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One common and reversible type of post-translational modification (PTM) is the addition of
O-linked b-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), and its
dynamic balance is controlled by O-GlcNAc transferase (OGT) and glycoside hydrolase
O-GlcNAcase (OGA) through the addition or removal of O-GlcNAc groups. A large
amount of research data confirms that proteins regulated by O-GlcNAcylation play a
pivotal role in cells. In particularly, imbalanced levels of OGT and O-GlcNAcylation have
been found in various types of cancers. Recently, increasing evidence shows that
imbalanced O-GlcNAcylation directly or indirectly impacts the process of cancer
metastasis. This review summarizes the current understanding of the influence of O-
GlcNAc-proteins on the regulation of cancer metastasis. It will provide a theoretical basis
to further elucidate of the molecular mechanisms underlying cancer emergence
and progression.

Keywords: O-GlcNAcylation, O-GlcNAc transferase (OGT), cancer metastasis, transcriptional factors, post-
translational modifications (PTMs)
INTRODUCTION

As one of the post-translational modifications (PTMs), O-GlcNAcylation often occurs on serine
(Ser) and threonine (Thr) residues of specific substrate cellular proteins including transcription
factors, signaling pathway members and metabolic enzymes (1). O-GlcNAc transferase (OGT) and
O-GlcNAcase (OGA) are responsible for adding or removing O-GlcNAc groups at the serine/
threonine (Ser/Thr) residues of the target proteins to maintain the dynamic balance of intracellular
O-GlcNAcylation (2). The sugar nucleotide uridine diphospho-N-acetylglucosamine (UDP-
GlcNAc) which is generated by the nutrient-dependent hexosamine biosynthetic pathway (HBP),
serves as a donor for O-GlcNAc addition to specific substrate proteins, demonstrating the link
Abbreviations: CCA, cholangiocarcinoma; CESC, cervical cancer; CRC, colorectal cancer; CXCR4, C-X-C chemokine receptor
4; EC, esophageal cancer; EMT, epithelial-mesenchymal transition; EZH2, zeste homolog; HBP, hexosamine biosynthetic
pathway; HCC, hepatocellular carcinoma; HDAC, histone deacetylase; HIF-1a, hypoxia-inducible factor 1 alpha; H3K27,
histone 3 lysine 27; iNOS, Inducible Nitric Oxide Synthase; MMPs, Matrix metalloproteinases; NF-kB, Nuclear factor kB;
Notch1, notch receptor 1; Nrf, Nuclear factor erythroid 2-related factor; O-GlcNAc, O-linked b-N-Acetylglucosamine; O-
GlcNAcylation, O-linked b-N-Acetylglucosamine modification, O-GlcNAc modification; OGT, O-GlcNAc transferase; OGA,
O-GlcNAcase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; PTM, post-translational modification;
RACK1, Receptor for activated protein kinase C; RCC, renal cell carcinoma; Ser, Serine; SIRT1, sirtuin1; STAT3, Signal
transducer and activator of transcription 3; Thr, Threonine; THYM, thymoma; TME, tumor microenvironment; UDP-
GlcNAc, Uridine diphospho-N-acetylglucosamine; VEGF, vascular endothelial growth factor.
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between glucose metabolism and O-GlcNAcylation (3).
Therefore, O-GlcNAcylation is often referred to as a nutrient
sensor. It has been found that O-GlcNAcylation is involved in
diverse fundamental cellular processes, including cell signaling as
well as tumorigenesis and tumor progression (4). A decade of
research regarding the role of O-GlcNAcylation in cancer
progression has resulted in accumulating studies on its
potential roles in metastasis . Here, the role of O-
GlcNAcylation in cancer metastasis will be summarized. In
addition, the potential roles of the O-GlcNAcylation-PTMs
axis in metastasis and small molecules that target O-
GlcNAcylation are discussed.
OGT AND OGA JOINTLY MAINTAIN
INTRACELLULAR O-GLCNACYLATION

