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ABSTRACT

Restarting stalled replication forks is vital to avoid
fatal replication errors. Previously, it was demon-
strated that hydroxyurea-stalled replication forks
rescue replication either by an active restart mech-
anism or by new origin firing. To our surprise, using
the DNA fibre assay, we only detect a slightly re-
duced fork speed on a UV-damaged template during
the first hour after UV exposure, and no evidence for
persistent replication fork arrest. Interestingly, no
evidence for persistent UV-induced fork stalling
was observed even in translesion synthesis de-
fective, Polgmut cells. In contrast, using an assay
to measure DNA molecule elongation at the fork,
we observe that continuous DNA elongation
is severely blocked by UV irradiation, particularly in
UV-damaged Polgmut cells. In conclusion, our data
suggest that UV-blocked replication forks restart
effectively through re-priming past the lesion, leav-
ing only a small gap opposite the lesion. This allows
continuation of replication on damaged DNA. If left
unfilled, the gaps may collapse into DNA double-
strand breaks that are repaired by a recombin-
ation pathway, similar to the fate of replication forks
collapsed after hydroxyurea treatment.

INTRODUCTION

Faithful DNA replication is critical to correctly transmit
the genetic information to daughter cells and maintain
genomic stability. The DNA replication machinery is con-
tinuously challenged by various obstacles, such as loss of
replication factors, deprivation of nucleotides, or by phys-
ical damage on the DNA template. Stalled replication
forks are stabilized through activation of a pathway invol-
ving primarily the ATR kinase (1,2), which is activated at
RPA coated single-stranded DNA (ssDNA) regions (3)

formed after uncoupling of the MCM-helicase at stalled
replication forks (4–6). This pathway is activated after
replication fork stalling by either hydroxyurea (HU) or
physical blockage such as a lesion induced by UV-
irradiation. However, other events occurring at stalled
replication forks may differ depending on the nature of
the fork-stalling agent.
Disrupted replication may be continued through DNA

repair or damage tolerance pathways. Repair has been
considered as a means of restarting replication, for
example through break-induced replication (7,8). The
coupling of translesion synthesis (TLS) to the replication
machinery is not fully determined. Interestingly, it was
recently demonstrated in Saccharomyces cerevisiae that
the ubiquitin-dependent TLS of UV-induced lesions is sep-
arate from genome replication and may occur post-
replicatively (9,10). Consistent with this, there is evidence
for separation of DNA repair from replication, for ex-
ample as demonstrated by the inability of HU-induced
collapsed replication forks to restart (11). Instead, repli-
cation is resumed by new origin firing (11), which is medi-
ated by firing of dormant origins under replication stress
(12,13). The remaining DNA double-strand breaks (DSBs)
after replication fork collapse are repaired by a slow hom-
ologous recombination (HR) process (11,14,15) and do
not provide a substrate for restarting replication (11).
Different to a collapsed fork, a replication fork transi-

ently stalled by HU can effectively restart through several
different pathways employing a number of proteins [see
(16) for a review]. However, it is not yet known to what
extent these pathways are also used for continuation of
replication after fork stalling by physical damage. Since
HU stalls replication forks by deprivation of nucleotides
(17), it is possible that replication forks can simply restart
when the nucleotide pool is restored. Here, we studied
replication restart after exposure to short-wave ultraviolet
radiation (UV), inducing primarily cyclobutane pyrimi-
dine dimers (CPDs), which block replication forks and
are bypassed during TLS by PolZ (18). We find that
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UV-induced DNA damage, as opposed to HU, does not
result in an increased number of stalled replication forks
and causes only a slight reduction in replication fork
speed. In contrast, continuous DNA elongation at repli-
cation forks is prevented after UV-induced damage, espe-
cially in PolZ mutated (PolZmut) cells, resulting in gaps.
Altogether, our data support a model for restart by re-
priming of forks blocked by UV-induced damage, similar
to what has been suggested in S. cerevisiae (6). According
to this model, replication is quickly resumed on the 50 side
of the lesion, allowing the replication fork to continue but
leaving a ssDNA gap in the newly synthesized DNA,
opposite the lesion. We show that if left unfilled, the re-
priming induced ssDNA gaps collapse into DNA DSBs
that are repaired by an HR pathway.

