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Abstract

The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the
genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets
continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking
dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that
represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We
developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their
usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or
refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we
present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation.
Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse
large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available
from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on
multiple platforms including Docker.
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Introduction

An inherent problem in the application of genomics to under-
stand themolecular aetiology of cancer is themulti-disciplinary
skillset required for researchers to draw meaningful inferences
from high-throughput biological data. With the rise in popu-

larity of high-throughput DNA sequencing, the bottleneck for
novel discovery has shifted from data generation to data analy-
sis and interpretation. Although myriad algorithms have been
developed to efficiently analyze large datasets, these are of-
ten tailored for technically inclined users. Software for these
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analyses is typically run at the command line; operation re-
quires the use of cryptic parameters; and installation is often
burdensome. Achieving a flow of data between tools is also of-
ten nontrivial and, owing to a paucity of data standards, can in-
volve error-prone data manipulation and reformatting steps of-
ten relying on a collection of custom scripts that are often not
released with publications. Combined with a necessity for high-
performance computational hardware to run many such tools
efficiently, these issues produce a tremendous barrier for new
users.

There exist a handful of options that address this predica-
ment in genomics as a whole. Tools that automate pipeline de-
velopment such as Kronos [1], Nextflow [2], and Snakemake
[3] can satisfy the needs of more technically savvy users. Al-
ternatively, graphical user interfaces (GUIs)—which are gener-
ally lacking in the field of bioinformatics—aid in users learning
the utility of the associated with command-line interfaces but
typically do not scale to large data sets. Examples of genomics
tools offering web-accessible GUIs include BLAST [4], VAGUE [5],
and limmaGUI [6]. However, beyond an inability to scale, web-
based utilities pose several issues, including design inconsis-
tency, redundant efforts in interface development, and the in-
ability to automatically link individual tasks into pipelines or
workflows. Ideally, any reduction in the barriers associated with
running individual algorithms passing data between software
tools should accelerate analytical tasks and reduce the risk of
errors.

To overcome this, GUI-enabled software for automating
pipeline development improves the reproducibility, accessi-
bility, and transparency of running genomic analyses [7].
Examples include Galaxy [8], Taverna [9], Pegasus [10], and
commercial software packages such as Geneious [11]. In par-
ticular, the Galaxy project offers many attractive features for
this goal while remaining open-source. Namely, Galaxy boasts
extensive documentation, support for automatic tool instal-
lation, and the ability to instantiate public or private “cloud
clusters” by leveraging CloudMan [12] and is as a whole sup-
ported by a vibrant community that provides ongoing develop-
ment to the software and dedication to increasing the avail-
ability of bioinformatics software. Although algorithms for han-
dling high-throughput sequence data are steadily being added
to Galaxy, there currently remains a lack of tools and work-
flows tailored to perform common tasks involved in analyzing
cancer genome and exome sequence data. Here, we have be-
gun to address this issue by adapting many of the popular tools
for analyzing cancer genome and exome data for Galaxy and
made these publicly available as the Galaxy Cancer Genomics
Toolkit.

Diffuse large B-cell lymphoma (DLBCL) is a common ag-
gressive non-Hodgkin lymphoma that demonstrates extensive
genetic heterogeneity with some genetic features found more
common in only one of the two molecular subgroups, namely
the ABC and GCB subgroups. Primary mediastinal B-cell lym-
phoma is defined as a separate entity by the World Health
Organization with distinct clinical and diagnostic features but
shares some genetic featureswith DLBCL and other lymphomas.
Herein, we demonstrate the utility of the Galaxy Cancer Ge-
nomics Toolkit by applying the included workflows to a large
cohort of DLBCL patients (n = 96) and through a combination
of analytical and exploratory approaches leveraging multiple vi-
sualization tools implemented within the Toolkit, we uncover
new candidate lymphoma-related genes and putative genetic
features associated with each molecular subgroup.