Molecular Structure of OGT and OGA
As mentioned previously, intracellular O-GlcNAcylation is
dynamically regulated by OGT and OGA. Notably, OGT and
OGA are the only enzymes found to be involved in the addition
and removal of O-GlcNAc groups to or from Ser/Thr residues of
the substrate proteins (5). Human cells express three isoforms of
OGT—nucleocytoplasmic (ncOGT, 116kDa), mitochondrial
(mOGT, 103kDa), and short (sOGT, 75kDa)—which differ
only in their subcellular location and number of N-terminal
tetratricopeptide-repeats (TPRs), three different transcripts
contain 13.5 (ncOGT), 9 (mOGT), and 3 (sOGT) TPRs,
respectively. It is already clear that OGT is divided into two
highly conserved functional domains (Table 1) (6, 7, 14). The N-
terminal TPR domain binds the substrate protein, while the
C-terminal catalytic domain binds UDP-GlcNAc and catalyzes
O-GlcNAcylation of the substrate (8, 15–17). And OGA was
initially isolated from crude cellular extract, and it catalyzes
hydrolytic cleavage of O-GlcNAc from proteins (18). There are
two alternative OGA splicing isoforms as follows: OGA-L (916
amino acids) predominantly localizes in the cytoplasm, and
OGA-S (677 amino acids) localizes to the nucleus and lipid-
droplets (8, 15–17, 19). OGA is also divided into two functional
domains, N-terminus N-acetyl-b-D-glucosaminidase domain
and C-terminal pseudo-histone acetyltransferase (HAT)
domain (20). In cells, OGA can interact with OGT to form an
“O-GlcNAczyme” complex under high glucose conditions (21),
however disrupting this balance will lead to abnormal cell
function and possibly even cancer.
Frontiers in Oncology | www.frontiersin.org 2
Imbalanced O-GlcNAcylation in
Cancer Cells
O-GlcNAcylation harboring many substrates is involved in
various cellular processes, including gene transcription
regulation, stem cell differentiation, enzyme activity, and
protein stability, among others (21–26). In view of the
important roles of O-GlcNAcylation in multiple fundamental
cellular processes, it is unsurprising that imbalanced profiles of
OGT/O-GlcNAcylation frequently lead to the occurrence of
many diseases such as diabetes, neurological disorders,
cardiovascular disease, and even cancer (27, 28). In many types
of cancer such as breast, prostate, lung, colorectal, and
esophageal cancers, higher levels of OGT/O-GlcNAcylation are
observed (29), suggesting that alterations of the intracellular level
of OGT and O-GlcNAcylation are tightly associated with
tumorigenesis, which might further participate directly or
indirectly in the regulation of the biological processes
associated with cancer metastasis. For example, the increased
levels of OGT/O-GlcNAcylation in patients with lung cancer or
colon cancer are closely correlated with poor overall survival, as
well as the anchorage-independent growth, migration, and
invasion ability of lung and colon cancer cell lines (22, 23, 30,
31). Elevated OGT proteins, as well as O-GlcNAcylation level,
are also found in both breast cancer cells and tumor tissues (24,
25). Further research has revealed that O-GlcNAcylation of
progesterone receptor (PR) by OGT transcriptionally activates
its target genes, and PR-positive breast cancers express higher
levels of OGT (26). In addition, 22 of 56 prostate cancer biopsy
specimens were found to show increased O-GlcNAcylation,
which correlated with poor prognosis (28). Furthermore, in
prostate carcinoma and bladder cancer cells, while the level of
OGT/O-GlcNAcylation increased, the level of deglycosylase
OGA decreased (32, 33), prompting a dynamic imbalance
between OGT and OGA. More in-depth research results
confirmed the correlation between the OGT protein level and
tumor metastatic progression in prostate cancer cells (32). In
addition, downregulation of O-GlcNAcylation induced by OGT
silencing results in cell cycle arrest, as well as the induction of
autophagy and apoptosis, in bladder cancer cells (34, 35).
However, in rare cases, O-GlcNAcylation is decreased in
cancer tissues such as ovarian cancer tissues which harbor high
rates of p53 mutations (36). In ovarian cell lines expressing wild-
type p53, the high level of OGT/O-GlcNAcylation can stabilize
the tumor suppressor p53, and stabilized p53 further promotes
the acquisition of new pro-oncogenic activities including cell
TABLE 1 | Isoforms and functional characteristics of OGT.

