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Al systems will only fulfill their promise for society if they can be relied upon. This means that the role and task
of the system must be properly formulated; that the system must be bug free, be based on properly repre-
sentative data, and can cope with anomalies and data quality issues; and that its output is sufficiently accu-

rate for the task.

Introduction
Al systems are becoming ubiquitous in
modern life, ranging over medical diag-
nostic systems, financial trading algo-
rithms, driverless cars, customer engage-
ment systems, and countless other areas.
Sometimes performance of the Al is crit-
ical, in the sense that a patient could die,
an accident could occur, or a business
collapse if incorrect decisions are made.
So a key question is: can you trust your
Al? How do you know it is doing what
you want it to do?

Such high level questions have several
aspects:

(1) Has the objective been properly
formulated?

(@) Is the Al system free of soft-
ware bugs?

(3) Is the Al system based on properly
representative data?

(4) Can the Al system cope with
anomalies and inevitable data
glitches?

() Is the Al system sufficiently ac-
curate?

Positive answers to all of these ques-
tions are needed to have full confidence
and trust in the performance of the sys-
tem. The aim of this paper is to look at
these questions from a high level
perspective. A more technical discussion
is given in Menzies and Pecheur."

Al is not unique in having to address
these questions, and analogous ques-
tions are central to many other domains.
This has inevitably meant that various
terms are used for the different aspects.
In health and psychology, for example,
the term “reliability” is used to describe
the reproducibility of a measurement

result under different conditions (so it re-
fers especially to questions 3 and 4), while
the term “validity” is used to describe
whether the measurement procedure is
tapping into the right concept (question
1). In software testing, a distinction is
made between “validation” and “verifica-
tion.” Validation refers to checking that
the system specifications satisfy the cus-
tomer’s need (question 1), while verifica-
tion is checking that the software meets
the specifications (especially questions
2, 3, and 4). Informally, validation is sort-
ing out that you are answering the right
question, and verification is ensuring that
you find the right answer to that question.
In machine learning, validation is often
used in the narrow sense of ensuring
that the predictions are sufficiently accu-
rate (think of the phrase “cross-valida-
tion,” for example). This is the subject of
question 5 and might better be called
“evaluation.” It has various aspects,
briefly described below.

In this paper, we will use the term vali-
dation as a shorthand term to cover all
aspects.

Question 1 involves mapping real-world
questions (with all the ambiguity, uncer-
tainty, complexity, and wooliness typical
of the real world) to a formal mathematical
description, which can be described in a
programming language. This is basically
an assessment of conceptual accuracy,
asking whether the Al system is address-
ing the right problem. Answering question
1 may notinvolve data at all but could sim-
ply require elaborate exploration of design
documents and specifications in an effort
to detect problems, anomalies, or over-
sights, as well as the possibility of a sys-
tem being presented with unexpected
conditions. The complexities of the real

world mean that guaranteeing the ade-
quacy of this mapping will often be impos-
sible, and the best one can do is to try to
think of all possible scenarios that could
arise. Question 1 also involves ethical is-
sues, for example the question of whether
or not an Al personnel selection system
discriminates. This example also illus-
trates the complexity of the challenge,
since there are several, mutually incom-
patible definitions of discrimination, one
of which must be chosen for the system.

Questions 2-5 involve more mathemat-
ical exercises. Given a (hopefully) well-
defined problem from question 1, the
aim is to explore whether the solution
(the Al system) answers it. In extreme
cases, automatic theorem proving sys-
tems can be used, but the apparent final-
ity of formal mathematical proofs should
not seduce one into a belief that the sys-
tem is necessarily doing a good job: the
importance of positive answers to all of
the questions is illustrated by the
cautionary comment from Xie et al. to
the effect that “formal proofs of an algo-
rithm’s optimal quality do not guarantee
that an application implements or uses
the algorithm correctly, and thus software
testing is necessary.”?

Validating Al algorithms is tougher
than validating conventional algorithms
because the former may have the capac-
ity to adapt. Indeed, that is often the
essence of such programs and is what
provides the “intelligent” in “artificial in-
telligence” and the “learning” in “ma-
chine learning.” Sometimes this is
described as meaning their behavior is
“non-deterministic,” because it depends
on external events or other changing cir-
cumstances (not least, random internal
aspects, as with simulated annealing,
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genetic  algorithms, and stochastic
approximation). The adaptability of such
systems and their flexibility in responding
to external events can lead to a state
space explosion.

Aspects of Validation

Question 1 is clearly very context depen-
dent, and there is little we can say in gen-
eral about that—at least in a short space.
The other questions, however, hinge on
two main aspects: the data and the algo-
rithm. We shall look at these aspects
separately.

Data quality is a perennial issue for all
quantitative disciplines, in particular
including statistics, data mining, machine
learning, and artificial intelligence (see, for
example, Breck et al.®). As various apho-
risms (e.g., “garbage in, garbage out”)
attest, it is a truism that the validity of
the results of an analysis depends on the
quality of the input data. And while it might
be the case that a system works perfectly
with perfect data, it is a brave assumption
to suppose that the data the system en-
counters in practical application will al-
ways be perfect. And note that very large
or rapidly streaming datasets cannot be
checked by hand.

In general, while algorithms might be
robust to some data quality issues, there
will be others to which they are highly sen-
sitive, and there will be breakdown points
in terms of the extent of poor quality that
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can be handled. In some cases, such
breakdown points involve only a tiny per-
centage of the data. For example, Karmon
et al. change just 2% of the pixels in anim-
age, none of them over the main object,
and almost always fool image-recognition
systems.” It is also important to note that
data might be perfectly fine for some pur-
pose but poor for another—validation
must be applied with the right objective
in mind.

