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Background: Mannose binding lectin, a plasma protein protects host from virus,
bacteria, and parasites. Deficiency in MBL levels has been associated with susceptibility
to various infectious diseases including P. falciparum malaria. Common MBL
polymorphisms in promoter and coding regions are associated with decrease in plasma
MBL levels or production of deformed MBL, respectively. In the present study, we
hypothesized that MBL2 variants and plasma MBL levels could be associated with
different clinical phenotypes of severe P. falciparum malaria.

Methods: A hospital based study was conducted in eastern Odisha, India which is
endemic to P. falciparum malaria. Common MBL-2 polymorphisms (codon 54, H-550L,
and Y-221X) were typed in 336 cases of severe malaria (SM) [94 cerebral malaria (CM),
120 multi-organ dysfunction (MOD), 122 non-cerebral severe malaria (NCSM)] and 131
un-complicated malaria patients (UM). Plasma MBL levels were quantified by ELISA.

Results: Severe malaria patients displayed lower plasma levels of MBL compared to
uncomplicated falciparum malaria. Furthermore, on categorization of severe malaria
patients into various subtypes, plasma MBL levels were very low in MOD patients
compared to other categories. Higher frequency of AB genotype and allele B was
observed in MOD compared to UM (AB genotype: P = 0.006; B allele: P = 0.008). In
addition, prevalence of YX genotype of MBL Y-221X polymorphism was also statistically
more frequent in MOD case than UM (P = 0.009).

Conclusions: The observations of the present study reveal that MBL-2 polymorphisms
(codon 54 and Y-221X) and lower plasma MBL levels are associated with increased
susceptibility to multi organ dysfunctions in P. falciparum malaria.
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Introduction

Malaria is a mosquito borne protozoan infection caused by
Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and
P. knowlesi. In a recent report, World Health Organization
(WHO) estimates about198 million cases in 2013 and 1.2 billion
subjects are at high riskworldwide (WHO, 2014). Majority of
malarial death is a result of P. falciparum infection which leads
to severe malaria characterized by cerebral malaria (CM), multi-
organ dysfunction (MOD), and non-cerebral severe malaria
(NCSM) (Buffet et al., 2011; Panda et al., 2011, 2012; Pattanaik
et al., 2012). The pathogenesis of malaria is complex and the
severity depends on parasite virulence, transmission dynamics,
genetic factors, and host immune response (Buffet et al., 2011;
Mangano and Modiano, 2014; White et al., 2014). Malaria
infection elicits both innate and adaptive immune response of
the host. The innate immune system is composed of diverse
pattern-recognizing receptors or soluble pathogen-recognizing
molecules (PRMs) (Thiel et al., 2006; Barreiro et al., 2009), which
recognize specific molecular motifs on the surfaces of virus,
bacteria and parasites. Mannose binding lectin is a liver derived
soluble PRMs which play an important role in the innate immune
response. MBL binds to sugars on the surface of pathogenic
micro-organisms and triggers the complement activation system
(Ip et al., 2009). MBL has been shown to bind to parasite infected
erythrocytes (Garred et al., 2003b) and children deficient in
MBL are prone to severe malaria (Luty et al., 1998), indicating
an important role for MBL in protection against P. falciparum
malaria.

The human MBL is a 32 KDa protein consisting of 248
amino acids encoded byMBL2mapped to 10q21.1 (Garred et al.,
2006). Common MBL2 genetic variants have been associated
with various diseases such as filariasis (Choi et al., 2001;
Meyrowitsch et al., 2010), malaria (Boldt et al., 2006; Jha et al.,
2014), leishmaniasis (Asgharzadeh et al., 2007), leprosy (de
Messias-Reason et al., 2007; Sapkota et al., 2010), tuberculosis
(Singla et al., 2012; Chen et al., 2014), trypanosomiasis (Weitzel
et al., 2012), HIV infection(Li et al., 2013), systemic lupus
erythematosus (Panda et al., 2013), and rheumatoid arthritis
(Martiny et al., 2012). The MBL2 gene consists of four exons.
Although several single nucleotide polymorphisms (SNPs) have
been reported, three SNPs in exon 1 (codons 52: rs5030737, C >