Isoforms Location TPRs Functions Self-O-GlcNAc modification sites Reference

ncOGT Nucleus and
cytoplasm

13.5 O-GlcNAcylates the nucleus, cytoplasm and
mitochondrial proteins

Ser10, Thr12, Ser20, Thr38, Ser52, Ser56, Ser389,
Ser437, Thr662

(6–10),

mOGT Mitochondria 9 Maintains the structure and function of mitochondria – (8, 9, 11, 12),
sOGT Nucleus and

cytoplasm
3 Self-O-GlcNAc modification Ser10, Thr12, Ser18, Thr38 (7–9, 13),
October 2020 | Volume 10
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proliferation and metabolic changes, whereas the stabilization of
p53 was not detected in cell lines with mutated p53 (36, 37),
indicating a role of O-GlcNAcylation in regulating ovarian
cancer proliferation and progression. Moreover, data of
aberrant OGT level in various cancer tissues is also collected
and analyzed by UALCAN based on TCGA datasets (Figure 1)
(38–40). Taken together, the changes in OGT/O-GlcNAcylation
level directly affect tumor occurrence and progression.
ROLE OF O-GLCNACYLATION IN CANCER
METASTASIS

Tumor cells are characterized by high metabolic rates, rapid
growth, and high proliferative capacity. They, therefore, exhibit a
high energy demand, necessitating anaerobic metabolism within
the hypoxic tumor microenvironment (TME). Accumulating
evidence indicates that OGT-mediated O-GlcNAcylation on a
variety of substrates including transcription factors,
oncoproteins, and proteins associated with epithelial
mesenchymal transition (EMT) promotes tumor metastatic
capacity in numerous cancer cells, including those derived
from colorectal cancer (CRC), breast cancer, gastric cancer,
Frontiers in Oncology | www.frontiersin.org 3
pancreatic cancer, and cholangiocarcinoma (CCA) (31, 41–45).
Of the proteins associated with CCA progression, 21 display O-
GlcNAcylation sites (46). There are already research data
confirming that CRC patients with high O-GlcNAcylation are
typically diagnosed with greater lymph node metastasis potential
(41, 47). Abolishing such modification of actin-binding protein
cofilin at Ser108 suppresses the invasive capability of breast
cancer cells (48). Moreover, decreasing O-GlcNAcylation levels
via OGT knockdown or microRNA (miRNA; e.g., miR-483 and
miR-24-1)-mediated depletion suppresses the growth, migration,
and invasive capability of cancer cells (31, 39, 40).

O-GlcNAcylation of Transcription Factors
in Cancer Metastasis
Many genes are involved in the process of cancer metastasis.
Therefore, altered global cellular O-GlcNAcylation profiles can
directly or indirectly impact the expression and activation of
transcription factors, and this further change the biological
behavior of those regulatory factors (Figure 2).

