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Abstract: Cancer is a group of cells that malignantly grow and proliferate uncontrollably. 

At present, treatment modes for cancer mainly comprise surgery, chemotherapy, radiotherapy, 

molecularly targeted therapy, gene therapy, and immunotherapy. However, the curative effects 

of these treatments have been limited thus far by specific characteristics of tumors. Abnormal 

activation of signaling pathways is involved in tumor pathogenesis and plays critical roles in 

growth, progression, and relapse of cancers. Targeted therapies against effectors in oncogenic 

signaling have improved the outcomes of cancer patients. NFκB is an important signaling 

pathway involved in pathogenesis and treatment of cancers. Excessive activation of the NFκB-

signaling pathway has been documented in various tumor tissues, and studies on this signaling 

pathway for targeted cancer therapy have become a hot topic. In this review, we update current 

understanding of the NFκB-signaling pathway in cancer.
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Introduction
Malignant tumors have become one of the most deadly diseases and a prominent 

public health problem threatening human lives around the world.1 In recent years, 

with social and economic development, as well as aging of the population, the inci-

dence and mortality of cancer are increasing.2 The overall incidence of common 

malignant tumors will rise from 14 million in 2012 to a predicted 19 million in 2025 

and 24 million in 2035, according to the World Health Organization.3,4 Cancer occurs 

due to oncogene activation, tumor-suppressor gene inactivation, loss of control of the 

cell cycle, genomic instability, telomerase loss, and resistance of apoptosis.5 However, 

the specific pathogenesis of cancer varies with types of cancers.

The cell-signaling pathway is the process by which cell responds to stimuli of 

extracellular signaling molecules that bind to receptors located on the cell membrane 

or in the cytoplasm of cells. This binding to receptors transfers signals to the nucleus 

and induces corresponding gene expression, thus producing biological effects and 

cellular responses.6 In tumorigenesis, signaling pathways are less controlled.7,8 

Abnormal regulation and cross-talk of cell-signal-transduction pathways play a 

key role in cancer, and obstruction of or anomalies in signaling pathways may 

lead to excessive cell proliferation, apoptotic resistance, angiogenesis, invasion, 

and metastasis, leading to development and progression of cancer.5 NFκB is an 

important signaling pathway that is involved extensively in cancer development and 

progression. Through controlling the expression of target genes, such as TNFA, IL6, 

BCLXL, BCL2, BCLXS, XIAP, and VEGF, NFκB mediates tumor-cell proliferation, 

survival, and angiogenesis.9 This review focuses on this NFκB-signaling pathway 

in tumors.
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Overview of NFκB-signaling 
pathways
Proteins and structure of NFκB family
NFκB is an important transcription-factor family of five 

subunits: Rel (cRel), p65 (RelA, NFκB3), RelB, p105/p50 

(NFκB1), and p100/p52 (NFκB2).10–12 Among these, p65, 

cRel, and RelB contain an N-terminal Rel-homologous 

domain (RHD; about 300 amino acids) and a C-terminal 

transactivation domain (TAD; Figure 1),13,14 while p50 and 

p52 have only an RHD, but not a TAD.15,16 The C-terminal 

of p100 and p105 contains ankyrin repeats that function as 

a p52 and p50 inhibitor. The RHD is responsible for DNA 

binding and dimerization between different or identical 

family members, including the nuclear localization sequence 

and IκB-binding region, leading to homomeric or hetero-

meric binding of the subunits.17 The TAD is associated only 

with transcriptional activation.18 Therefore, the p50–p52 

homologous dimer does not activate gene transcription, but 

acts as an inhibitory molecule. Both p50 and p52 are usually 

present in cells in the form of their precursors.19 In these 

members, RelB can form dimers only with p50 or p52, but 

others can form either homologous or heterologous dimers. 

However, the most common NFκB dimer is the heterodimer 

of p65–p50. These homologous and/or heterologous dim-

ers can bind to a specific sequence (ie, NFκB sites) of the 

target gene to regulate gene transcription. Therefore, NFκB 

regulates the activity of cells through the slight difference in 

binding of these NFκB dimers to targeted sequences.