MATERIALS AND METHODS

Cell culture

The XP30RO cells, originally obtained from a patient,
have a 13-bp deletion leading to a frameshift in the PolZ
gene, yielding a 42 amino acid peptide (19). The XP30RO
cell line and the restored cell line stably expressing PolZ
from a vector (20) were a kind gift from Dr Alan
Lehmann. Cells were grown in Dulbecco’s Eagles
minimum essential medium with 10% foetal calf serum
and 1% streptomycin–penicillin, restored cells in the
presence of 100 mg/ml zeocin. Cells were cultured and
allowed to repair in an incubator at 37�C with 5% CO2.

UVC irradiation

Cells were washed with cold Hank’s balanced salt solution
(HBSS+HEPES without Phenol red) that was removed
before irradiation at room temperature under a 254 nm
UVC low pressure mercury lamp (Phillips TUV 15W) at
indicated doses. Dose rates used were 0.18 and 0.10 J/m2s.
Exposure times were controlled using a fast magnetic
shutter mounted within the apparatus.

DNA fibre technique

An amount of 25 mM CldU (Sigma, C6891) and 250 mM
IdU (Sigma I7125) in pre-warmed DMEM were incubated
at 37�C, 5% CO2 for at least 30min before labelling. Cells
grown for at least 18 h were labelled with CldU for 20min,
washed and UVC irradiated (10 J/m2), and then incubated
in IdU media for 30, 60, or 120min before harvesting
by scraping in cold PBS. Harvested cells were diluted to
106 cells/ml. Spreading and staining was performed as
described previously (21). Fluorescence images were
captured using a Zeiss LSM 510 inverted confocal micro-
scope using planapochromat 63�/NA 1.4 oil immersion
objective, excitation wavelengths of 488 and 546 nm, and
analysed using the ImageJ software. At least 100 unidir-
ectional forks labelled with both CldU and IdU were
measured and at least 500 fork structures were counted for
every condition. Conversion factor used is 1 mm=2.59 kb
(22). Three individual experiments were performed and
coded samples were analysed.

Pulsed-field gel electrophoresis

Directly after a 24 h (0.439mM, 0.925 kBq/ml) or 0.5 h
(4.39mM, 9.25 kBq/ml) labelling with 14C-TdR, cells
were UVC irradiated (10 J/m2), and allowed to repair in
pre-warmed DMEM for indicated times. Pulsed-field gel
electrophoresis (PFGE) was performed essentially as pre-
viously described (23). In short, the cells were harvested
and 106 cells were melted into 1% InCert agarose
(Cambrex) plugs and incubated for 48 h in 0.5M EDTA,
1% N-laurylsarcosyl and 2mg/ml proteinase K at 20�C in
darkness. After four washings in Tris–EDTA buffer, sep-
aration was performed on agarose gel (1% certified
megabase agarose, Bio-Rad) on a CHEF DR III appar-
atus for 20 h (Bio-Rad, 120� angle, 4 V/cm, switch time
60/240 s, 14�C). The gel was stained with ethidium brom-
ide, photographed and then dried to allow exposure onto
a phosphoimager plate (FujiFilm) for quantification em-
ploying MultiGauge software (FLA- 3000, FujiFilm).

Immunofluorescence

Cells grown on cover slips for 18 h were pulse labelled with
20 mM CldU for 10min immediately before UVC irradi-
ation (10 J/m2), allowed to repair for 6 h, fixed in 3%
paraformaldehyde for 20min, permeabilized for 10min
with 0.3% Triton X-100 in PBS, blocked with 3% BSA
in PBS for at least 30min, incubated with primary anti-
bodies against RAD51 (Santa Cruz, rabbit, H92,
SC-8349) gH2AX (Upstate, mouse, clone JBW301) and
RPA (32 kDa subunit, Cell Signalling Technology, rat,
4E4) over night at 4�C, washed, incubated with
fluorophore-conjugated secondary antibodies (Alexa 488
goat anti rabbit, Alexa 635 goat anti mouse, Molecular
Probes) for 1 h. Incorporated CldU was detected by incu-
bation in 2N HCl at 37�C for 15min, followed by neu-
tralization in Borax pH 8.7. After washings, samples were
incubated with primary antibody against CldU [Oxford
Biotechnology, rat anti BrdU and CldU, clone BU1/75
(ICR1)] for 1 h and secondary antibody (Alexa 555, goat
anti rat, Molecular Probes) for 1 h before mounting in
ProLong Gold (Invitrogen). All antibodies were diluted
1:1000, except RPA (1:500), in PBS with 3% BSA.