T, Arg>Cys; codon 54: rs1800450, G > A, Gly> Asp and codon
57: rs1800451, G >A,Gly>Glu) are of importance since they
affect plasma levels ofMBL. Variants are denoted as D (codon 52),
B (codon 54), and C (codon 57), whereas A is the common wild
type allele (Garred et al., 2006). In addition, two other functional
polymorphisms at promoter region of the MBL2 gene have been
reported (−550: rs11003125,G > C, H/L and−221: rs7096206,
C > G, X/Y) which have been shown to affect plasma MBL
levels (Garred et al., 2003a). Furthermore, some reports have
shown an association of combined exon1 and promoter MBL2
polymorphisms with plasma levels of MBL (Tsutsumi et al., 2001;
Panda et al., 2013).

The association between MBL2 polymorphism and
P. falciparummalaria in Gabonese children has been reported in
several studies but it has shown contradictory results. Luty et al.

(1998), showed an association between codon 54 and 57 variants
with susceptibility to severe malaria. On the contrary, another
study failed to show similar association (Mombo et al., 2003).
Interestingly, a novel mutation (−797C >A) has been linked to
susceptibility to severe malaria (Boldt et al., 2006).

A recent study in Indian population revealed association
between MBL2 LYPA haplotype with protection and MBL2
LXPA haplotype with increased susceptibility to severe malaria
(Jha et al., 2014). To the best of our knowledge, there are no
studies on the association of plasma MBL and common MBL2
polymorphism with P. falciparummalaria in well-defined clinical
phenotypes. We report an association between low plasma MBL
and MBL low producer genotypes with multi organ dysfunction
in Odisha, India.

Materials and Methods

Study Site and Sample Collection
In the present study, patients attending and/or admitted to
Department of Medicine, SCB Medical College and Hospital,
Cuttack, Odisha were included. Odisha is endemic for malaria
and more than 85% cases are attributed to P. falciparum
infection (Panda et al., 2011, 2012). Laboratory diagnosis of
malarial infection was conducted by immunochromatography
test (ICT) (SD Bio Standard Diagnostics India) and nested
PCR assay (Panda et al., 2011). Patients who were positive for
both the tests were included in the present study. PCR was
done to exclude co-infection with P. vivax. There were no
discrepancies for diagnosis of P. falciparum infection. Based on
WHO guidelines and as described earlier (Panda et al., 2011,
2012; Pattanaik et al., 2012). Patients were categorized into
two broad groups: (1) uncomplicated malaria (UM) and (2)
severe malaria (SM). SM cases were further categorized into
three sub-groups (i) Cerebral malaria (CM) defined as patients
with altered sensorium, GCS (Glasgow Coma Scale) of ≤10;
(ii) Non cerebral severe malaria (NCSM) patients had one of
the several manifestations of severe malaria without cerebral
involvement, namely severe anemia (hemoglobin<5 g/dl), acute
renal failure (serum creatinine>3mg/dl), jaundice (serum
bilirubin >3mg/dl), acute respiratory distress syndrome (PaO2/
FIO2 <200), haemoglobinuria (urine positive for hemoglobin),
and shock (systolic BP of <80mm Hg);and (iii) Multi-organ-
dysfuction (MOD) diagnosed based on presence of two or
more organ involvement like CNS (GCS ≤10), respiratory
(PaO2/FIO2 <200), renal failure (serum creatinine>3mg/dl),
and hepatic dysfunction (ALT/AST > three times of normal,
prolonged prothrombin time and low albumin). Patients with
following criteria were excluded from current investigations:
(i) Co-infection with other Plasmodium species, (ii) chronic
disease like tuberculosis, chronic renal failure, cirrhosis of liver
and autoimmune diseases like systemic lupus erythematosus
and rheumatoid arthritis. Patients enrolled in the present study
came from the coastal districts of the state having an average
annual parasite index (API) of 6.67. 100 healthy controls were
included from the same districts and selectively included so
that both the groups are uniformly exposed during transmission
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of malaria. None of the controls reported history of clinical
malaria in the last 5 years. They were essentially healthy and
negative for demonstrable P. falciparum infection. Demographic
characteristics of enrolled subjects are shown in Table 1. About
5ml of venous blood was collected in EDTA vials from all
enrolled patients and HC. The study and its protocols were
approved by the Institutional Human Ethics Committee of SCB
Medical College Cuttack. Blood samples were collected after
obtaining written consent of the healthy controls and patients or
accompanying person (in case of comatose patients).

