sn4Br4 0 −0.17 −0.33
Cs5Br5Cs5 0 −0.72
Br6Sn6Br6 0

Type 2

Br1Sn1Br1 −3.22 −3.28 −3.17 −2.94 −2.83
Cs2Br2Cs2 0 −2.11 −2.83 −3.28 −3.67
Br3Sn3Br3 0 −0.078 −1 −1
Cs4Br4Cs4 0 −0.89 −1.28
Br5Sn5Br5 0 −0.22
Cs6Br6Cs6 0

The ratio of angle change before and after optimization can be defined to correspond
with the degree of surface rumpling with bond angles in the same atomic plane. The
equation is as follows:

ηi,i+1 =
θi,i+1 − π

π
, (2)

where θ is the degree of CsiBriCsi or BriSniBri (i = 1–5); namely, two Cs atoms are non-
adjacent in the CsBr plane or two Br atoms are along the y direction in the SnBr2 plane.
Compared with the angles of CsBrCs, the angles of BrSnBr forming octahedral frames
change slightly. When n = 4 and 5, the layers rumpling, ηi, of CsBrCs and BrSnBr decreased
to zero from the terminated surface to the symmetric center. In Type 1, the structure of
Csn+1SnnBr3n+1 contained one or more complete perovskite structures (ABX3), in which
the shape of the band structure had no change and only the value of the band energy
varied with the layers from 1 to 5. It is noticed that CsnSnn+1Br3n+2 contains SnBr2 ter-
mination on the top and bottom surfaces in addition to one or more ABX3 in the Type 1
model. Therefore, compared to the structures of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2, we
inferred that the change of band structure shape of CsnSnn+1Br3n+2 was induced by the
SnBr2-terminated surface.

Figure 2 shows the electron density difference of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2
in the slice plane (0.5, 0, 0) with different layer numbers. Obviously, the lost charge of the
Sn atom transferred to the six adjacent Br atoms, and it is asymmetric along the z direction.
The length of the Sn–Br bond is inversely proportional to the electron density; that is, the
larger the electron density, the shorter the bond. This asymmetry gradually decreases along
the z direction from the terminated surface to the symmetry center. This is consistent with
the changes in δi,i+1, which gradually decreased from the terminated surface to the center
of symmetry.
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The calculated bandgap energies of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 (n = 1–5) are
listed in Table 2. As n increases from 1 to 5, the bandgap energies of Csn+1SnnBr3n+1 and
CsnSnn+1Br3n+2 decrease from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. Our
calculations are almost the same as those calculated by Anu et al. Their results showed that
the bandgap energies of Csn+1SnnBr3n+1 are 1.2 eV, 1.04 eV, 0.92 eV, 0.85 eV and 0.79 eV
with the layers from 1 to 5 [53]. In experiments, it was also found that the bandgap energies
of (PEA)2(MA)n–1PbnBr3n+1 (2D) and (CH3(CH2)3NH3)2(CH3NH3)n−1PbnI3n+1 (2D) gradu-
ally shrink with the increase in the layer number [41,42]. There are many publications which
support our models [31,32,54–56]. As shown in Figure 3a–e, the conduction band minimum
(CBM) and the valence band maximum (VBM) of Type 1 appear at the R point (0.5, 0.5, 0.5).
The bandgap of Csn+1SnnBr3n+1 presents a direct bandgap and gradually shrinks with the
increase in the layer number. According to this trend, the bandgap of Csn+1SnnBr3n+1 will
reach 0.641 eV with the increase of n [54]. The bandgap of CsnSnn+1Br3n+2 also decreases
with the increase of n. However, unlike that of Csn+1SnnBr3n+1, the band structure of
CsnSnn+1Br3n+2 in Figure 4 shows an indirect bandgap because the CBM of CsnSnn+1Br3n+2
does not appear at the M point (0.5, 0.5, 0) when n = 1, 2 and 3 (Figure 4a–c). It can be seen
that the band structure at the bottom of the conduction band along the M→X and M→Γ
directions is W-shaped (n = 1, 2 and 3) instead of parabolic, as shown in Figure 4. When
n = 1, 2 and 3, the differences between the M point (0.5, 0.5, 0) and the lowest point are 26.6,
8.7 and 1.8 meV, respectively. With the increase of n, the differences gradually decrease to
zero when n = 4 and 5 (Figure 4d,e), which means the band structure of CsnSnn+1Br3n+2
turns into a direct bandgap. The band structures of CsnSnn+1Br3n+2 (n = 1) calculated by
PBE and HSE06 DFT are shown in Supplementary Figure S1. It is easy to see that the band
structure of CsnSnn+1Br3n+2 (n = 1) calculated by HSE06 has a shift up compared with that
by the PBE calculation, while the shape of the band does not change. In view of the high
computational cost, PBE is used in this work.