Implementing cancer genomics
tools in Galaxy

We produced a comprehensive toolkit comprising a suite of
complementary tools and workflows that perform many of the
routine analytical tasks in cancer genomics. These include sev-
eral popular methods for detecting (“calling”) somatic single nu-
cleotide variants (SNVs), copy number variations (CNVs) and
structural variations (SVs) in tumor-normal pairs. We devel-
oped additional tools to perform themany auxiliary steps helper
functions that allow tools to be linked and applied generically,
such as bam and text file pre- and postprocessing, manipu-
lating, and converting file formats; variant annotation; identi-
fication of significantly mutated genes; and visualizations for
performing exploratory analysis and cohort-level data summa-
rization. The tools and helper functions are briefly detailed
in Table 1 and Table S1, respectively, and documented in our
repository.

To integrate individual tools into Galaxy, we implemented
XML-based configuration files,which dictate the available inputs
and arguments and build the command based on user-specified
parameters. We adhered to a consistent design across tools of
similar types. Planemo, an integrated development environment
for Galaxy tools, was used to assist with tool creation and ensure
tool versions in a Github repository and Galaxy Toolshed were
in sync [13]. All repositories are available on the public Galaxy
test toolshed (https://testtoolshed.g2.bx.psu.edu/), which allows
users to automatically install any tool [14]. Modular tool depen-
dency repositories provide the step-by-step instructions for au-
tomatic download and installation of dependencies. Previously
defined repositories were recycled if available. Though we could
not successfully produce tools that automatically install on all
platforms, many of our tools successfully install (with depen-
dencies) on the standard Galaxy Amazon Web Services (AWS)
image and in a custom Ubuntu installation (v16.04). We also
note that the Galaxy community is migrating towards utiliz-
ing Conda for package management, which should ameliorate
many of these issues moving forward. Synthetic alignment data
containing artificial variants were generated and bundled with
variant callers to enable automatic testing [15]. To handle ref-
erence data, we have developed tools to use Galaxy data tables
and, for simplicity, allow the option of user-provided reference
data [16].

Support within Galaxy for processing large data sets is still
being established and one remaining restriction has been the
lack of methods for splitting and parallelizing large analyses.
We invested substantial effort to ensure that tools that perform
analyses suitable for input-splitting are parallelizable on cluster
environments wherever it was deemed desirable and possible.
Following the addition of new data types in the Galaxy codebase,
this was subsequently reimplemented using the more transpar-
ent and efficient method that exploits the more recent Galaxy
feature known as “data collections.” Briefly, parallelization of
a workflow is accomplished by a combination of tasks (Fig. 1),
beginning with fetch_interval. This obtains chromosome size
information from each input read alignment file and creates a
collection of BED files defining all complete chromosome inter-
vals available to each tool. To balance the load across all con-
currently spawned jobs, we automatically pair large and small
chromosomes if their sum is less than or equal to the length of
the largest chromosome and we avoid splitting chromosomes
into smaller intervals. This mimics the assumed longest last-
ing step for these algorithms while limiting the number of
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Table 1: Main tools currently comprising the cancer genomics toolkit

Tool Category Reference

MutationSeqa SNV detection [30]
Strelkaa SNV and indel detection [31]
SomaticSnipera SNV detection [32]
RADIAa SNV detection [33]
VarDict (Java)a SNV detection [34]
DELLYa SV detection [35]
LUMPYa SV detection [36]
Pindela SV and indel detection [37]
Mantaa SV detection [38]
Sequenzaa CNV detection [39]
TITANa CNV detection [40]
Ensembl VEPb SNV Annotation [41]
PyClonea Clonal structure [42]
EXPANDSa Clonal structure [43]
MutSigCVa Significantly mutated genes [44]
Oncodrive-FMa Significantly mutated genes [45]
GISTICa Significantly mutated genes [46]
Maftools (oncostrip, oncodriveclust, oncoplot, Visualization, significantly [20]
trinucleotide plot, genecloud, MAF summary, rainfall mutated genes, mutation
plot, lollipop plot)a signatures
Oncocircosc Visualization [20]
Oncoprintplusc Visualization [47]
igv screenshotb Visualization

Tools representing existing or extended analysis approaches are shown above. For a current list of tools available, refer to the repository.
aNew implementation of tool for existing software.
bExisting Galaxy tool modified or extended for this project.
cNew tool or visualization method created for this project.