IκBs and IKKs
IκBs and IKKs are upstream regulators of the NFκB-

signaling pathway. In cells that are not stimulated, NFκB 

dimers are present in an inactive state by binding to three 

inhibitory factors (IκBα, IκBβ, and IκBε) of the NFκB in the 

cytoplasm, which blocks the nuclear localization sequence 

and prevents the NFκB from transition into the nucleus.20,21 

In addition, there are also two precursor IκBs: p105/IκBγ 

and p100/IκBδ.22 IκBα specifically inhibits the p50/RelA 

α β

α

κ α

κ ακ α

α β
γ β

Figure 1 Structure of NFκB members.
Notes: The NFκB family consists of three proteins with a transactivation domain (RelA [p65], cRel, and RelB) and two proteins lacking a transactivation domain (p105/p50 
and p100/p52). Similarly, only p105/p50 and p100/p52 have ankyrin repeats that function as p52 and p50 inhibitors. However, all these proteins share an Rel-homology 
domain, associated with DNA binding, dimerization, nuclear localization and IκB binding, and nuclear localization signal exposure, which is vital to the translocation of the 
dimer into the nucleus.
Abbreviation: NIK, NFκB-inducing kinase.
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heterodimer, IκBβ targets the RelA/cRel heterodimer,23 and 

IκBε inhibits the RelA and cRel dimers.24 Although different 

external stimuli cause differential activation of NFκB through 

different IκBs,25 almost all known NFκB agonists can rap-

idly and transiently activate NFκB by degradation of IκBs.26 

The IκB proteins p105/IκBγ and p100/IκBδ play a dual role, 

ie, precursors of the NFκB proteins p50 and p52 and inhibi-

tors of NFκB signaling.27 Different external stimuli have 

differential effects on the different subunits of IκBs, leading 

to differential activation of the NFκB pathway.

The IKK (IκB kinase) complex consists of the catalytic 

subunits IKKα and IKKβ and the regulatory subunit NFκB 

essential modifier (NEMO; also called IKKγ).20 The IKKs 

are upstream regulators of IκBs.28 Both IKKα and IKKβ 

subunits have about 52% of the sequence identity, but play 

a key but divergent role in regulation of global NFκB-

signaling activity.29 NEMO contains several domains that 

are crucial for its function as a regulatory subunit of the 

canonical IKK complex. The N-terminal coiled-coil domain 

of NEMO interacts with IKKα and IKKβ.30 Different IKKs 

demonstrate differential strength and speed for different 

substrates. IKKα is mainly the specific upstream kinase of 

IκBβ and can strongly phosphorylate the Ser23 of IκBβ, but 

not the Ser19. This inequivalent phosphorylation of Ser23 

and Ser19 in IκBβ leads to degradation of IκBβ.31 IKKβ can 

specifically phosphorylate the Ser sites of IκBα and IκBβ, 

and the intensity is 20 times that of IKKα. In addition, the 

phosphorylation speed of the same IKK for IκBα and IκBβ 

are different. IKKβ has stronger affinity for IκBα than IκBβ. 

Also, the IκB-kinase complex can phosphorylate the NFκB-

bound IκB protein and contribute to proteasomal degradation 

of the IκB protein faster.32

Activation of NFκB-signaling pathway
In a resting status of cells, complexes formed from NFκB 

and IκB (NFκB–IκBα or NFκB–IκBε) shuttle between the 

cytoplasm and nucleus in a dynamic equilibrium.33 When cells 

are stimulated by extracellular signals, such as TNFα, IL1, 

lipopolysaccharide, viral double-stranded RNA, and ionizing 

radiation, NFκB is activated and enters the nucleus to bind to 

target genes.34–39 Upon activation, NFκB-signaling pathways 

are classified as canonical or noncanonical (Figure 2).40 The 

common regulatory step in both pathways is activation of the 

IKK complex. The IKK complex is phosphorylated, and in 

turn induces phosphorylation of IκB proteins IκBα or IκBβ, 

leading to ubiquitination and degradation by proteasomes. 