DNA Isolation and Genotyping of MBL
Polymorphisms
Genomic DNA was isolated from whole blood by Gen Elute
Blood Genomic DNA Kit (Sigma Chemicals) according to
manufacturer’s instructions. MBL promoter polymorphisms
(−550 H/Land −221 Y/X) and codon 54 polymorphism
(A/B) were typed by double amplification refractory system
(dARMS) and allele specific polymerase chain reaction (AS-PCR)
respectively, as described earlier by us (Panda et al., 2013). MBL
codon 52 and 57 were not included in the present investigation
as these mutations are absent in studied population (Panda
et al., 2013). PCR products were separated with 3% agarose gel
electrophoresis, stained with ethidium bromide and visualized
under UV light. About 30% of the randomly selected samples
were sequenced. Results were found to be 100% concordant with
genotyping by PCR, which ensured absence of genotyping error.

MBL Quantification
The plasma MBL was quantified by enzyme linked
immnosorbentassay (ELISA) kit (R&D Systems) according
to manufacturer’s instructions.

Statistical Analysis
Genotype and allele frequency were calculated by direct
counting. Web based Microsoft Excel tools was employed
to calculate Hardy-Weingberg equilibrium (http://www.
tufts.edu/∼mcourt01/Documents/Court%20lab%20-%20HW%2
0calculator.xls). Fisher’s test was used for comparison of
genotype, allele frequencies in different clinical categories of P.
falciparum malaria. Odds ratios (ORs), 95% confidence intervals
(95% CIs) were calculated by Graphpad prism 5.01. P value less
than 0.01 was taken assignificant (Bonferroni correction for three
SNPs 0.05/3= 0.01). Mean plasma MBL levels in various clinical
categories were compared by analysis of variance (ANOVA)
followed by Turkey’s multiple comparison post-test.

Results

Estimation of Plasma MBL Levels in P. falciparum
Infected Patients and Healthy Controls
As shown in Figure 1, healthy controls showed significantly
higher levels of plasma MBL compared to severe malaria
(P < 0.001) and uncomplicated malaria cases (P < 0.05).
Furthermore, on analyses of the subtypes of SM, namely, CM,
MOD, and NCSM,MOD patient showed least plasmaMBL levels
(107.1 ± 17.09 ng/ml) than CM (223.4 ± 27.66) and NCSM
(268.5 ± 49.25). However, mean plasma MBL levels among
different clinical categories of SM patients were not statistically
significant. Mean plasma levels of MBL in HC was significantly
higher compared to CM (P < 0.001), MOD (P < 0.001), and
NCSM (P < 0.05).

Distribution of MBL Polymorphism in Healthy
Subjects
Among 100 healthy individuals, 15 were heterozygous and five
were homozygous for codon 54 polymorphism. The prevalence

FIGURE 1 | Plasma MBL levels in different clinical categories of
P.falciparum malaria and healthy controls. Plasma samples from severe
malaria (SM) patients [n = 47: CM (n = 17), MOD (n = 20), NCSM (n = 10)],
UM (n = 12) and HC (n =25) were quantified by ELISA according to
manufacturer’s instructions. Mean plasma levels of MBL among various clinical
categories were compared by ANOVA followed by turkey’s multiple
comparison post-test. P-value less than 0.05 was considered as significant.
*P < 0.05; **P < 0.01; ***P < 0.001.

TABLE 1 | Demographic characteristics of malaria patients enrolled in the study.