Figure 1: Parallelization in variant calling and other CPU-intensive processes. An alignment file flows through to fetch interval, which fetches all contigs. If paral-
lelization is requested, multiple files are generated for each interval, some of which may contain multiple intervals, otherwise a single file is created. Each dataset in
the collection is treated as separate input to two instance of preprocess, which filters reads from both normal and tumor alignment files. These then pass to the variant

caller. A postprocess tool filters and annotates variant calls based on tool-specific parameters and all final variants are merged and sorted in a single variant file. We
perform automatic interval pairing to roughly balance the load on each variant-calling task. The algorithm combines regions (e.g., chromosomes) if their total length
is less than the largest. In cloud-based settings, this reduces overhead associated with creating multiple unnecessary parallelized jobs as well as reducing the number

of short-lived automatically added nodes. Importantly, we chose not to implement a subchromosomal interval selection algorithm to maintain intrachromosomal
dependence required by some of the variant calling algorithms. Such an extension could be implemented for tools that lack this restriction.

unnecessary concurrent jobs. The second, optional stage, is a
preprocess tool that defines all necessary preprocessing steps
in a single tool and all will be executed together to reduce
the numerous outputs associated with running multiple sep-
arate preprocessing tools in Galaxy. This includes a samtools

flag andmapping quality filter, samtools remove duplicates, and
bamutils clipoverlap. The third stage launches the selected
tool on each of the intervals, allowing Galaxy to spawn pro-
cesses to available CPUs. The fourth stage is postprocess, which
follows similar methodology to preprocess. Example usage in-
cludes further variant filtration and annotation steps. Finally all
output files are merged, if necessary, so they may be supplied

to subsequent tools and workflows. For tools that can be multi-
threaded, we instead leverage this capability rather than chro-
mosomal splitting andnote that certain tools, for example struc-
tural variant callers, cannot be generally parallelized by input
splitting.

The Galaxy toolkit has been thoroughly tested on multiple
hardware configurations. Many of the analyses and workflows
shown in detail here were performed on a local Galaxy instance
on a Dell PowerEdge R430 Server with 2x Intel Xeon Proces-
sors (32 threads total) and 384 Gb of RAM running Ubuntu
linux, whereas benchmarking was performed separately on a
Galaxy cluster on AWS Elastic Cloud Compute (Methods). For
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computationally demanding tasks, we launched a Galaxy
instance on AWS Elastic Cloud Compute using CloudMan
and installed the workflow and tool dependencies. A cluster
consisting of one r3.8xlarge master node and five r3.2xlarge
worker nodes was selected. From our experience, we advise
using any nodes from the r3 family when running several jobs
concurrently (cohort) as NFS issues may arise when using
general-purpose nodes. If a few samples are to be run, general-
purpose nodes are recommended. Separately, we produced a
Dockerfile thatwill install our tools and additional dependencies
using the galaxy-stable Docker image (https://hub.docker.com/r/
bgruening/galaxy-stable/∼/dockerfile/). This is available in our
GitHub repository, which also hosts the individual tools (https://
github.com/morinlab/tools-morinlab). This Docker image was
successfully built with automatic installation of tools and de-
pendencies on our local Linux server and on the Google Cloud.
We are working with this service to release an instance with
reference genomes preinstalled that can be directly launched
with minimal knowledge of Docker.

Selecting high-value tools and developing
workflows for routine analytical tasks

There are numerous algorithms available to perform standard
analytical tasks such as variant calling and CNV detection, each
offering different balances of usability, computational efficiency,
and accuracy. As such, selection of ideal tools and parameters
is nontrivial. We implemented tools representing some of the
more commonly cited options and includemany that performed
favorably in ICGC-The Cancer Genome Atlas (TCGA) DREAM
challenges [17]. As each tool can be configured with a number of
parameters, which can be tuned for accuracy, we leverage results
from the DREAM challenge to assist in selecting the more accu-
rate algorithms and in setting sensible default parameters [18].
As ensemble approaches tend to provide increased robustness,
we developed a tool to integrate variant calls frommultiple algo-
rithms using a simple voting scheme (Additional Items: Fig. S1).
We have also released numerousworkflows that run some of the
more complicated pieces of software that rely on many depen-
dencies and that perform some routine analytical and visualiza-
tion tasks as detailed and illustrated with the real-world worked
examples below. Example workflows that demonstrate our new
approach to perform parallelization in Galaxy are also included
(Fig. 1 and Additional items: Fig. S2).