Hypoxia-inducible factor-1a (HIF-1a) is a well-known
transcription factor that was originally identified as mediating
adaptation to the hypoxic TME (62). It is clear that HIF-1a, the
expression of which is induced by hypoxia, further activates the
FIGURE 1 | Expression of OGT across multiple cancer types. Pharmacological network analysis was performed by UALCAN (http://ualcan.path.uab.edu) on data
extracted from The Cancer Genome Atlas (TCGA). BLCA, bladder urothelial carcinoma, normal tissue = 19, tumor tissue = 408, statistical significance = 2.803800E-
03; BRCA, breast invasive carcinoma, normal tissue = 114, tumor tissue = 1,097, statistical significance = 3.12030001836661E-09; CESC, cervical cancer, normal
tissue = 3, tumor tissue = 305, statistical significance = 4.214600E-01; CHOL, cholangiocarcinoma, normal tissue = 9, tumor tissue = 36, statistical significance =
2.6247892748188E-12; COAD, chronic obstructive pulmonary disease, normal tissue = 41, tumor tissue = 286, statistical significance = 1.62436730732907E-12;
ESCA, esophageal carcinoma, normal tissue = 11, tumor tissue = 184, statistical significance = 6.667600E-02; GBM, glioblastoma, normal tissue = 5, tumor tissue =
156, statistical significance = 2.163600E-01; HNSC, head and neck squamous cell carcinoma, normal tissue = 44, tumor tissue = 520, statistical significance =
2.14550044397299E-10; KICH, kidney chromophobe, normal tissue = 25, tumor tissue = 67, statistical significance = 4.953000E-01; KIRC, kidney renal clear cell
carcinoma, normal tissue = 72, tumor tissue = 533, statistical significance = 1.84977999999614E-05; KIRP, kidney renal papillary cell carcinoma, normal tissue = 32,
tumor tissue = 290, statistical significance = 7.601200E-01; LIHC, liver hepatocellular carcinoma, normal tissue = 50, tumor tissue = 371, statistical significance =
<1E-12; LUAD, lung adenocarcinoma, normal tissue = 59, tumor tissue = 515, statistical significance = 6.66022792472631E-12; LUSC, lung squamous cell
carcinoma, normal tissue = 52, tumor tissue = 503, statistical significance = 2.798400E-02; PAAD, pancreatic adenocarcinoma, normal tissue = 4, tumor tissue =
178, statistical significance = 4.355800E-01; PCPG, pheochromocytoma and paraganglioma, normal tissue = 3, tumor tissue = 179, statistical significance =
1.192150E-01; PRAD, prostate adenocarcinoma, normal tissue = 52, tumor tissue = 497, statistical significance = 1.62458935193399E-12; READ, rectum
adenocarcinoma, normal tissue = 10, tumor tissue = 166, statistical significance = 8.70579999978638E-07; SARC, sarcoma, normal tissue = 2, tumor tissue = 260,
statistical significance = 1.889990E-01; SKCM, skin cutaneous melanoma, normal tissue = 1, tumor tissue = 104, statistical significance = 3.755700E-03; STAD,
stomach adenocarcinoma, normal tissue = 3, tumor tissue = 415, statistical significance = <1E-12; THCA, thyroid carcinoma, normal tissue = 59, tumor tissue =
505, statistical significance = 4.631800E-01; THYM, thymoma, normal tissue = 2, tumor tissue = 120, statistical significance = 1.718990E-03; UCEC, uterine corpus
endometrial carcinoma, normal tissue = 35, tumor tissue = 546, statistical significance = 1.66160000003579E-06.
October 2020 | Volume 10 | Article 585288
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expression of its numerous targets—including matrix
metalloproteinases (MMPs), E-cadherin, and transcription
factor 3 (TCF3), among others—that enhance cancer
metastasis via multiple mechanisms, favoring invasion,
extravasation, and metastatic niche formation (63–65). OGT
stabilizes HIF-1a by suppressing its interaction with von
Hippel-Lindau tumor suppressor protein (pVHL), a E3-
ubiquitin ligase mediates HIF-1a degradation. Thereby O-
GlcNAcylat ion stabi l izes HIF-1a and act ivates i ts
transcriptional activity (49). Meanwhile, decreased OGT
expression and O-GlcNAcylation level were observed when the
protein levels and transactivation of HIF-1a were inhibited (66).
This sets up a positive feedback loop, facilitating hypoxic
adaptation, which further regulates processes such as
immortalization, angiogenesis, invasive capability, and
metastasis of breast cancer (49, 50). Indeed, reduced OGT
results in a lower angiogenic potential and decreased vascular
endothelial growth factor (VEGF) mRNA level in prostate cancer
cell line (32). However, VEGF-mediated angiogenesis within
tumors can be driven by HIF-1a activation (47). Furthermore,
HIF-1a-induced VEGF upregulation promotes retinal
angiogenesis in rats (67). Suggesting that by mediating the
stabilization and activation of HIF-1a, OGT regulates HIF-1a
target genes and functions in angiogenesis, as well as cancer
metastasis (56).

Notch receptor 1 (Notch1), a type 1 trans-membrane receptor,
is a key regulator of tumor angiogenesis and metastasis. It exhibits
sustained activation in pre-metastatic lesions, which promotes
migration in various types of tumor cells, including those derived
from CRC, lung cancer, and melanoma (68, 69). In addition,
Notch1 signaling plays a critical role in metastasis, including
metastatic initiation in medulloblastoma and the promotion of
highly-penetrant metastases in CRC (70, 71). Recently, it was
Frontiers in Oncology | www.frontiersin.org 4
demonstrated that OGT can O-GlcNAcylate Notch1, a process
enhanced by glucosamine, resulting in the cleavage and nuclear
translocation of Notch1 (51), thereby regulating the transcription
of target genes, suggesting the importance of Notch1
transcriptional activity in cancer metastasis by modulating its
O-GlcNAcylation.