Similarly, p100 and p105 are phosphorylated and cleaved 

into maturated p52 and p50 upon IKK activation. Therefore, 

NFκB dimers are released from their inhibitors and free to 

translocate into the nucleus to regulate expression of their 

target genes.

The canonical NFκB-transcription factor is an inactive 

dimer composed of a p50 and RelA/p65 subunit, which 

largely resides in the cytoplasm as part of a latent complex 

Figure 2 Activation of NFκB cascade by the classical/canonical signaling pathway (right) and alternative/noncanonical signaling pathway (left).
Abbreviations: NLS, nuclear localization sequence; RHD, Rel-homologous domain; TAD, transactivation domain.
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with IκBα under basal conditions.41,42 The formation of p65 

(RelA)–p50 or p65–cRel heterodimers is a key to activation.43 

Stimulation by proinflammatory cytokines, such as TNFα, 

IL1β, TLR ligands, and T-cell-receptor activators, results 

in activation of the IKKβ complex, and then IκBα is phos-

phorylated at Ser32 and Ser36 by the IKK complex,44,45 

polyubiquitinated at K63, and degraded by proteasomes.46–49 

Degradation of IκBα consequently releases the canonical 

NFκB dimer p50-RelA/p65 to translocate into the nucleus 

and activate gene transcription.50

Although the canonical NFκB pathway has been more 

extensively studied, it is not to be ignored that the nonca-

nonical pathway (or alternative NFκB pathway) is vital in 

some aspects.51 This alternative pathway is activated by TNF-

receptor (TNFR) family members, such as LTβR, BAFFR, 

RANK, and CD40.52–56 Once the receptor is activated, TRAF 

proteins are able to mediate the activity of NFκB-inducing 

kinase and activate an IKKα homodimer at the same time,57,58 

ultimately leading to heterodimerization of the p100 precur-

sor with RelB and processing into the active p52 subunit.59 

This processing of p100 induces the generation of the non-

canonical transcription factor, a p52-RelB dimer, which then 

binds to κB DNA-binding sites and controls expression of 

targeted genes.59 Therefore, activation of these two pathways 

is achieved by phosphorylation of IκB proteins, which relieve 

the inhibition of IκB proteins to NFκB dimers.60

Posttranslational modifications of 
NFκB proteins
NFκB has hundreds of validated transcriptional targets,61 

and thus NFκB-signaling activity is under stringent spatial 

and temporal control at the levels of nuclear transloca-

tion and posttranslational modifications (PTMs) of signaling 

components.61,62 There is a wide range of PTMs of NFκB 

subunits,63 and PTMs provide essential mechanisms differ-

entially to regulate NFκB-signaling activity in response to 

the various stimuli that activate this pathway in many cancer 

cells.64,65 Although these modifications have a critical role 

in the normal and pathological functions of NFκB in vivo, 

the physiological significance of PTMs remains unclear in 

cancer cells.66 PTMs not only can contribute to the control 

of nuclear translocation but also have an important influence 

in functions of NFκB subunits, including protein degrada-

tion, DNA binding, and transcriptional activity.67–69 PTMs of 

NFκB include phosphorylation, ubiquitination, acetylation, 

and methylation.70 Herein, we focus on the ubiquitination, 

phosphorylation, and methylation of the functional subunits 

of NFκB.

Ubiquitination, a PTM of addition of ubiquitin (Ub) 

moieties to a protein, is the primary mechanism of protein 

turnover in the cell, and is recognized as the “traditional” 