Benchmarking parallelized workflows
running on Amazon Web Services

We uploaded 96 bam files representing the cohort of published
DLBCL samples and ran all SNV and CNVworkflows on this con-
figuration for each tumor/normal pair and captured details on
runtime and speedup associated with parallelization [19]. To as-
sess the overhead potentially introduced when running tools in
parallel, we ran the above cohort in both sequential and parallel
modes across four different variant calling workflows. The run-
time for each tool was collected from the local Galaxy database
and summarized across the 48 pairs analyzed in the cloud. The
average workflow runtime for an exome in parallel and sequen-
tial modes is shown in Table 2. The net change in estimated cost
and speedup was averaged for each exome pair using the time
taken to complete all stages of the workflow (Fig. 2). In general,
the overhead associated with preprocessing adds marginally to

Table 2: Average CPU usage in hours when applying variant calling
workflows to exome pairs

Workflow Sequential Parallel

Preprocess (clipOverlap) 2.82 2.91
SNV: mutationSeq 5.68 5.99
SNV: Strelka 2.60 4.49
CNV: Titan 29.34 36.31
CNV: Sequenza 8.24 9.40

the cost and yielded gains in speed as high as 8.6x. By comparing
the cost gain and speedup in Fig. 2, it is evident that some tools,
for example Strelka, do not benefit from thismode of paralleliza-
tion and instead should be run using the native parallelization
on a node with more threads available. In the case of Strelka,
there is a substantial preprocessing that occurs on each task to
prepare the directory structure and configuration files, which is
repeated several times using our parallelization method. Based
on the current cost models, the approximate costs for running a
single TN exome pair on all four workflows on AWS is $4.27 us-
ing sequential and $5.15 using parallelization, not including the
cost of uploading the files or storing these or the reference files.

Identifying novel candidate
lymphoma-related genes from exome data

An ultimate goal in cancer genome/exome analysis involves the
identification of loci recurrently affected by copy number gain or
loss and genes recurrently targeted by somaticmutations. There
existmyriad tools to detect somatic SNVs and a growing number
of options to derive high-quality copy number estimates from
genome and exome data. We implemented workflows that per-
form the required annotation and preprocessing of raw muta-
tion and copy number outputs from tools such as Strelka and
Sequenza, respectively. We ran these two workflows on 96 tu-
mor/normal pairs representing DLBCL patients. The SNV and
indel calls were annotated and converted to mutation annota-
tion format (MAF) using vcf2maf. A variety of convenient visu-
alization methods are available in the maftools R package [20]
and Fig. 3 shows the output of a workflow that employs some of
these.

We next analyzed the pooled mutation calls from the meta-
cohort for recurrently mutated genes using OncodriveFM. Fig. 4
shows theworkflow that performs these tasks and produces var-
ious visualizations of the resulting gene set. A batch tool built on
maftools [20] was used to generate protein-centric lollipop plots,
which can facilitate visual recognition of patterns indicative of
tumor suppressor genes and can also reveal mutation clustering
and hot spots (e.g., TMEM30A and NFKBIE). TMEM30Amutations
have also been observed previously, although their role remains
unclear [21], and based on these visualizations we note a pat-
tern towards protein inactivation and a hot spot in NFKBIE that
induces a frameshift. The latter was recently observed in a sep-
arate set of patients with relapsed DLBCL [22]. SPEN, in contrast,
has not been reported as recurrent target of somaticmutation in
DLBCL but has been found mutated in other lymphoma types.
The pattern of mutations suggests it may also act as a tumor
suppressor gene in this cancer. We further noted TET2, SETD1B,
ARID1A, UBR5, DNMT3B, and BTK demonstrate similar muta-
tion patterns (Fig. 4B). Although these have been identified as
relevant genes in other cancers [23, 24], none of these have, to
our knowledge, been previously ascribed to DLBCL.

https://hub.docker.com/r/bgruening/galaxy-stable/protect $elax sim $/dockerfile/
https://hub.docker.com/r/bgruening/galaxy-stable/protect $elax sim $/dockerfile/
https://github.com/morinlab/tools-morinlab
https://github.com/morinlab/tools-morinlab
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Figure 2: Execution time and cost differences associated with parallelization. (A) The average reduction in execution time was determined for all exome pairs analyzed
on AWS by comparing the runtime with and without parallelization and is shown as the speedup. The preprocessing involved in setting up parallel tasks results in a
reduced speedup and depends on the tool. (B) The actual CPU usage and dedicated machine type used by parallel implementations of the tool is shown as an estimate

of the cost. Idle instances were not considered in this calculation. The difference in speedup and cost when preprocessing, the optional bam filtering step, is considered
is reflected in the upper region of each bar. Note, lighter shades show runtime statistics on workflows lacking any preprocessing step, limiting that steps ability to
abstract poor performance.