Characteristics Clinical categories

CM (n = 94) MOD (n = 120) NCSM (n = 122) UM (n = 131) HC (n = 100)

Male/Female 75/19 94/26 100/22 97/34 82/18

Age (mean ± S.D) 33.18 ± 14.74 34.63 ± 14.26 34.93 ± 13.68 33.66 ± 14.31 30.82 ± 14.50

CM, cerebral malaria; MOD, multi-organ dysfunction; NCSM, non-cerebral severe malaria; UM, uncomplicated malaria; HC, healthy controls; S.D: standard deviation.
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of HL and LL genotypes of MBL (H-550L) polymorphism
was found to be 25 and 69%, respectively. The distribution
of YX and XX genotypes of MBL promoter (Y-221X) was
29 and 16% respectively in healthy individuals. Frequency of
MBL polymorphisms (codon 54, H-550L, and Y-221X) were
comparable to our earlier report (Panda et al., 2013), and
genotype distribution of codon 54 and MBL (Y-221X) deviated
from Hardy-Weinberg equilibrium [MBL 54 (A/B): χ2 = 9.87,
P = 0.001; MBL (H-550L): χ2 = 2.92, P = 0.08; MBL (Y-221X):
χ2 = 9.98, P = 0.001].

Genotype-phenotype Association of MBL
Polymorphisms
Out of 567 subjects, plasma samples of 84 were available for
MBL quantification by ELISA [CM (n = 17); MOD (n =
20); NCSM (n = 10); UM (n = 12); and HC (n =
25)]. Association between MBL2 polymorphisms and plasma
levels of MBL are shown in Figure 2. YY genotype of MBL
(Y-221X) polymorphism displayed significantly higher levels
of plasma MBL compared to XY (Figure 2B). Furthermore, a
significant association of MBL codon 54 polymorphism with
plasma MBL was observed: wild type (AA) displayed higher
MBL levels compared to AB (P < 0.01) and BB (P < 0.01)
genotypes (Figure 2C). However, other promoter polymorphism

(H-550L) failed to show an association with plasma levels of MBL
(Figure 2A).

PlasmaMBL level is believed to be controlled by the combined
effect of promoter and codon polymorphisms. Earlier we had
shown an association of MBL combined genotype with plasma
levels of MBL (Panda et al., 2013). Combined genotypes were
grouped as high producer (HYA/HYA, HYA/LYA, HYA/LXA,
LYA/LYA, and LYA/LXA), intermediate producer (HYA/LYB,
LYA/LYB, and LXA/LXA) and low producer (LXA/LYB,
LYB/LYB, and LXB/LXB) of MBL, and the plasma levels of
MBL were quantified in each group. High expressing genotypes
displayed higher levels of plasma MBL than intermediate
expressing genotypes. The low expressing genotypes was
associated with lowest levels of plasma MBL. However, the
differences of mean plasma MBL levels between these groups
(high, intermediate and low) were not statistically significant.

Codon 54 (A/B) and Promoter (Y-221X)
Polymorphism are Associated with MOD
Association of MBL2 polymorphism with various clinical
manifestation of P. falciparum malaria was analyzed by Fisher
exact test. As depicted in Table 2, frequency of MBL codon 54
heterozygous (AB) and minor allele (B) were significantly higher
in multi organ dysfunction compared to uncomplicated malaria

FIGURE 2 | Association between MBL2 polymorphisms and
plasma MBL levels. Plasma concentrations (mean ± standard
deviation) of MBL were measured, using a commercial kit. Based
on availability, plasma of 84subjects were quantified and correlated
with their respective genotypes (A: codon 54 A/B, B: Y-221X, and
C: H-550L). Combined genotypes were grouped in to higher