function of Ub tagging.71 Ub moieties on NFκB-signaling 

proteins can serve as a docking platform for other proteins 

with specific Ub-binding domains.72 First, the Ub moiety is 

activated by the E1 Ub-activating enzyme. Following acti-

vation, one of several E2 Ub-conjugating enzymes transfers 

Ub from E1 to several E3 enzymes (Ub ligases), to which 

the substrate protein is specifically bound. The Ub moiety 

includes seven lysine (K) residues (K6, K11, K27, K29, K33, 

K48, and K63) and a methionine at the N-terminus (M1), 

which can link another Ub to form a polyUb chain.73

Ub signaling controls activation of NFκB and innate 

immunoresponses downstream of pattern-recognition recep-

tors, such as Toll-like receptors, nucleotide-oligomerization 

domain-like receptors, and cytokine receptors, eg, TNFR1, in 

normal intestinal epithelial cells and colon cancer cells.74–76 

K48-linked polyubiquitination is a key step in releasing 

NFκB from IκBs in the canonical pathway and processing of 

p100/102 into p52/50 in the noncanonical pathway to activate 

the NFκB pathway in inflammatory diseases, autoimmune 

diseases, and cancers.70,77,78 The Skp1–Cullin–F-box (SCF)–

βTrCP complex catalyzes the K48-linked polyubiquitination 

of IκBα at two N-terminal lysine residues (K21 and K22), 

inducing 26S proteasome-dependent degradation of IκBα 

and nuclear translocation of canonical NFκB. In addition, the 

phosphorylation of IκBα induced by NFκB-inducing kinase 

could cause the phosphorylation of p100 on the C-terminal 

region (Ser866 and Ser870) and polyubiquitination of p100 

by the SCF–βTrCP–E3 ligase complex to regulate the activity 

of the noncanonical NFκB.70 The IKKβ subunit is also 

polyubiquitinated by a K63-linked chain in human cervical 

HeLa cells.79 Importantly, activation of IKK is essential to 

productive signaling and NFκB-mediated transcription, and 

its activation depends on the binding of Met1-Ub by the IKK 

subunit NEMO.80

Phosphorylation is critical for NFκB activity, including 

binding to and transcription of genes that contain a con-

sensus sequence.81 Phosphorylation of key NFκB-signaling 

molecules often positively mediates signal transduction by 

inducing protein conformational changes in breast cancer 

cell lines.82,83 Activation of NFκB signaling is involved in a 

series of phosphorylation events of upstream NFκB regula-

tors and NFκB family members. In fact, the activity of NFκB 

is controlled to a great extent by phosphorylation of RelA or 

upstream regulators in esophageal squamous-cell carcinoma, 

gastric cancer, and oral cancer.81,84 The main subunit RelA of 
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NFκB is targeted for phosphorylation at many phosphoac-

ceptor sites within both the RHD (Ser205, Ser276, Ser281, 

Ser311, and Thr254) and TAD (Ser468, Ser529, Ser535, 

Ser536, Thr435, and Thr505).81 For example, the phospho-

rylation of Ser536 induced in the cytoplasm can increase 

NFκB transcriptional activity, while phosphorylation of 

Ser529 increases DNA binding and oligomerization in 

laryngeal cancer cells. The phosphorylation of Ser536 

results in nuclear accumulation of RelA through disruption 

of the cytoplasmic/nuclear shuttling of NFκB–IκBα com-

plexes. In addition, phosphorylation of Ser276 can promote 

RelA interaction with the transcriptional coactivator CBP/

p300.85 Meanwhile, p-Ser276 RelA facilitates recruitment of 

DNMT1/DNA (cytosine 5)–methyltransferase 1 to chromatin 

and subsequent BRMS1-promoter methylation and tran-

scriptional repression in human NSCLC cells.86 In addition, 

phosphorylation of IκBs is a key step of their proteasomal 

degradation and the release of NFκB for nuclear translocation 

and activation of gene transcription. Cytokines in the tumor 

microenvironment, such as TNFα, could bind to the cell-

surface TNF receptor, causing TNF-receptor multimerization 

and interacting with TRADD in the cytoplasm.87,88 TRADD 

recruits TRAF89 and kinase RIP.90 Then, the stimulated 

signals are transmitted to IKK by RIP, which can make the 

Ser32 and Ser36 residues in α-subunits of IκB and Ser19 

and Ser23 residues in β-subunits of IκB phosphorylated.91,92 

Then, IκB protein is dissociated from the p50-p65-IκB trimer 

and subsequently degraded by proteasomes, activating the 

NFκB pathway.77

In recent years, accumulated evidence has suggested that 

histone-modifying enzymes not only modify histone proteins 

but also play a role in the modification of nonhistone proteins, 

such as NFκB.93 NFκB can be methylated reversibly on lysine 

or arginine residues by histone-modifying enzymes, including 

lysine and arginine methyl transferases and demethylases. 