Based on one report, nuclear factor kB (NF-kB), a transcription
factor, is not only critically involved in the inflammatory response
(including regulating IL-1b and IL-6 expression), but also
contributes to tumor hematologic and lymphatic metastases,
suggesting the correlation between NF-kB signal pathway and
cancer metastasis (65). In breast cancer cells, one of the most
common NF-kB dimeric forms, RELA (p65)/p50, can be O-
GlcNAcylated at Thr322 and Thr352 residues of p65, which
competitively inhibits p65 Ser536 phosphorylation, thus
facilitating activated NF-kB-mediated gene transcription (52–
54). Further, inflammation has timing- and context- specific
roles during tumorigenesis and progression to cancer. For
example, while NF-kB O-GlcNAcylation promotes MMP-
mediated migration and invasive capability of CCA cells (55),
NF-kB p65 O-GlcNAcylation downregulates C-X-C chemokine
receptor 4 (CXCR4) to inhibit cervical cancer (CESC) cell
metastasis to the lungs (56), and NF-kB activation-mediated
upregulation of inducible nitric oxide synthase (iNOS)
modulates immune suppression and tumor progression (57, 58).
Activation of NF-kB via O-GlcNAcylation, therefore, modulates
the expression of a variety of downstream genes involved in both
tumor suppression and progression (72), indicating a role of OGT
in regulating cancer metastasis by changing the NF-kB activation
through its O-GlcNAc modification.

The transcription factor signal transducer and activator of
transcription 3 (STAT3) is constitutively activated in tumors of
different origins. Phosphorylation can activate STAT3, resulting
FIGURE 2 | O-GlcNAc-modified transcription factors in cancer metastasis. Some O-GlcNAc-modified metastasis related transcription factors such as HIF-1a,
Notch1, NF-kB, STAT3, Nrf2 can impact cancer metastasis by affecting downstream genes (or proteins) (49–61).
October 2020 | Volume 10 | Article 585288
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in its translocation to the nucleus to regulate gene expression,
further enhancing tumor angiogenic and invasive capability (73).
For instance, phosphorylated STAT3 promotes proliferation and
metastasis in epithelial ovarian cancer (74). Cross-talk between
STAT3 O-GlcNAcylation and phosphorylation also occurs, with
the former inhibiting the latter (75–77). Phosphorylation targets
STAT3 residues, Tyr705 and Ser727, and these twomodifications
demonstrate a negative relationship to maintain its activity (78).
Whereas STAT3 O-GlcNAcylation promotes Tyr705
phosphorylation, it inhibits Ser727 phosphorylation (59, 60),
thereby enhancing metastasis by regulating STAT3 signaling and
target gene transcription.Nuclear factor erythroid 2-related
factor 2 (Nrf2) is another transcription factor, the activation of
which plays a critical role in sustained angiogenesis, tumor
invasion and metastasis (79). For example, activated Nrf2
stabilizes BTB domain and CNC homolog 1 (BACH1),
accelerating lung cancer metastasis (80). Similarly, Nrf-2
activation promotes CRC and hepatic carcinoma metastasis
(81). Nrf-2 activation is likely modulated by OGT, cause in
Caenorhabditis elegans, the ortholog of human Nrf-2, is O-
GlcNAcylated at Ser470 and Thr493 (82). Moreover, Nrf-2
transcriptional level is initiated when OGT is recruited at the
promoter region by ten-eleven translocation 1 (TET1), and form
a complex with host cell factor 1(HCF1) and mixed-lineage
leukemia (MLL) (61).