Fluorescence images were captured using a Zeiss LSM
510 inverted confocal microscope using planapochromat
63�/NA 1.4 oil immersion objective, using excitation
wavelengths of 488, 546 and 630 nm and processed using
the LSM software. Cells were considered as positive for
RPA if they contained at least 10 large foci. For determin-
ation of co-localization, only cells with distinct CldU foci
were analysed for gH2AX and RAD51 foci co-localizing
with the CldU foci. Cells were considered as positive for
co-localization if at least 80% of gH2AX and RAD51
foci co-localized with CldU foci. Four independent
experiments with coded samples were analysed.

Alkaline DNA unwinding technique

Replication fork elongation was measured as described
previously (24). Shortly, 3H-thymidine is incorporated
into ongoing forks, and the forks are allowed to progress
from the labelled area for different times. By addition of
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alkaline solution, unwinding takes place from the single-
stranded ends of the fork or gaps, if present; thus, as the
fork moves forward or the gaps are filled, the labelling is
removed from the fraction of DNA that becomes single-
stranded. Cells plated in 24-well plates (70 000 cells/well)
were allowed to grow for 18 h before pulse labelling (0.5 h)
with 37kBq/ml 3H-thymidine (GE Healthcare) in DMEM,
directly followed by UVC irradiation with indicated
doses and incubated in prewarmed DMEM for indicated
times.

RESULTS

Efficient replication fork progression on a UV-damaged
template

Here, we used the DNA fibre assay to monitor replication
after induction of replication fork blocking DNA adducts.
We focussed on the first 2 h following exposure to UV,
when a large fraction of UV-induced lesions are still pre-
sent on the DNA. We labelled DNA with CldU for 20min
immediately before exposure to UV, and with IdU for 30,
60 or 120min after irradiation (Figure 1A) and deter-
mined different replication structures (Figure 1B). The
UV dose used (10 J/m2) generates about one lesion each
3–4 kb [(25); see Supplementary Data] so that initially,
forks will run into damage every five minutes.

The PolZ TLS polymerase efficiently bypasses CPDs
(18) and hence, poor replication arrest may simply be
the result of efficient bypass. To test this hypothesis, we
used both XP30RO (PolZmut) cells and XP30RO cells with
rescue expression of functional PolZ (XP30PO+PolZ).
Despite the tight spacing of the DNA lesions, we observed
no increase in replication fork stalling without any incorp-
oration of the second labelling after UV irradiation (first
label terminations) even in PolZmut cells (Figure 1C).

Next, we determined replication speed of ongoing forks
(those labelled with both CldU and IdU) and found no
difference in fork speed in unirradiated XP30RO or
XP30PO+PolZ cells (Figure 1D and E), confirming
earlier results showing that PolZ is not required for repli-
cation on undamaged DNA (26). When measuring on-
going forks we excluded bidirectional forks and merged
replicons (second label terminations) (Figure 1B) as these
structures were initiated or terminated during the experi-
ment. Fork speed is slightly reduced on UV-damaged
(10 J/m2) templates and surprisingly, in a similar manner
in both PolZmut and restored cells (Figure 1D, E and
Supplementary Figure S1). However, 120min after UV
exposure a small reduction of IdU fork speed is observed
in XP30RO cells compared to restored cells (P< 0.05;
Figure 1E), which is in line with previous replication
defects observed in PolZmut cells at late time points after
UV treatment (27).

Replication forks blocked by prolonged HU treatment
restart by an increase in new origin firing (11). In contrast,
UV exposed cells show a checkpoint mediated reduction
of new origin firing (28,29). In line with this, we observe a
reduced level of new origin firing after UV-induced
damage in both cell lines (Figure 1F), suggesting that
the elongation of replication fibres cannot be explained

by new origin firing. Rather, replication fork elongation
is able to proceed despite the massive induction of adducts
on the template DNA.