The methylations of both lysine and arginine occur mainly 

on the p65 subunit of NFκB.94,95 The methylated K sites 

include K37, K218, K221, K310, K314, and K315 that are 

modified by different histone-modifying enzymes.96 Among 

the histone methyl transferases, SET9, SETD6, and NSD1 are 

capable of activating NFκB by methylating K218 and K221 

of p65, which provides a potential mechanism for how NSD1 

might contribute to tumor formation, as constitutive activa-

tion of NFκB is a hallmark of many cancers. Methylation 

of NFκB can profoundly affect the functions of NFκB by 

altering its stability, transactivation potency, and affinity to 

DNA, and thus affect the strength and duration of inducible 

gene expression. Meanwhile, the differential methylation 

of K37 and K218/221 on NFκB is able to constitute “bar 

codes” that guide differential activation of NFκB, binding 

to specific promoters.96

Roles of NFκB in cancer
At present, the role of the NFκB-signaling pathway in cell 

biogenic activities is the hot spot of cancer research. NFκB 

signaling is involved in cellular immunity, inflammation, and 

stress, as well as regulation of cell differentiation, prolifera-

tion, and apoptosis.97–101 The NFκB pathway is often altered 

in both solid and hematopoietic malignancies, promoting 

tumor-cell proliferation and survival.52,102,103 However, recent 

evidence indicates that NFκB plays a tumor-suppressive role 

in certain cancers through transcriptional activation of the 

Fas ligand.104

Pro- and anti-inflammatory effects of 
NFκB
The pathogenic role of inflammation in cancer has drawn 

intensive research and highlighted the context-dependent 

modulation of inflammation-associated cancer by the tran-

scription factor NFκB.105 Through control of inflammatory 

responses, NFκB has influence in tumor development and 

progression by excessive innate immunity activation and 

abnormal cell growth.106 Inflammation-associated cancer can 

secrete various cytokines and chemokines through NFκB 

binding to the promoters of genes, such as IL1B, TNF, and 

IL6.107 At the same time, activation of NFκB can be regulated 

by the TNFα-receptor family, including RANKL.108,109

It is well known that inflammatory gene signatures are 

altered in various tumor-cell lines and specimens of differ-

ent histological and molecular subtypes. Researchers have 

found that the inflammatory genes, such as IL1, IL6, IL8, 

and CCL2, are also actively expressed in glioma-cell lines, 

playing differential and cooperative roles in promoting prolif-

eration, invasion, angiogenesis, and macrophage polarization 

in vitro.110 Interestingly, the NFκB signaling activated by 

TNF can also induce proinflammatory chemokines, such as 

CCL20, CXCL13, and CXCL8, that are specific ligands for 

the chemokine receptor CXCR2 in ovarian cancer cells.111,112 

It is a positive-feedback loop that high expression of proin-

flammatory genes in the tumor microenvironment can be 

increased through activation of canonical and noncanonical 

NFκB pathways to accelerate the development of tumors 

and also promote the expression of proinflammatory proteins 

through binding of specific dimers of activated NFκB to 

promoters of proinflammatory genes. For example, IL1 can 

induce the phosphorylation of MKK4, which is indispensable 
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in the processing of NFκB p100 to the p52-active form and 

translocation of p52 from the cytoplasm to the nucleus.10,113 

Besides the proinflammatory function, NFκB has a direct anti-

inflammatory effect. NFκB can inhibit the formation of inflam-

masomes through inhibition of inflammasome-dependent 

caspase 1 activation, but the mechanism is not entirely 

clear and is probably related to NFκB-induced expres-

sion of antiapoptotic proteins, such as PAI2 and Bcl-xL.114

Protumorigenic roles of NFκB
The potential role of NFκB in oncogenesis was confirmed 