(HYA/HYA, HYA/LYA, HYA/LXA, LYA/LYA, and LYA/LXA), intermediate
(HYA/LYB, LYA/LYB, and LXA/LXA) and lower expressing (LXA/LYB,
LYB/LYB, and LXB/LXB) genotypes (D). Mean plasma levels of MBL
among genotypes were compared by ANOVA followed by turkey’s
multiple comparison post-test. P-value less than 0.05 was
considered as significant. *P < 0.05; **P < 0.01.
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patients (AB: P = 0.006, OR = 2.34, 95% CI = 1.26 to 4.33; B:
P = 0.008, OR = 1.91, 95% CI = 1.19 to 3.09). Furthermore,
dominant inheritance model comparison reveled a significant
association with susceptibility of MOD (P = 0.005, OR = 2.23,
95% CI = 1.27 to 3.91). Heterozygous (YX) for MBL promoter
polymorphism (Y-221X) was more frequent in MOD cases than
UM (P = 0.009, OR= 2.06, 95% CI= 1.19 to 3.56). Distribution
of MBL2 (H-550L) genotypes were comparable among different
clinical categories of P. falciparum malaria. Prevalence of MBL2
codon 54 heterozygous (AB), minor allele (B) and heterozygous
for MBL2 (Y-221X) polymorphism (YX) was higher in severe
malaria compared to UM, but these differences could not reach
statistically significance levels after Bonferroni correction.

To find out association ofMBL2 polymorphismwithmortality
due to P. falciparum infection, distribution of codon 54, H-500L,
Y-221X and combined genotypes was analyzed among subjects
those died and survivors. No significant association of promoter,
codon 54 polymorphism or combined genotypes was observed
with malarial mortality (Data not shown).

Low MBL Producer Genotypes are Associated
with MOD
As plasma MBL levels correlated with combined MBL2
genotypes, we analyzed distribution ofMBL2 combined genotype
in different clinical manifestations of P. falciparum malaria. As
shown inTable 3, the prevalence of lowMBL producer genotypes
(LXA/LYB, LYB/LYB, LXB/LXB) were significantly higher in
severe malaria patients (P = 0.009, OR = 3.04, 95% CI = 1.25
to 7.37) and multi organ dysfunction (P = 0.003, OR = 4.03,
95% CI= 1.56 to 10.52) compared to uncomplicated malaria.

Correlation of Plasma MBL Levels with Clinical
Parameters
We analyzed the possible correlation between plasma MBL levels
and various clinical parameters and results are shown in Table 4.
The plasma MBL levels had an inverse correlation with SGPT
(P = 0.005, r = −0.46), serum urea (P = 0.03, r = −0.28)
and alkaline phosphatase (P = 0.01, r = −0.34). These
observations appear to be associational rather than a cause and
effect relationship.

Discussion

In the present case control study, we investigated the role of
MBL in P. falciparum malaria in an endemic region of Odisha,
India. Our data suggest that low levels of MBL and MBL2 low
producer genotypes are associated with multi organ dysfunction.
Furthermore, in the current investigation we also confirm a
correlation between MBL2 polymorphism with plasma levels of
MBL.

MBL is an important component of the innate immune
system. It plays a significant role in the defense against various
infections. It recognizes carbohydrate domain on the microbial
surface, opsonizes the pathogen and/or activates lectin pathways
(Turner, 1996). Role of MBL in malaria has been demonstrated
earlier (Luty et al., 1998; Juliger et al., 2002; Thevenon et al.,
2009). In the present study, we observed a significantly higher
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TABLE 4 | Correlation of Plasma MBL levels with clinical parameters of P.
falciparum malaria.

P-value Spearman r 95% Confidence interval

Hemoglobin 0.20 0.17 −0.09 to 0.41

SGOT 0.83 0.03 −0.31 to 0.38

SGPT 0.005 −0.46 −0.70 to −0.14

Serum Urea 0.03 −0.28 −0.52 to −0.009

Serum creatinine 0.05 −0.27 −0.51 to 0.01

Alkaline phosphatase 0.01 −0.34 −0.56 to −0.07

Bold values are values which showed statistical significance.