O-GlcNAcylation of E-Cadherin in
Cancer Metastasis
Cancer cells undergoing EMT acquire the characteristics of
aggressive, more invasive, stem-like features, with increased
ability for cell migration, invasion and metastasis (83). In cancer
cells and embryonic stem cells,O-GlcNAc-modification frequently
facilitates the occurrence of EMT. For example,OGT is required for
the inductionandmaintenanceofEMTinNSCLC(84). Inaddition,
hyper-O-GlcNAcylation contributes to the EMT of EC (85). The
cell surface protein E-cadherin mediates cell-cell interactions,
which is directly correlated with cancer cell adhesiveness, and this
therefore mediates the invasive and metastatic capabilities of cells
(86). While high levels of soluble E-cadherin in ovarian cancer-
associated ascitic fluid promote tumor angiogenesis (87), decreased
surface E-cadherin levels promote metastasis of breast cancer cells
and lung adenocarcinoma cells (88, 89). IncreasedOGT expression
and higher global O-GlcNAcylation levels suppress E-cadherin
expression, thereby promoting breast cancer metastasis to the
lungs (25). This inverse relationship between E-cadherin
expression and metastatic potential also exists in ovarian cancer
and CRC cells (90, 91). Notably, transcriptional expression of E-
cadherin can be regulated by upstream proteins. For instance, Snail
as an E-cadherin repressor can stabilize E-cadherin via Ser112 O-
GlcNAcylation and enhance the migration and invasive capability
of cancer cells (92). In addition, the cytoskeletal protein vimentin is
a substrate of OGT, and the stabilization of E-cadherin is regulated
by the O-GlcNAcylation status of vimentin (93, 94). Moreover, E-
cadherin can be directly O-GlcNAcylated in breast cancer cells
during drug-induced apoptosis, and this modification inhibits its
transport to the cell surface, thereby decreasing cell-cell interactions
Frontiers in Oncology | www.frontiersin.org 5
and promoting EMT. Decreased surface E-cadherin levels increase
infiltrative capacity, and cancer cell proliferation and survival are
simultaneously decreased (95). O-GlcNAcylation of EMT-Related
Proteins in Cancer Metastasis

During EMT, reduced E-cadherin expression and elevated
snail, vimentin, fibronectin, and N-cadherin expression levels
can be observed, thus these proteins are considered EMT
markers (96). Beyond these markers, many EMT-related
proteins including transcriptional factors are involved in the
process of EMT. Receptor for activated protein kinase C
(RACK1), encoded by GNB2L1, is a scaffold protein. (97).
RACK1 induces EMT, further promotes the progression of
esophageal squamous cell carcinoma (ESCC) and glioma (98,
99). Moreover, O-GlcNAcylation of RACK1 by OGT stabilizes
RACK1, and results in a reduction of N-cadherin and
upregulation of E-cadherin, indicating the induction of EMT
and suppression of metastasis in chemoresistant gastric cancer
(79, 100, 101). Numerous transcriptional factors including HIF-
1a, Notch1, NF-kB have a critical role in EMT procession (102).
For example, STAT3 regulates the expression of mesenchymal-
related molecules including vimentin, the inhibition of which
suppresses EMT-mediated lung cancer cell invasion (103). By
regulating these transcriptional factors, the role of O-
GlcNAcylation in EMT could be understood.

O-GlcNAcylation of MMPs in
Cancer Metastasis
The MMP family plays a critical role in cancer cell migration. For
example, MMP-9 overexpression is often observed across
numerous malignant tumor types, and MMP-9 has been
investigated for its potential as a cancer biomarker (104).
Decreased global cellular O-GlcNAcylation levels result in
decreased MMP-9 mRNA and protein levels, concurrently
decreasing migration, invasive, and metastatic capability of gastric
and EC cells (105, 106). Sirtuin1 (SIRT1) is a histone de-acetylase
and O-GlcNAcylation of SIRT1/Ser549 promotes its enzymatic
activity (107).DecreasingO-GlcNAcylationof this protein viaOGT
inhibitionorknockdown inbreast cancer cells increases bothSIRT1
level and activity, thereby regulating forkhead box M1 (FOXM1),
MMP-2, and MMP-9 protein level, and modulating breast cancer
cell invasive and metastatic capability in vitro and in vivo (42). Via
MMPtargeting,O-GlcNAcylationplays an important role incancer
metastasis (47, 95, 100, 101, 106–121).