We next attempted to integrate exome-derived copy number
information with mutation calls. Circos is a popular approach
to generate visualizations of genome-wide mutation data, al-
though it is generally better suited for genome-wide data and
the representation of structural alterations and CNVs relative
to genomic coordinates [25]. We extended Circos to generate a
gene-centric summarization of SNV and CNVdata and produced
the Oncocircos Galaxy tool. Rather than plotting on a genomic
coordinate scale, gene-level summaries of point mutations are
mapped to their relative order on each chromosome and in-
tergenic space (and genes with mutations below the threshold)
are eliminated. To accomplish this, we implemented a parser
that tabulates the data from MAF and segmented copy num-
ber files, applying a threshold to restrict the display to genes
with a greater number of mutations cohort-wide. Oncocircos
also accepts user-provided gene lists and regions of recurrent
CNV (e.g. from GISTIC) and highlights these in the resulting im-
age (Additional Items: Fig. S3). Fig. 6 shows the result of a work-
flow that runs GISTIC on a merged set of segmented data (in
this example, from the Sequenza workflow) and integrates an-
notated SNV and indel calls from Strelka. In this visualization,
several known DLBCL-associated recurrent events are observed
including amplifications affecting REL, MYC, and BCL2, respec-
tively, on 2p, 8q, and 18q. Recurrent deletions affecting the loci
containing known tumor suppressor genes are also observable.
A complementary visualization of these data is a gene by patient
Oncostrip in which annotated copy number and point muta-
tions can be represented (Fig. 7 and Additional Items: Fig. S4).

Enabling new insights into DLBCL biology

The combined workflows employed here leverage distinct as-
pects of mutational information that can be individually lever-
aged to identify candidate cancer drivers and further integrated
to inform on disease biology. Using a combination of methods,

we provide additional evidence for the importance of several loci
that have been attributed to DLBCL with weak support to date
and those whose role as an oncogene or tumor suppressor has
not been elucidated (Fig. 5). By employing OncodriveClust, we
identified genes with significant evidence for mutational recur-
rence. Mutations around the V600E hot spot in BRAF and within
MEF2C have previously been reported to be present, albeit rare,
in DLBCL [19]. Another gene we found to harbor a hot spot was
STAT6, which, until recently, was thought to be mutated only in
some less aggressive lymphomas such as FL and primary me-
diastinal B-cell lymphoma (PMBCL) [17]. A hot spot mutation in
XPO1 was also observed. This mutation has recently been sug-
gested as a molecular marker of PMBCL distinguishes it from
true DLBCLs [26]. One of the two cases bearing the canonical
mutation (E571K) was among the few TCGA cases known to be
PMBCLs and the other was from the second cohort for which
clinical data was unavailable. These observations may further
support the presence of mutations that will facilitate detection
of PMBCL cases that can be difficult to distinguish from DLBCL
by standard clinical criteria.

The integration ofmutationwith copy number data using our
tools (Additional Items: Fig. S4) has further informed on the po-
tential relevance of some candidate lymphoma-related genes.
TMEM30A demonstrated a mutation pattern indicative of tumor
suppressor function (Fig. 4C) and inspection of the Oncocircos

image (Fig. 6) suggests it resides within the commonly deleted
region on 6q. Similarly, FAT1 appears to have a strong signature
towards inactivation and resides in a substantially smaller re-
gion that is commonly lost. Such patterns can be more readily
confirmed using a separate visualization tool, namely Oncostrip
(Additional Items: Figure S4). In contrast, some of the signifi-
cantly amplified regions of the genome do not appear to harbor
genes with significant evidence for recurrent mutations. Ampli-
fications that include JAK2 are known to be relevant to PMBCL
but are not typically considered a feature of DLBCL. Upon in-
spection of the clinical data available for TCGA cases, we note
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Figure 3: Producing cohort-wide summaries and visualizations. Following primary mutation detection across a large cohort and annotation (i.e., with VEP using
vcf2maf), it is useful to produce various summaries of the overall mutation burden and the types and classifications of mutations detected. The maftools R package
offers a multitude of visualizations, many of which we have adapted into Galaxy. (A) In this example workflow, a merged MAF file containing the variants for the