Table 2. Calculated bandgap energies (in eV) of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 (n = 1–5). The d
and ind in parentheses represent direct and indirect bandgap, respectively.

Layer (n) 1 2 3 4 5 Bulk

Type 1 1.209 (d) 1.036 (d) 0.928 (d) 0.851 (d) 0.797 (d)
0.641Type 2 1.310 (ind) 1.266 (ind) 1.198 (ind) 1.100 (d) 1.013 (d)
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Figure 4. Calculated band structures of CsnSnn+1Br3n+2 for (a) 1 layer, (b) 2 layers, (c) 3 layers, (d) 4 layers and (e) 5 layers.
The high symmetry path is assumed with respect to the Brillouin zone center Γ with the coordinates (0, 0, 0) to X (0, 0.5, 0),
M (0.5, 0.5, 0), Γ (0, 0, 0), Z (0, 0, 0.5), R (0, 0.5, 0.5), A (0.5, 0.5, 0.5), Z (0, 0, 0.5), M (0.5, 0.5, 0), Γ (0, 0, 0) and A (0.5, 0.5, 0.5).
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To carefully examine which atom induces the emergence of the indirect bandgap of
CsnSnn+1Br3n+2, the density of states (DOS) of both types with n = 1 and 5 were calculated,
as shown in Figure 5. Figure 5 indicates that the Sn state plays a dominant role, while
the Cs state is negligible for the valence band top and conduction band bottom in both
models. It can be seen that a small peak appears at the bottom of the conduction band of
Csn+1SnnBr3n+1 (Type 1, n = 1; indicated by an arrow), which is induced by the degeneracy
of energy levels (Figure 5a). Figure 5b shows that the valence band top and conduction
band bottom of CsnSnn+1Br3n+2 (Type 2) are dominated by Br and Sn states. A sharp
and strong peak (indicated by an arrow) appears for the DOS of CsnSnn+1Br3n+2 (n = 1),
which indicates that the generation of an indirect bandgap is induced by Sn atoms. The
intensity of the peak (indicated by an arrow) of CsnSnn+1Br3n+2 decreases gradually with
layer numbers from 1 to 5, which means a transition from indirect to direct bandgap for
CsnSnn+1Br3n+2. Therefore, according to the DOS in Figure 5, Csn+1SnnBr3n+1 is a direct
bandgap and CsnSnn+1Br3n+2 is an indirect bandgap led by Sn atoms.
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Figure 5. Calculated DOS for Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 with n = 1 and 5. The arrow
points to the peaks of Type 1 and Type 2 at n = 1. The green, blue, red, and black lines represent
Cs TDOS, Sn TDOS, Br TDOS and TDOS, respectively. The models are (a) Csn+1SnnBr3n+1 (n = 1),
(b) CsnSnn+1Br3n+2 (n = 1), (c) Csn+1SnnBr3n+1 (n = 5) and (d) CsnSnn+1Br3n+2 (n = 5).