Impaired replication-mediated DNA elongation on a
UV-damaged template

The suggested role of PolZ in mediating TLS after UV
exposure (18), makes our observation of intact, and PolZ
independent, replication fork elongation on a template
heavily damaged by UV somewhat surprising. However,
in S. cerevisiae it has been demonstrated that TLS is
uncoupled from genome replication (9,10). Furthermore,
ssDNA regions at replication forks have been demon-
strated to accumulate after UV-induced damage in
S. cerevisiae, which could be formed after a re-priming
event where replication continues on the 50 side of the
lesion, leaving a small gap on the newly synthesized strand
(6). To investigate if replication fork elongation is continu-
ous after induction of UV-induced damage, we used the
DNA alkaline unwinding assay. This assay monitors con-
tinuous replication fork elongation from a pulse labelled
area, by using ssDNA ends at a replication fork as starting
points for DNA unwinding in alkaline solution (24,30).
Nascent replication forks are labelled with a 30-min
3H-thymidine pulse and the 3H-labelled DNA is only
released into the ssDNA fraction if continuous replication
elongation is inhibited (Figure 2A). This method will thus
distinguish between continuous or re-primed/gapped rep-
lication fork progressions, two scenarios where similar
fork movement would be seen with a method that is not
sensitive to single-strand gaps, like the fibre assay. In
contrast to the DNA fibre assay, we found that continu-
ous elongation of replication forks after UV treatments
is delayed in both PolZmut and PolZ restored cells
(Figure 2B) at early time points. The initial inability of
PolZ restored cells to grow continuous DNA after UV
exposure is close to the levels seen in untreated cells at
later time points (Figure 2B). This suggests that replication
forks are initially disrupted by UV-induced DNA lesions,
leaving behind gaps that are later filled. Interestingly,
continuous replication fork elongation is completely im-
paired in the PolZmut cells even 12 h after UV exposure
(Figure 2B). This block in continuous replication fork
elongation is in sharp contrast to the results observed in
the fibre assay showing similarly intact elongation in both
PolZmut and restored cells, altogether suggesting the
prolonged existence of gaps in newly synthesized DNA.
To determine whether the amount of discontinuous rep-

lication observed in PolZmut cells is related to the UV
dose, we treated XP30RO cells with increasing doses of
UV. We find that the apparent rate of replication fork
elongation, measured as existence of points for DNA un-
winding, in XP30RO cells is dependent on UV dose, such
that no apparent elongation is seen at a dose of 10 J/m2

under these conditions (Figure 2C). We also used alkaline
sucrose gradients as a separate method to study newly
replicated DNA fragments after UV exposure and their
elongation into larger DNA molecules over time (26). In
PolZ proficient cells, pulse labelled DNA fragments
synthesized shortly after UV irradiation quickly grow
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into larger fragments. In contrast, in PolZmut cells, the
pulse labelled DNA fragments do not increase consider-
ably in size from 1 to 12 h after labelling (Supplementary
Figure S2). This confirms the existence of gaps in DNA
replicated shortly after UV exposure, despite the continu-
ation of replication observed with the fibre assay.

UV-induced post-replication ssDNA gaps collapse into
DNA DSBs

Failure to bypass UV lesions causes initial stalling of one
strand, which would generate ssDNA gaps previously
visualized in S. cerevisiae (6). Here, we find accumulation
of RPA foci after UV treatment, particularly in PolZmut

cells (Supplementary Figure S3), in line with previous
reports (27) and explaining the increased ATR signalling
reported in PolZmut cells (31).
Next, we wanted to determine the fate of these UV

associated ssDNA gaps left behind the progressing repli-
cation fork. It has previously been demonstrated that

gH2AX foci form in response to UV exposure in
PolZmut but not to the same extent in restored cells (32).
Here, we decided to investigate whether these gH2AX foci
form at replication forks. We pulse labelled XP30RO and
XP30RO+PolZ cells with CldU directly before expos-
ing them to UV and incubated the cells for 6 h before
fixation. Staining revealed that gH2AX foci co-localized
with CldU-labelled replication sites and RPA in UV
exposed PolZmut cells, whereas only a small fraction of
restored cells were gH2AX foci positive (Figure 3A–C).
Phosphorylation of H2AX to form gH2AX foci can
occur either in response to DSB formation, in a nucleotide
excision repair (NER) dependent manner after UV
exposure independently of DSB formation (33) or at
stalled replication forks in the absence of DSBs detectable
by PFGE (11).