entire cohort of DLBCLs is input alongside a black-list of genes to hide from the outputs. (B) This word cloud, generated by the genecloud tool, provides a visually
appealing summary of the frequency of mutations in genes above a user-specified threshold. (C) A generic mafsummaryplot tool provided by maftools generates six
plots that represent descriptive features of the mutations and their annotations. It is evident that C > T is the predominant mutation type detected. A separate tool
to perform refined mutation signature analysis is also available. Among the most commonly mutated genes are those previously attributed to DLBCL along with TTN,

which encodes the largest human protein. With respect to the predicted effect, missense mutations are by far the dominant class of mutations. Despite this, tumor
suppressors such as KMT2D, TP53, and B2M show an elevation of inactivating mutation classes.
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Figure 4: Significance analysis for mutation recurrence. (A) Tools have been implemented to screen mutation data for patterns of recurrence and identify significantly
mutated genes. Shown above is an example workflow that utilizes the OncodriveFM algorithm and generates various visualizations for genes meeting a pre-specified
Q-value cutoff. (B) A common approach to summarize mutation data is a two-dimensional matrix with covariates plotted along the side axes. We implemented a tool

that leverages multiplot in our R package to generate such images for arbitrary gene lists using the outputs of variant calling workflows that have been annotated
using the vcf2maf tool. Mutations are colored based on the severity of mutations assigned automatically by the Ensembl Variant Effect Predictor (VEP) [48]. Genes with
more severe mutations are more likely to be tumor suppressor genes (e.g., B2M at the bottom and TP53 and KMT2D at the top). Here, the total number of mutations
detected in each patient is shown at the top and the P value reported by OncodriveFM is shown for each gene is shown on the right. The frequency of each of six possible

mutation type can inform on mutational processes in individual samples. This is automatically determined from MAF files and is summarized at the top. (C) It is also
often desirable to visualize the pattern of mutations within individual genes. The pattern is revealed using the lollipopplot tool that is run on each gene passing the
threshold in this workflow.

that each of the four PMBCLs in this cohort contain a mutation
or deletion affecting FAT1 and a JAK2 amplification. POU2AF1,
which resides on 11q23.1, is a candidate target for the amplifica-
tion of this region despite a low number of nonsilent mutations
and has been reported as commonly amplified in treatment-
refractory DLBCLs [27]. Further studies that include larger co-
horts and possibly whole genome sequence data should help
confirm the relevance of these observations.

Many of the genes known to be relevant to DLBCL biology are
more commonly mutated in only one of the two molecular sub-
groups. Fig. 7 shows the mutation distribution across some of
these genes in the meta-cohort analyzed here, which has been
organized on the predicted subgroup of each patient. Using the
Oncostrip tool to order patients on this designation uncovers

additional genes in which mutations may be more common in
the GCB subgroup such as NFKBIE, ARID1A, FAS, and STAT6 (Ad-
ditional Items: Fig. S4). NFKBIEmutations have recently been re-
ported to be particularly common among PMBCLs and a marker
of poor prognosis in that disease [28]. One of the NFKBIE mu-
tations detected herein was in a PMBCL case whereas the re-
mainder were in nodal DLBCL cases and was almost exclusively
seen in cases with other mutations suggestive of the GCB sub-
group. This indicates a potential unappreciated role of NFKBIE
in DLBCL, or, taken together with our observation of mutations
in STAT6 and XPO1, may suggest that a significant subset of PM-
BCL cases may masquerade as GCB DLBCL. Further refinement
of themutation patterns of the two subgroups of DLBCL and PM-
BCL using larger cohorts is clearly warranted.
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Figure 5: Identifying genes containing clustered mutations and hot spots. With sufficiently large cohorts, the pattern of nonsilent mutations within the protein can
inform on genes under specific selective pressure. A clear pattern seen in many dominantly acting cancer genes are mutation hot spots. The OncodriveClustworkflow
searches for genes with significant clustering of mutations that may represent hot spots or regions/sites whose mutation may produce a dominant effect. Application

of this workflow (A) detected many lymphoma-related genes known to harbor mutation clusters (B). The workflow automatically generates lollipop plots for all genes
above a user-specified FDR (in this example, 0.3) (C). Clear patterns of hot spots or mutation clusters are visible in each of these genes with only BRAF and MEF2C

having been previously attributed to some DLBCLs [21].