In summary, based on substrates of OGT, as well as their
downstream effectors, which have key roles in regulating
hypoxia, gene transcription, EMT, and metastasis, O-
GlcNAcylation significantly modulates cancer progression.
INTERPLAY BETWEEN O-
GLCNACYLATION AND OTHER PTMS
IN CANCER METASTASIS

Various PTMs of intracellular proteins rely on epigenetic
regulatory enzymes with different catalytic functions.
Generally, different PTMs often coordinate with each other to
October 2020 | Volume 10 | Article 585288
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adapt to the process of complex biological functions in cells. O-
GlcNAcylation is no exception. There has been much evidence
confirming the interactions between O-GlcNAcylation and other
PTMs. As a typical example (17, 122–127), both O-
GlcNAcylation and phosphorylation occur on Ser/Thr residues
of substrate proteins, and extensive crosstalk between two PTMs
through mutual inhibition of the same or nearby residues has
been identified (108). 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 3 (PFKFB3), a glycolytic regulator, can be O-
GlcNAcylated and phosphorylated at Ser172, and the
competition between these two PTMs regulates the function of
PFKFB3 in promoting nasopharyngeal carcinoma and gastric
cancer proliferation, as well as migration (109–111). The
enhancer of zeste homolog (EZH2) is responsible for
H3K27me3, which promotes the metastasis of cancers such as
melanoma and breast cancer (112, 113). O-GlcNAcylation at
Ser729 of EZH2 plays a key role in maintaining the stabilization
and methylation activity of its target protein (114, 118). Further,
ubiquitination-mediated degradation of EZH2 suppresses breast
cancer invasion and metastasis (119), and O-GlcNAc-modified
EZH2 could reverse this degradation. EZH2 is stabilized by OGT
via O-GlcNAcylation and promotes EMT and metastasis of CRC
(41). The critical roles of histone deacetylases (HDACs) in
tumorigenesis and tumor progression have been widely
studied. Among them, HDAC1 and SIRT1 were identified as
being O-GlcNAcylated at certain residues, and O-GlcNAcylation
on specific residues further promotes the histone deacetylase
activity of HDAC1 and SIRT1 (107, 116). In breast cancer cells,
Nrf1 can be stabilized by OGT through O-GlcNAcylation at
Ser448 and Ser451, a modification that suppresses the ubiquitin-
proteasome mediated degradation of Nrf1. In contrast, reduced
expression of Nrf1 suppresses its invasion and migration ability
(115, 128). In summary, crosstalk between O-GlcNAcylation and
other PTMs plays critical roles in regulating cancer metastasis.
SMALL MOLECULES THAT TARGET
O-GLCNACYLATION

Tumorigenesis and tumor progression are often accompanied by
higher O-GlcNAcylation, which likely drives a range of oncogenic
adaptations made by cancer cells, including rapid proliferation.
Therefore, inhibiting globalO-GlcNAcylation levelsmay also be an
effective anti-cancer approach. In line with this, reducing
intracellular OGT levels has been shown to inhibit the growth of
lung cancer cells (23). A similar phenomenon was revealed in
bladder cancer cells and renal cell carcinoma (RCC). Knocking
down OGT results in cell cycle arrest as well as induction of
autophagy and apoptosis (34, 35, 117). Considering the critical
function of aberrant O-GlcNAcylation in cancer progression and
metastasiswhichhas been summarizedpreviously herein, it is likely
thatdownregulationofhyperO-GlcNAcylation viaOGT inhibition
might not only slow cancer proliferation, but also cancermetastasis.