To determine whether PolZ-dependent gap-filling oppo-
site DNA adducts protects from the formation of UV-
induced DSBs, we determined the formation of

Figure 1. Replicating DNA fibres continues to grow in similar manners in UV irradiated PolZmut and restored cells. (A) Experimental setup. (B)
Different structures observed. (C) Fraction of first label terminations of the replication structures, after 30min IdU labelling. Mean and s.e.m. of
three independent experiments. (D) Representative fibres after UV exposure and different times with IdU label. (E) IdU incorporation in UV exposed
and unirradiated PolZmut and restored cells. Mean and s.e.m. of three independent experiments. (F) Fraction of newly fired origins among the
replication structures, after 30min IdU labelling. Mean and s.e.m. of three independent experiments. Statistical significance determined in t-test is
indicated with one star (P< 0.05).
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replication-induced DSBs by PFGE. Prior to UV
exposure, we labelled cells with 14C-thymidine either
homogeneously for 24 h or for 0.5 h to only label
nascent replication forks. Cells were then harvested at
different time points (0, 2, 4, 6, 12 h) after UV exposure,
and the DNA was separated using PFGE. We stained
the gel with ethidium bromide and found an increased
amount of DSBs formed in XP30RO cells as compared
with the PolZ restored cells (Figure 3D). We next analysed
the DSBs that are associated with replication, by
measuring the 14C-labelled DNA. In the 0.5 h-labelled
cells most of the 14C-labelled DNA is within replication
bubbles, which do not migrate into the gel unless opened
by a DSB produced adjacent to a replication fork [see (15)
for details]. We found an increase in replication
associated DSBs produced by UV treatments in PolZmut

cells (Figure 3E and F). The total fractions of radioactivity
released were 93% in PolZmut cells and 61% in comple-
mented cells (Figure 3F), showing that many forks present
at the time of UV exposure, were collapsed into DSBs 6 h
after UV treatment. Thus, despite the initial lengthening
of replication fibres in both PolZmut and restored cells,
there is a considerable induction of replication-associated
DSBs after UV exposure (10 J/m2).
It is well established that RAD51-dependent HR is trig-

gered in order to repair collapsed replication forks after
HU treatment (11,15). This is in contrast to yeast, where
recombination is suggested to be required for bypassing
replication blocks (6). The Cleaver lab has shown that
MRE11 foci are formed in PolZmut cells after UV irradi-
ation and that these co-localize with PCNA (32).
Furthermore, PolZ co-localizes with RAD51 after UV ir-
radiation (18). These data support both models: that HR
is involved in mediating bypass of blocked replication
forks, which is done instantaneously and/or that recom-
bination is involved in repairing collapsed post-replication
ssDNA gaps in PolZmut cells. To test whether RAD51 foci
form at collapsed replicative gaps, we co-stained CldU,
gH2AX foci and RAD51 in cells 6 h after UV treatment,
when the active replication fork has extended past the
lesion. We find that the post-replication damaged
regions co-localize with RAD51 (Figure 4A), suggesting
RAD51-dependent repair of collapsed replicative gaps fol-
lowing UV exposure. In order to only study cells that were
replicating at the time of UV exposure, we selectively
looked at CldU foci positive cells, and quantified the
number of cells in which RAD51 co-localized with CldU
and gH2AX foci (Figure 4B). In both the PolZmut and the
restored cells, 25% of the cells showing colocalization of
gH2AX and CldU, also show co-localization of RAD51
(Figure 4B). However, the total proportion of cells with
co-localization of gH2AX, RAD51 and CldU foci is four
times larger in PolZmut cells (Figure 4B). This clearly
shows the importance of recombination-mediated repair

Figure 2. Continuous replication fork elongation is disrupted in
PolZmut cells, but not in restored cells, after UV exposure.
(A) Schematic illustration of the alkaline DNA unwinding assay used
to monitor continuous replication fork progression. Directly before UV
exposure, ongoing replication forks are pulse labelled (0.5 h) with
3H-TdR. As replication forks progress the labelled DNA is located
further away from the DNA ends at the fork and is not released into
the ssDNA fraction by the alkaline unwinding that is initiated from
ssDNA ends. However, by this technique, ssDNA will also be released
if gaps are formed during replication. (B) Replication progression of
replication forks in UV irradiated (5 J/m2) PolZmut XP30RO and

Figure 2. Continued
restored cells. Replication progression is monitored as loss of
3H activity in the ssDNA fraction (C) Continuous replication fork
progression in PolZmut XP30RO cells is slowed down in a dose depend-
ent manner following UV irradiation.
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of collapsed gaps after replication of DNA with
UV-induced damage in mammalian cells.