Towards reproducible and distributable
workflows for cancer genome analysis

Large-scale efforts to understand the diversity of cancer-
associated somatic alterations across common cancer types are

continually expanding in scope. Many such efforts release raw
(or aligned) tumor and normal sequence data into controlled-
access repositories such as Database of Genotypes and Phe-
notypes and the European Genome-Phenome Archive. Owing
to the many options and variations available in analytical
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Figure 6: Visualization and data integration with Oncocircos. The new Oncocircos tool allows visualization of segment data derived from the Titan and Sequenza-based
workflows we implemented. Genes exceeding a user-specified mutation frequency across the cohort are displayed and labels are automatically added for top genes.

Those with at least twice the minimum mutation threshold are labeled in bold and those in an optional user-specified list can also be colored. A black-list file can
be optionally provided to hide genes known to be enriched for artefacts. Stacked bar plots and circles provide summary of the annotated SNVs in each gene and a
summary of the copy number state of each gene is provided in three inner tracks.

methods, the mutations and copy number results presented
along with such data are not directly amenable to direct com-
parisons between studies or pooled meta-analyses. Instead, the
raw data must be obtained and processed uniformly alongside
any new data sets. In light of the limited computational re-
sources available to many research labs interested in incorpo-
rating existing sequence data into their analyses, some con-
senting processes and major data repositories are beginning
to facilitate storage and processing of patient data using cloud
resources.

Our Galaxy Cancer Genomics Toolkit provides a growing list
of standardmethods for cancer genomic analysis and facilitates
their deployment in a simplified, reproducible, and accessible
manner using Galaxy, which is amenable to deploying on stan-
dalone servers or on a variety of cloud services. We have run our
tools and workflows using AWS cloud computing (with Cloud-
Man), which provides a cluster environment to any research
lab and on Google Cloud, which facilitates cluster manage-
ment of Docker-based instances using Kubernetes. We continue
to provide new tools by extending functionality and releasing
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Figure 7: Discerning mutation patterns and identifying subtype-associated genes. DLBCL cases were assigned to either the ABC or GCB molecular subgroups using the

presence of mutations known to be significantly restricted to either. Cases with no mutations unique to either molecular subgroup were designated unclassifiable (U).

updates.We also note thatmany of our tools have been tested on
whole genome sequence data and additional tools for perform-
ing analytical tasks better suited to that data type have been
implemented but were not described in detail here. To facilitate
scaling of our applications to whole genome and exome data to
the extent currently possible in this framework, and to accel-
erate the analysis of exomes, we established new methods to
accomplish parallelization in Galaxy. It is important to note that
Galaxy is not particularlywell suited to certain large-scale analy-
ses due to how data transfer tasks are handled, the internaliza-
tion of some processes (e.g., bam indexing) and centralization
of intermediate files generated by tools. We hope that ongoing
development of the Galaxy codebase will improve on these and
suggest that command-line equivalents to our workflows such
as those offered by the Kronos software are worthy of considera-
tion in larger-scale projects. Ongoing development of the Galaxy
application programming interfacemay also ameliorate some of
these issues.

This toolkit and its ready-made workflows provide themeth-
ods essential to drive discovery and eliminate the bottleneck
in cancer genomic analysis and templates for creating sim-
ilar analyses that leverage comparable software. Availability
and usability of analytical software are both critical factors in
driving their adoption and the ultimate discovery of novel can-
cer drivers. Accordingly, we provide a series of solutions that
should accelerate adoption of our toolkit. First, providing au-
tomatic installation for tools wherever possible allow seamless
integration into custom Galaxy instances. Second, many of the
tools and workflows included here can be optionally config-
ured to efficiently parallelize tasks on a cluster environment.
Third, we show that our toolkit can be readily deployed onto a
cloud-based Galaxy instance thereby eliminating the need for
permanent access to commodity computing hardware or ded-
icated systems administrators. Together, this offers the poten-
tial to enable reproducible cancer research by empowering re-
searchers to perform their own cancer genome analyses with
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unprecedented accessibility and directly share their workflows
such that other groups can reproduce these analyses on addi-
tional datasets. We have provided the data files resulting from
running each of the workflows described in this manuscript on
the DLBCL cohort as examples for users wishing to test these
tools.