level of plasma MBL in healthy controls from the endemic
areas compared to uncomplicated and severe malaria patients,
indicating a possible role for plasma MBL in the defense against
P. falciparum infection. MBL binds to infected erythrocytes
(Garred et al., 2003b) and possibly assists in the clearance of
infected cells. Individuals with lower plasma MBL levels may
have an increased susceptibility to malarial infection due to
lack of this mechanism, and the infection may progress to
develop severe disease. However, previous reports from the
African continent indicate that normal healthy controls have
lower MBL levels compared to patients with severe malaria (Luty
et al., 1998) and P. falciparum infected cases (Juliger et al.,
2002). Our study deals with adult patients with clinically distinct
clinical phenotypes of severe malaria from an endemic area
that has seasonal transmission. The earlier studies were from
geographically different areas with distinct population base and
transmission dynamics (Luty et al., 1998; Juliger et al., 2002).
Children are mostly susceptible to severe malaria in Africa and
they have a different clinical profile while adults do not suffer
from severe disease. The discordance of observation in our study
and the earlier reported data could be due to the difference
in the population studied. Among the various categories of
severe malaria patients, MOD patients had lower plasma MBL
levels compared to CM and NCSM. MOD has high mortality
among those with severe malaria. Serum MBL levels appear to
modulate severity of disease by mechanisms which are not clearly
defined.

Although large numbers of SNPs in MBL2 gene have been
reported, only limited SNPs have functional relevance. Variants at
amino acids coding region may lead to deformed proteins which
degrade leading to its lower levels. Mutation at promoter regions
may similarly affect binding of transcription factors leading to
diminished production of transcripts which ultimately translate
to lesser protein expression. Our study revealed an association
of BB and AB genotypes with lower plasma MBL similar to
studies reported earlier in Danish (Madsen et al., 1995; Steffensen
et al., 2000), Australian (Minchinton et al., 2002), and Indian
population (Panda et al., 2013). We also observed association
between MBL2 Y-221X polymorphism with plasma MBL levels
similar to our earlier report (Panda et al., 2013). However, MBL2
combined genotype and H-550L polymorphism did not correlate
with plasma levels of MBL. This could be a result of small sample
size available for plasma MBL estimation.
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We observed a significant association between MBL2 codon
54 and promoter Y-221X polymorphism with susceptibility to
multi organ dysfunction. Subjects with heterozygote genotype
for codon 54 (AB) and Y-221X (YX) polymorphism had 2.34
and 2.06 fold higher chance of developing MOD. Furthermore,
combined analysis of codon and promoter polymorphism
revealed significant association of low producer genotype
(LXA/LYB, LYB/LYB, LXB/LXB) with susceptibility to MODs
(OR = 4.03). Earlier studies reported the role of MBL2
polymorphism in severe malaria.MBL2 codon 54 and 57 variants
in Gabonese children, LXPA haplotype in Indian population (Jha
et al., 2014) and a novel mutation (−797 C>A) (Boldt et al.,
2006) have been linked with susceptibility to severe malaria. The
present study also showed similar susceptibility of MBL2 codon
54 and Y-221X variants to severe malaria but did not reach
significance after Bonferoni correction.

In the present investigation, distribution of MBL codon 54
(A/B) and promoter (H-550L) polymorphism deviated from
HWE in line with our earlier observation (Panda et al., 2013).
Disparity of genotype distribution fromHWEhas been attributed
to population stratifications and/or selection pressure (Hosking
et al., 2004). In the current study, patients and controls were
enrolled from a similar geographical area, and the possible reason
for deviation of HWE could be selection pressure. Malaria exerts
a strong selection pressure on the human genome and beneficial
allele are positively selected and become more prevalent in
endemic areas. The studied population is also endemic to
filariasis, and a previous study by our group (unpublished

results), and others (Choi et al., 2001; Meyrowitsch et al.,
2010) had shown an association between MBL2 variants with
susceptibility to lymphatic filariasis. Infectious diseases exert
selection pressure on human population (Miller, 1999; Ghosh,
2008; Fumagalli et al., 2009) and parasite endemic areas are
significantly affected.

Our study clearly defines the association between low plasma
levels of MBL and the low producer MBL genotype with
severe disease, notably, MOD. Although it is known that MBL
functions as an important protective component of the innate
immune system, the mechanism(s) that modulates severity in
P. falciparum remains to be clearly defined.
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