DISCUSSION

Although UV-induced DNA damage can block replica-
tion elongation, we observe no increase in the immediate
stalling of replication forks after a high UV exposure,
using the DNA fibre assay. Rather, we show that the
elongation speed on a template with UV-induced
damage is only marginally reduced and independent on
the TLS polymerase PolZ, which is responsible for

bypass of UV-induced adducts. In contrast, using two dif-
ferent replication assays we demonstrate that the continu-
ous elongation of DNA molecules on a template damaged
by UV is severely impaired, particularly in PolZmut cells.
Taken together, these results demonstrate that after expos-
ure to UV, the replication fork is able to proceed, but
without properly elongating the DNA molecule. We
propose a model to explain this phenomenon, where rep-
lication continues efficiently by re-priming at UV-induced
DNA damage, leaving behind gaps that are left unsealed
in PolZmut cells (Figure 4C). Although postreplicative
gaps have been previously demonstrated in PolZmut cells

Figure 3. Replication forks stalled by UV-induced damage collapse into replication-associated DSBs. (A) Representative images of UV-induced
gH2AX foci at replication forks labelled with CldU in PolZmut XP30RO and restored cells, 6 h following UV treatments. One nucleus is shown, bar
is 5mm. (B) Percentage of CldU foci positive cells where gH2AX foci co-localize with CldU. Mean and s.e.m. of four independent experiments is
depicted. Statistical significance determined in t-test is indicated with three stars (P< 0.001). (C) UV-induced gH2AX foci in a PolZmut XP30RO cell,
co-localizing with RPA 6h after irradiation (10 J/m2). Bar is 5mm. (D) UV-induced DSBs produced in PolZmut XP30RO and restored cells after
exposure to 10 J/m2, measured by PFGE, and visualized by ethidium bromide or (E) autoradiography. (F) Quantification of the intensity of
radioactively labelled DNA fragments released from the 0.5-h pulse labelled regions of XP30RO and XP30RO+PolZ cells, 0 h (black and green
line, respectively) and 6 h (blue and yellow line, respectively) after UV exposure, depicting remaining damage at previously replicated forks.
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(26) and in Escherichia coli defective in NER (34), repli-
cation fork uncoupling and efficient replication fork
elongation on UV-damaged DNA has not previously
been demonstrated in mammalian cells. Data from
S. cerevisiae show the presence of ssDNA gaps after UV
exposure visualized by electron microscopy (6) and that
gap filling after UV exposure can occur separately from
genome replication (9,10). This supports a re-priming
model for restart of UV stalled replication forks, which
is conserved from lower eukaryotes. In addition, the data
presented here argue that the re-priming kinetics are very
fast and only marginally slow down the fork speed.
Re-priming may be important to continue replication on
damaged DNA, differing from replication restart of forks
stalled after nucleotide deprivation or loss of replication
factors.

Replication restart is not likely to be achieved by new
origin firing, since origin firing is decreased after
UV exposure (28,29), which we also see in our cells
(Figure 1F). Furthermore, due to the resolution of the
fibre technique, a newly fired origin would have to be
within <2 kb of the fork-stalling lesion in order to be in-
terpreted as continuous, while the number of licensed
origins are believed to be spaced 30–150 kb apart (35,36).