Data often arise from multiple sources,
linked, merged, or otherwise combined
by the Al, and the different datasets might
have different degrees of quality—and of
compatibility. Validation exercise should
explore these aspects.

In addition to obvious data quality is-
sues, there are challenges of non-station-
ary problems—so-called population
drift—where the nature of the underlying
population changes over time. For
example, as more driverless vehicles
appear on the roads, so the average ex-
pected behavior of vehicles will change.
Validation should consider the complete
life cycle of the system. In general, the
data to which a system is exposed during
avalidation exercise should span the entire
space of scenarios the system is likely to
encounter, insofar as this is possible. Stat-
isticians have always cautioned about
extrapolating beyond the data, but the au-
tonomy of an Al system means it might well
encounter novel situations.

Patterns

Validation of the algorithms themselves
means confirming that they solve the
problem presented to them—really ques-
tions 2-5. Apart from formal mathematical
proofs, which can be used in limited cir-
cumstances, the most common strategy
is to embed the Al in an artificial environ-
ment that generates simulated data of
the kind it is likely to meet. Clearly the ef-
ficacy of this depends on how well the
simulated data reflect real data, complete
with anomalous data points, etc. As we
noted above, it is important to generate
extreme cases and span the space of
types of situations. This can be a chal-
lenge for Al systems because of the diver-
sity of different scenarios they might
encounter. The struggles to develop fully
autonomous driverless vehicles have
illustrated this. But even using real test
data can run into problems. Real data
have often undergone some prior selec-
tion procedure such that they may not
properly represent the population that
the Al will be dealing with. For example,
in retail credit, the training data will typi-
cally be past customers, but they will
have been enrolled as customers through
some selection process and are unlikely
to be representative of all future
applicants.

There is an analogy to stress testing
that plays a major role in validating more
general systems, such as financial models
used by banks, though there the main aim
is to look at response to extreme condi-
tions. As the Bank of England puts it:
“Banking stress tests assess how banks
can cope with severe economic sce-
narios. We look at banks’ resilience, mak-
ing sure they have enough capital to with-
stand extreme shocks and are able to
support the economy.”” Sensitivity anal-
ysis is another related idea.

In many situations, validation involves
running the algorithm on cases where
the “right” answer is known, to see
whether, while the question might be
properly formulated and the Al system
might function as intended, it might simply
not be very good. For example, even
though a medical condition has been
properly described and a system built to
diagnose on the basis of appropriate
symptoms and test results, and even
though there are no errors in the program-
ming (e.g., it uses a well-established
and bug-free logistic regression algo-
rithm), a medical diagnostic system might
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misclassify a large number of cases sim-
ply because the implied decision surface
is too rigidly constrained. This sort of
problem has been the focus of a vast
amount of work with a wide variety of per-
formance criteria being used (see, e.g.,
Hand®). This abundance can conceal the
importance of ensuring that an appro-
priate criterion is used. For example, by
far the great majority of assessments of
diagnostic performance of machine
learning algorithms use misclassification
rate, even though this is often inappro-
priate (since it treats the different kinds
of misclassification as equally serious).
There is often also a trade-off between
the robustness of a system, meaning it
does not react wildly to slight changes of
the data, and accuracy, meaning that it
does not adapt sufficiently to changes in
the data.

A common strategy used in validating
(or, perhaps more appropriately, “evalu-
ating”) such algorithms is a cross-valida-
tion or holdout strategy, in which available
data are split into two sets: one to
construct the algorithm (e.g., estimate pa-
rameters) and the other to test it. Note,
however, that this assumes stationarity
of the underlying populations. In many
real situations, future data are unlikely to
be drawn from exactly the same distribu-
tion as the design data, so a misleading
impression can be gained.

The point about including extreme
cases in the validation exercise raises

the question of whether an Al knows its
limits. If sufficiently anomalous data arise,
the system should recognize this and
stop, rather than simply continuing
regardless. Think of an autonomous
lawn mower stopping at the edge of
the lawn.

Conclusions
Considerable effort has been made in
recent years to enable Al systems to
“explain” their decisions. This is partly
driven by legal requirements. For
example, the European Union’s General
Data Protection Regulation (clause 71)
says “[automatic processing of data]
should be subject to suitable safeguards,
which should include ... the right to ...
obtain an explanation of the decision
reached ...” (though this is controver-
sial—see Wachter et al.”). Beyond any
legal requirements, however, explainabil-
ity is often associated with superior
generalizability and greater robustness
because of the natural regularization im-
plicit in human understanding and mental
modeling of phenomena. Moreover, while
it is true that opacity of a system means it
is difficult to tell how and why it is going
wrong when it errs, it is also true that ex-
plainability and the way it is implemented
will depend on who the explanation is for.
Al systems typically work in a social
context. So validation needs to do more
than examine systems in isolation. It is
also necessary to explore how people
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work with and react to such systems
and, indeed, to see how other Als work
with each other. The risks are illustrated
by the behavior of correlated financial
trading systems: if one says “sell,” other
similar systems are likely to do so as
well, possibly leading to a financial crash.
Further discussion is given in the white
paper produced after the Validate Al
Conference. The conference and subse-
quent related activities have been orga-
nized to mobilize academic and practi-
tioner groups to advance academic
research and applied methodologies in
Al systems of validation. Further informa-
tion can be found at https://www.
validateaiconference.com.
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