As ownership of these tools migrates to the Intergalactic
Utilities Commission along with transfer to the Main ToolShed,
we encourage ongoing testing and parameter optimization and
community-driven refinement and expansion of this toolkit.
With sufficient adoption and ongoing support, this toolkit could
empower numerous groups to explore themany available cancer
data sets and their own experimental data using cloud infras-
tructure thereby facilitating the broader scientific community to
make use of the steadily growing genomic resources being pro-
duced within this field.

Abbreviations

AWS Amazon Web Services
CNV copy number variation
DLBCL Diffuse large B-cell lymphoma
GUI graphical user interfaces
PMBCL Primary mediastinal B-cell lymphoma
SNV somatic single nucleotide variant
SV structural variation
TCGA The Cancer Genome Atlas

Availability and requirements

� Project Name: Cancer Genomics Toolkit for Galaxy
� Project Homepage: https://github.com/morinlab/tools-
morinlab

� Operation System: Linux
� Programming language: Python
� Other requirements: Please refer to the source code and the
tools-iuc repository.

� License: GPLv3

All tools described herein are available in the Galaxy Test
Toolshed (https://testtoolshed.g2.bx.psu.edu/) and under the
GPLv3 license via the project GitHub repository. TheDockerfile to
automatically install these tools and a prebuilt Docker image are
also provided. The dependencies of each tool are documented
in the associated tool dependency description and the Docker-
file and are too numerous to detail here. Instead, please refer
to the source code: https://github.com/morinlab/tools-morinlab
and the tools-iuc repository.

Availability of supporting data

Archived snapshots of the code and test data are available from
the GigaScience GigaDB repository [29].
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Additional files

Additional file Fig. S1 An ensemble approach to detect somatic
SNVs. The ensembl˙vcf tool receives the output of variant callers
and selects variants detected by a user-specified number of
tools. This example workflow runs four variant callers (strelka,
mutationSeq, RADIA and SomaticSniper) and runs vcf2maf to
annotate the resulting list of variants with support from a suffi-
cient number of tools.

Additional file Fig. S2 Achieving parallelization in Galaxy.
There are two ways to achieve parallelization in Galaxy. The
first (A) employs the parallelism tag, which calls specific split
and merge functions depending on the Galaxy input and out-
put data type. These functions are predefined within galaxies
codebase. The second (B) uses galaxy collections, which are es-
sentially containers of input files. Inputs can be split into a col-
lection of files and subsequently pipeline these through a series
of tools. When complete, the individual outputs can be merged.
Parallelizing using collections is farmore transparent to the user
and also limits that number of unnecessary split and merge
functions.

Additional file Fig. S3 A workflow to integrate SNV and CNV
data and produce integrative visualizations. This workflow uses
exome-derived CNV and SNV data to generate a list of recur-
rently gained/lost genomic regions (using GISTIC) and displays
these along with gene-centric summaries of segmented copy
number and SNV data using Oncocircos. To generate Fig. 5,
we included a blacklist containing all immunoglobulin genes
and Mucin genes whereas the genes identified as significantly
mutated by oncodriveFM were provided separately to enforce
highlighting.

Additional file Fig. S4 Using the Oncostrip tool to integrate
copy number and mutation data. It can be desirable to visu-
alize the complete set of mutational information cohort-wide
without losing the patient-mutation relationships and poten-
tial gene-gene interactions that are not retained in Oncocircos.
For this application, the Oncostrip component of maftools can
also accept raw outputs fromGISTIC. Here, we have included the
known gene targets of some recurrent amplifications and dele-
tions detected in the cohort (REL, B2M, and TNFRSF14). Each of
FAT1 and TMEM30A reside in significantly deleted regions and
bear a combined pattern of mutation and deletion consistent
with tumor suppressor function.

Additional file Table S1 Helper tools implemented to facili-
tate tool linkage and parallelization.
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