Further efforts were made to separately calculate the partial density of states (PDOS)
of Sn and Br atoms at the terminated surface in Figure 6 (the two atoms are indicated by
arrows in Supplementary Figure S2). The results show that the conduction band bottom of
CsnSnn+1Br3n+2 is mainly dominated by the 5p-Sn state. The peak of total DOS of Sn atoms
in Figure 5b is 2.87, and the peak of PDOS of the Sn atom in Figure 6a is 1.41; there is about
a twofold relationship between the size of the peak. It is also found that the contribution of
the 4p-Br state to the conduction band bottom of CsnSnn+1Br3n+2 is negligible according to
Figure 6b. Therefore, the 5p-Sn state at the terminated surface induced the generation of
an indirect bandgap for CsnSnn+1Br3n+2. In addition, we calculated the orbital-projected
band structures of CsnSnn+1Br3n+2 (n = 1) in Supplementary Figure S2a, which coincides
completely with the calculated band structures in Figure 4a. This alignment indicates that
the conduction band bottom of CsnSnn+1Br3n+2 is dominated by the 5p-Sn state, which
agrees well with the PDOS calculations for Sn and Br atoms.
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A suitable bandgap energy and large absorption coefficient are important for pho-
toelectric and photovoltaic devices. Therefore, the optical absorption of Csn+1SnnBr3n+1
and CsnSnn+1Br3n+2, with different layer numbers, have also been studied in this work.
The optical absorption is generally calculated using the complex dielectric function, which
is expressed as ε(ω) = ε1(ω) + iε2(ω), where ω is the frequency of light, ε1 and ε2 are
the real and imaginary parts of the dielectric function, respectively. ε2 is usually used to
describe the light absorption behavior and its specific description is given by the following
equation [57]:

ε2(ω) =
Ve2
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where V is unit volume, e represents electron charge, m is the electron rest mass, p is the
momentum transition matrix, h̄ is the reduced Planck Constant; kn and kn′ are the wave
functions of the conduction band and valence band, respectively. In order to rapidly distin-
guish these physical variables, we show them in the Supplementary Table S1. Moreover, by
using the Kramers–Kronig relationship, the real part of the dielectric function is obtained
as follows [58]:

ε1(ω) = 1 +
2
π

P
∫ ∞

0

ε2(ω
′)ω′dω′

ω′2 −ω2 , (4)

where P is the principal value of the integral. The absorption coefficient is given as
follows [59]:

α = 2ω
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ε2

1(ω) + ε2
2(ω)

)1/2 − ε1(ω)

2

]1/2

, (5)

The absorption coefficient is a key parameter and is of great significance in photoelectric
and photovoltaic applications. Figure 7 shows the absorption spectra of Csn+1SnnBr3n+1 and
CsnSnn+1Br3n+2 with different layer numbers along the x, y (Figure 7a,c) and z (Figure 7b,d)
directions. Both Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 have large light absorption coefficients
in the visible and infrared regions. With the decrease in layer number, the absorption
coefficients of both Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 have redshift. Different from
that of bulk CsSnBr3, the light absorption of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 show
anisotropy. In the visible region, the absorption coefficients for CsnSnn+1Br3n+2 along the
x and y directions are very close to and smaller than those for bulk CsSnBr3 (Figure 7c);
the layer dependence is not strong. This behavior is related to the absorption of Sn and Br
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atoms in the terminated surface. CsnSnn+1Br3n+2 has a larger absorption coefficient than
Csn+1SnnBr3n+1 along the x and y directions (Figure 7a,c). The SnBr-terminated surface
model provides an ideal model for the design of 2D RP perovskites for photovoltaic and
optoelectronic devices.
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4. Conclusions

In conclusion, based on the cubic CsSnBr3, we designed two models in this work, in-
cluding Csn+1SnnBr3n+1 with CsBr-termination and CsnSnn+1Br3n+2 with SnBr2-termination.
Their bandgap energies, structural and optoelectronic properties of the two models were cal-
culated using DFT. The calculated results indicated that the band structure of Csn+1SnnBr3n+1
is a direct bandgap. Additionally, the band structure of CsnSnn+1Br3n+2 can be altered from
an indirect to direct bandgap with the increase in the layer numbers. With the variation
of the layer number from 1 to 5, the bandgaps of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2
decreased from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. Furthermore, we
calculated the DOS of Sn and Br atoms and the orbital-projected band structures of
CsnSnn+1Br3n+2 (n = 1) in the terminated surface. It was found that the 5p-Sn state was
responsible for the appearance of the indirect bandgap of CsnSnn+1Br3n+2. In addition,
both Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 have as large of an absorption coefficient as bulk
CsSnBr3 and show anisotropy. Nevertheless, CsnSnn+1Br3n+2 exhibits an insensitivity to
the layer number along the x and y directions. The calculated results obtained in this work
may provide new ideas for the design of photovoltaic devices.
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