Efficient restart of a HU-stalled fork requires several
proteins including RAD51, XRCC3, MUS81, BLM,
PARP1, MRE11 and SMARCAL1 (11,37–41). Are there
any specific factors required for restart of UV stalled forks
by re-priming? This may not be the case since long
stretches of ssDNA is essentially the natural substrate
for DNA Pola-primase mediated priming and start of
another Okazaki fragment on the lagging strand. Thus,
re-priming may simply be triggered by the formation of

ssDNA regions, requiring no other factors than those
present in a normal replication factory.
Interestingly, continued primer synthesis was recently

demonstrated at replication forks stalled by aphidicolin
in Xenopus egg extracts (42). Although several factors
have been identified to assist restart of HU-stalled repli-
cation forks, a majority of the forks (80%) restart without
need of an active restarting process (11,41). With the
presence of primers, there is a possibility that restart of
most replication forks are carried out by re-priming also
after HU treatment. However, the ssDNA gaps left behind
a HU-stalled fork would be likely to close rapidly, as there
is no physical block and hence such short persisting gaps
would be difficult to demonstrate experimentally.
We find a large portion of replication-associated DNA

present in DNA fragments 6 h after UV exposure, in par-
ticular in PolZmut cells. For fragment separation using
PFGE, two DSBs are needed for fragment release. The
sizes of the fragments range from 0.2 to 5Mb in length,
which is considerably larger than the average replicon.
Since replication origin firing occurs in clusters (43), it is
possible that two DSBs in distant replicons within one
cluster would release the whole cluster into the PFGE.
Thus, although a large amount of replication-associated
DNA fragments are released into the PFGE, the number
of collapsed replication forks is likely to be fewer.
We find RAD51 foci associated with replication-

associated DSBs. rad51 mutants in S. cerevisiae accumu-
late ssDNA gaps, visualized by electron microscopy, to a
higher degree than wild-type cells suggesting that Rad51 is
involved in immediate bypassing of the lesion (44). In
contrast, we earlier demonstrated that DNA molecule
elongation after UV-induced damage is not impaired in

Figure 4. RAD51 co-localizes with replication sites of after UV exposure of PolZmut cells. (A) Representative images of UV-induced gH2AX and
RAD51 foci at replication forks in PolZmut XP30RO and restored cells pulse labelled (10min) with CldU directly before UV exposure (10 J/m2), and
allowed to repair for 6 h before fixation. gH2AX was used to visualize DSBs and RAD51 as an indicator of homologous recombination. Bar is 5mm.
(B) Quantification of co-localization of gH2AX and RAD51 with CldU foci, in cells fixed 6 h after UV exposure (10 J/m2). Only cells with distinct
CldU foci were checked for co-localization, to only study cells replicating when irradiated. Mean and s.e.m. of four independent experiments are
shown. (C) Model for the continuation of DNA replication on damaged DNA. When the replication fork runs into a UV-induced DNA lesion, the
PCNA molecule is left and can be ubiquitinated to allow bypass with PolZ. Replication is resumed on the 50 side of the lesion, leaving a gap. In the
absence of PolZ, the gaps are not bypassed, but collapsed into DSBs that are repaired with a pathway involving RAD51.
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the RAD51 paralogue XRCC3 mutant mammalian cells
(24), suggesting that gap closure in mammalian cells is not
dependent on HR. This may be explained by slow kinetics
of recombination repair in mammals. Here, we observed
markedly higher levels of RAD51 foci in PolZmut cells as
compared to the PolZ rescued cells (Figure 4). If RAD51
is involved in PolZ-independent re-priming, one would
not expect more RAD51 foci in PolZmut cells. Rather,
the increased amount of RAD51 foci correlate with the
increase in ssDNA gaps in PolZmut cells. Furthermore, the
timing and location of the foci suggest that RAD51 foci
form at the ssDNA gaps and not for re-priming the
blocked fork, as suggested for S. cerevisiae. The absence
of RAD51 at many replication site associated gH2AX foci
may be because they are not sites of DSBs, but RPA
coated ssDNA regions, or alternatively that such DSBs
are processed by an MRE11-dependent repair pathway,
as suggested earlier (32). Thus, we suggest that HR in
mammalian cells is activated for repair of UV-collapsed
ssDNA gaps but not restart of UV-blocked forks.
In conclusion, we demonstrate that immediate continu-

ation of DNA replication fork progression on a
UV-damaged template is efficient and independent of
TLS. In contrast, we observe discontinuous elongation
of replication forks, which is very pronounced in
PolZmut cells, demonstrating distinct mechanisms for
fork progression and DNA molecule extension on a
UV-damaged template. Furthermore, we demonstrate
that replication-induced gaps on DNA damaged by UV
readily collapse into DSBs, which are substrates for
RAD51-mediated recombination repair.
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