in the discovery of the retroviral oncogene v-Rel, the 

homologue of the gene encoding cRel, one of the NFκB 

subunits.115 The genes encoding NFκB subunits or IκB 

proteins are mutated in a variety of malignancies. Mutations 

and gene fusions of IKKA, which leads to the activation of 

IKKα, were detected in breast cancer, where the activation 

of IKKα can maintain the self-renewal of breast cancer 

progenitors and has been shown to be responsible for the 

tumor-promoting effects of progesterone in breast cancer.116 

However, the number of tumors with persistently activated 

nuclear NFκB is much larger than the subfraction of malig-

nancies with confirmed mutations in NFκB or IκB-encoding 

genes.105 In breast cancer, colon cancer, and lymphatic can-

cer, the persistent activation of the NFκB-signaling pathway 

leads to abnormal cell proliferation and differentiation, 

enhanced metastasis, and treatment resistance.102,117,118 In 

colitis-associated colon cancer, positive effects of NFκB 

have been shown by conditional silencing of IKKβ, which 

persistently activates NFκB in intestinal epithelial cells.119 

Recent studies have found that the Epstein–Barr virus 

(EBV) in several T- and NK-cell neoplasms can persistently 

activate NFκB via the viral protein LMP1, resembling the 

proteins in the TNF-receptor superfamily that induce NFκB 

activation through interaction with TRAF and TRADD,120,121 

and contribute to development of EBV-positive T- and NK-

cell neoplasms.122

Mutations in upstream NFκB effectors in tumor cells 

will also result in the activation of the NFκB pathway, and 

then the persistent activation of NFκB can specifically target 

the promoters of oncogenes to form a positive-feedback 

loop. For instance, BRCA1 silencing in breast cancer cell 

lines induces phosphorylation of the Ser536 site of p65 and 

processing of p100/p52, causing constitutive activation of the 

canonical NFκB pathway (p65/p50) and noncanonical NFκB 

pathway (p100/p52) and promoting the nuclear translocation 

and accumulationof p52/RelB, which can enhance prolifera-

tion of MCF1 cells.102 In glioma stem cells, MLK4 binds 

to and phosphorylates the NFκB regulator IKKα, leading 

to enhancement of the ability of NFκB binding to DNA 

and activation of NFκB, which can induce mesenchymal 

trans-differentiation and radioresistance.123 Similarly, the 

activation of mTORC1 induced by LMP1 is a key regulator 

of the NFκB pathway in NPC cells.124 With knockdown of 

the MTORC1 gene, activation of NFκB induced by LMP1 and 

the transcription of Glut1 are markedly inhibited, negatively 

affecting the aerobic glycolysis in nasopharyngeal carcinoma 

cell HONE1. Therefore, the activation of NFκB pathway 

plays an important role in regulating the energy metabolism 

of nasopharyngeal carcinoma cells.

Antitumorigenic roles of NFκB
The role of NFκB in cancer is not always positive. Researchers 

have found that blockade of NFκB via overexpression of 

IκBα promoted oncogenic Ras-induced invasive epidermal 

growth, resembling squamous-cell carcinoma.125 The overex-

pression of IκBα induced by ablation of IKKβ can enhance 

the stability of IκB by inhibition of the phosphorylated 

IκBα protein, resulting in inactivation of canonical NFκB. 

In addition, the high expression of IKKβ that activates clas-

sical and nonclassical NFκB can suppress the progression 

of hepatocellular carcinoma by preventing DEN-induced 

cell death.126 Meanwhile, ablation of IKKβ can enhance the 

activation of JNK family members, including JNK1, which 

contributes to hepatocellular carcinoma development.127 

Functional cross-talk between Nrf2 and NFκB/RelA pro-

tects the liver from necrosis, inflammation, and fibrosis, and 

thus prevents development of hepatocellular adenoma.128 

Transcription factors Nrf2 and NFκB regulate the cellular 

antioxidant defense system, which is important in cell 

survival.129 Recently, researchers found that LCN2 is a 

upstream regulatory gene of the NFκB–Snail pathway and 

can inhibit the phosphorylation of p65 (p-p65) and the nuclear 

accumulation of p-p65 and Snail to inhibit activation of the 

NFκB pathway, thereby inhibiting colorectal cancer cell 

epithelial–mesenchymal transition and metastasis induced by 

the NFκB–Snail pathway.130 However, a number of studies 

have suggested that the NFκB pathway may upregulate the 

expression of LCN2 to promote the development of many 

cancers.131,132 Therefore, the NFκB pathway is diversified 

in different tumor cells,133,134 and the complex anticancer 

mechanism of the NFκB pathway is still not clear. Further 

study is warranted.