In light of the findings that high levels of O-GlcNAcylation
and OGT can affect multiple targets and signaling pathways
during tumorigenesis, efforts are being made to find small
Frontiers in Oncology | www.frontiersin.org 6
molecules that can inhibit the activity of OGT. By rebalancing
global O-GlcNAcylation profiles or targeting specific O-
GlcNAcylated proteins, small molecules targeting OGT have
been identified as exhibiting anti-cancer therapeutic potential.
For example, miRNA-24, miRNA-101, and miRNA-483, all of
which decrease OGT transcription, have been shown to inhibit
the invasive ability of breast cancer, CRC, and gastric cancer,
respectively (40, 41, 100). Similarly, ST045849, an OGT
inhibitor, suppresses prostate cancer cell proliferation via
metabolic reprogramming, and has been shown to inhibit
hepatocellular carcinoma (HCC) cell proliferation (101, 120).
Another OGT inhibitor, OSMI-1, developed via high-
throughput screening, inhibits protein O-GlcNAcylation (121)
and decreases tumor volume (129). Furthermore, the OGT
inhibitor OSMI-2 decreases global chromatin O-GlcNAcylation
and inhibits the proliferation of prostate cancer cells as a single
drug. This suppression is also observed in organoids derived
from patients with metastatic prostate cancer but not normal
prostate cells, when OSMI-2 was combined with a CDK9
inhibitor (130, 131). In addition, Ac-5SGlcNAc, an OGT
inhibitor that decreased global O-GlcNAcylation, but not N-
glycosylation or N-glycosylation, suppresses the proliferation of
pancreatic and breast cancer cells (54, 122, 132). Ac-5SGlcNAc
treatment also blocks serum-stimulated cyclin D1 synthesis
during the G0/G1 transition of breast cancer cells, suggesting that
the role of OGT inhibitors in regulating the cell cycle further affects
cell proliferation (123). Novel OGT-targeting small molecules are
regularly identified. For instance,BZX2,OSMI-3,OSMI-4, L01, and
ES1 have been identified as OGT inhibitors, but their broader
biological impact is yet to be explored (124–127). Given the critical
roles of OGT, such small molecule inhibitors may contribute
substantially towards clarifying the function of OGT in cancer
metastasis, and may be developed as clinically applicable anti-
cancer therapeutic agents that can be used alone or in
combination with other drugs (Table 2). However, considering
the key roles of OGT in normal cell processes (e.g., energy
metabolism), small molecule inhibitors of OGT might also
impact normal physiology. Thus, studies focused on correcting
aberrantO-GlcNAcylation to normal levels will need, to prevent or
mitigate such off-target and potentially adverse effects.
CONCLUSIONS AND PERSPECTIVES

O-GlcNAcylation is implicated in various fundamental cellular
processes via the regulation of gene transcription, metabolism,
and various signaling pathways. Several potential mechanisms by
which OGT-mediated O-GlcNAcylation of substrate proteins
modulates cancer progression include the following cellular
processes: (1) creating recognition sites for recruitment to
initiate cascades leading to the activation of downstream
effectors, (2) cross-talk with PTMs to modulate substrate
stabilization and activation, (3) integration of EMT/
transcription factors/metastasis-associated protein activities,
and (4) directing cancers towards metastasis via high levels of
protein O-GlcNAcylation (Figure 3).
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Elucidating the functional mechanisms through which O-
GlcNAcylation promotes cancer metastasis will provide a
theoretical basis for future rational research. Considering the
close relationship between O-GlcNAcylation and cancer
progression-associated pathways, small molecules targeting
OGT may have potential as anti-cancer therapies, especially in
the inhibition of metastasis. In particular, the anti-cancer
activities of more specific OGT inhibitors, alone or in
Frontiers in Oncology | www.frontiersin.org 7
combination with other drugs, as well as the side effects should
be further investigated.
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TABLE 2 | Small molecules targeting O-GlcNAcylation in cancer progression.

Small
Molecules

Structure Cancer Mechanisms Reference(s)

Ac-
5SGlcNAc

CRC Delayed cell proliferation and decreased migration. (122, 133),
PDAC Targets OGT, promoting apoptosis of PDAC (54, 122),

ST045849 prostate cancer Targets OGT, and suppresses proliferation of prostate cancer and HCC. (33, 34, 101,
120),HCC

OSMI-1 prostate cancer Suppresses O-GlcNAcylation levels and inhibits proliferation of prostate cancer
cells.

(36)

pancreatic cancer Inhibits cancer cell proliferation (134)
endometrial cancer Inhibition of cell proliferation and migration (85)
mouse hepatoma
cell

Decreased cell invasive behavior in high metastatic Hca-F cells (39)

OSMI-2 prostate cancer Inhibits OGT activity, promoting proliferation of prostate cancer. (37, 130, 131),
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