Prospects of NFκB inhibitors
It is unquestionable that NFκB inhibition as a means of cancer 

treatment has to be prioritized. Hundreds of NFκB inhibitors 

have been developed.135 These inhibitors are mainly designed 
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to target one of four key points in the NFκB pathway: IKKs, 

NFκB-subunit dimers, proteasome 26S in the case of protea-

some inhibitors, and the Ub-ligase complex in the case of 

ubiquitination blockers.135 These four elements are essential 

to activation of the NFκB pathway. Moreover, natural prod-

ucts, antioxidants, nonsteroidal anti-inflammatory drugs, and 

glucocorticoids are capable of interfering with the NFκB-

signaling cascade.136 As the phosphorylation step of IκBα is a 

common reaction for the NFκB signaling induced by diverse 

stimuli, IKK inhibitors are considered an interesting approach 

for NFκB modulation.137 After phosphorylation of IκBα, the 

polyubiquitination and proteasomal degradation of the IκBα 

protein will result in NFκB release for translocation to the 

nucleus. Therefore, ubiquitination blockers and proteasome 

inhibitors could also be considered as interesting modulators 

of the NFκB cascade.138

Many NFκB inhibitors have demonstrated appreciable 

anticancer activity in preclinical approaches. For example, 

BAY11-7082 can specifically abolish the binding of p65 to 

targeted DNA and downregulate the expression of TNFα.139 

As an IKKβ inhibitor, EF24 can block the NFκB-signaling 

pathway by inhibiting IKKβ phosphorylation, leading to 

cell-cycle arrest at the G
2
/M phase and apoptosis.140 The 

proteasome inhibitor MG132 inhibits tumor growth through 

downregulation of the NFκB-signaling pathway.141,142 In 

addition, T901 is a novel selective NFκB inhibitor function-

ing through binding to the NFκB complex in the cytosol, 

thus blocking its nuclear translocation and target-gene 

expression.143 Although many NFκB inhibitors have been 

developed to exert antitumor effects in a variety of experi-

mental cancer models, ranging from lymphoma to solid 

tumors, no such drug has been clinically approved.144–146 

Because the mechanism of the antitumor effect of NFκB 

inhibitors is not totally understood, many NFκB inhibitors 

are not effective as a single antitumor agent.147 The alterations 

of cellular signaling induced by NFκB inhibitors are gener-

ally involved in the establishment, evolution, and spread of 

malignant tumors. Therefore, considering the positive role 

of NFκB in the vast majority of cancer pathogenesis, NFκB 

inhibitors that are able to modulate more than one therapeutic 

target related to this disease are currently considered the most 

promising alternatives to single anticancer drugs.148 Due to 

the wide range of possibilities to regulate the NFκB-signaling 

pathway, targeting different key points along the cascade 

offers a major opportunity. The challenge of NFκB inhibitors 

being applied in clinical intervention as novel anticancer-drug 

candidates lies in whether or not these NFκB inhibitors have 

better pharmacotherapeutic and safety profiles. Therefore, 

this approach still requires some improvements and more 

extensive studies to ensure and optimize the expected thera-

peutic benefit in the future.149

Conclusion
As a molecular hub linking inflammation and cancer, 

NFκB has been established as a crucial contributor in the 

development of malignant tumors. Although inhibition of 

NFκB activity is incapable of fully suppressing the growth 

of cancer, expression of NFκB components and activated 

NFκB signaling still reflect a potentially serious risk of 

malignancies.150 Despite great progress in targeting NFκB 

signaling for cancer therapy, NFκB inhibitors have not been 

put into clinical application. Exploration of more effective 

and specific NFκB-targeted anticancer strategies is needed. 

With the development of technology, the inhibition of NFκB 

by a variety of inhibitors may pave the way for future per-

sonalized treatment strategies.
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