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Experimental and numerical studies have revealed that isolated populations of oscillatory

neurons can spontaneously synchronize and generate periodic bursts involving the

whole network. Such a behavior has notably been observed for cultured neurons in

rodent’s cortex or hippocampus. We show here that a sufficient condition for this

network bursting is the presence of an excitatory population of oscillatory neurons

which displays spike-driven adaptation. We provide an analytic model to analyze

network bursts generated by coupled adaptive exponential integrate-and-fire neurons.

We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve

to reach a synchronized intermittent bursting state. The presence of inhibitory neurons

or plastic synapses can then modulate this dynamics in many ways but is not

necessary for its appearance. Thanks to a simple self-consistent equation, our model

gives an intuitive and semi-quantitative tool to understand the bursting behavior.

Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain

bursting termination. Through a thorough mapping between the theoretical parameters

and ion-channel properties, we discuss the biological mechanisms that could be involved

and the relevance of the explored parameter-space. Such an insight enables us to

propose experimentally-testable predictions regarding how blocking fast, medium or

slow after-hyperpolarization channels would affect the firing rate and burst duration, as

well as the interburst interval.
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INTRODUCTION

Network bursting is an intermittent collective behavior that occurs spontaneously in neuronal
populations. It is characterized by long quiet periods, with almost no spike emission, punctuated by
brief periods of intense spiking activity, where the whole network displays high firing rates—most
neurons emit at least 2 closely-packed spikes. This particular pattern is then repeated, with varying
regularity, over long time intervals.

Such periodic and synchronized activity has been observed as an emergent phenomenon in large
neuronal populations, both in brain regions (Meister et al., 1991; Blankenship and Feller, 2009;
Rybak et al., 2014) and unperturbed neuronal cultures (Wagenaar et al., 2006; Stegenga et al., 2008;
Penn et al., 2016). It has been investigated as a plausible candidate for rhythmogenesis (Ramirez
et al., 2004), but also in various disorders such as epilepsy (Derchansky et al., 2008) or Parkinson’s
disease.
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Recent experiments by Penn et al. (2016), studying dissociated
neuronal cultures where the chemical environment was precisely
controlled, provide evidence that the majority of hippocampal
pyramidal neurons are self-sustaining oscillators. These
oscillators spontaneously synchronize to give birth to a very
regular network bursting phenomenon.

Starting from these results and others (Ramirez et al., 2004;
Suresh et al., 2016), we propose here a detailed understanding of
the synchronized network bursting dynamics that explains and
reproduces other experimental observations (Sipilä et al., 2006;
Masquelier and Deco, 2013; Orlandi et al., 2013) of bursting on
a variety of different timescales and with inter-burst intervals
(IBIs) ranging from less than 1 s up to several minutes. We
focus specifically on the characterization of the synchronized
attractor and do not consider the transient synchronization
process from an asynchronous to a synchronized phase.
Indeed, synchronization of pulse-coupled oscillators is a known
asymptotic behavior (Somers and Kopell, 1993; Bottani, 1995),
which has been shown to lead to bursting in the presence
of adaptation (Van Vreeswijk and Hansel, 2001). This was
confirmed in all our simulations, regardless of the precise
neuronal parameters, as long as they corresponded to adaptive
oscillatory neurons. By oscillatory, we mean that a single
neurons will spike periodically if uncoupled and considered
independently.

Let us insist on the fact that collective bursting, giving
rise to “network bursts,” should not be confused with the
individual behavior observed at the cellular level for “bursting”
or “chattering” neurons. Though they share similar intervals
of rapid firing followed by long quiet periods (Connors and
Gutnick, 1990; Sipilä et al., 2006), hence the common name,
collective bursting can stem from radically different mechanisms
and occur on different timescales (see Supplementary S1.3). Here,
population-wide bursts are a specific synchronized behavior
emerging from the interaction of oscillating, adaptive-spiking
neurons which do not display intrinsic bursting behavior when
considered independently but only emit single spikes.

The periodic activity of the intrinsically oscillatory neurons
present in culture populations and brain regions is assumed
to rely on leak currents which affect their excitability (Suresh
et al., 2016). More specifically, the persistent, non-inactivating,
sodium current INa,p (Golomb et al., 2006; Penn et al., 2016)
and the H-current Ih (Lüthi and McCormick, 1998) are the
prime candidates for this intrinsic depolarization. Adaptation, on
the other hand refers to the capacity of a neuron to change—
here, more precisely, to lower—its excitability in response to
continuous or repeated excitation, such as a step-current in
electrophysiological experiments, or the intense synaptic input
received from its neighbors during a collective burst. Adaptive
neurons indeed display periodic firing with a spiking frequency
that progressively slows down from its initial high frequency
value. The biophysical processes mediating adaptation are thus
distinct for the origin of the rhythmic behavior which they
modulate, and several potassium currents are considered for this
frequency adaptation, like the muscarinic K+ (IM) current or the
Ca2+ activated K+ currents (IAHP) (Sah and Louise Faber, 2002;
Golomb et al., 2006).

We show here that adaptive spiking is a sufficient condition
for network bursting, confirming what was suggested by previous
studies (Van Vreeswijk and Hansel, 2001; Masquelier and Deco,
2013; Ferguson et al., 2015), and that intrinsically bursting or
chattering neurons are not required. Indeed, we focus on the role
of adaptation to explain why, as observed in the experiments,
the presence of inhibitory neurons is not necessary to obtain
regular collective bursting dynamics. Likewise, though short-
term synaptic plasticity might play a role in shaping the dynamics
(Gritsun et al., 2010; Masquelier and Deco, 2013), we also
demonstrate that it is not required to reproduce characteristic
timescales of this dynamics.

METHODS

We first describe the models used for the different units
composing the system (neurons, synapses and network
structure). Based on these, we derive an effective model
which remains almost completely tractable, so that most of
the properties of the collective dynamics can be predicted
analytically. This model is based on successive approximations
which were validated by numerical experiments: by dividing
the cyclic behavior into several subdomains, we isolate regions
where the activity can be solved under different approximations.
The final solution is thus composed of the concatenation of
these different approximations. We also used these simulations
to verify and extend the predictions of our analytic equivalent
model.

Neuronal Model
We chose the adaptive Exponential Integrate-and-Fire (aEIF)
model (Brette and Gerstner, 2005) because of its compromise
between simplicity and biological relevance. The dynamical
evolution of a neuron is described by two variables, its membrane
potential Ṽ , and a slow adaptation current w̃, which are governed
by the following equations:

if Ṽ ≤ Ṽpeak



















C̃m
dṼ

dt̃
= −g̃L(Ṽ − ẼL)+ g̃L1̃Te

Ṽ−Ṽth
1̃T

−w̃+ Ĩe + Ĩs

τ̃w
dw̃

dt̃
= ã(Ṽ − ẼL)− w̃

else if Ṽ > Ṽpeak, then

{

Ṽ ← Ṽr

w̃ ← w̃+ b̃
(1)

where C̃m is the membrane capacitance, g̃L is the leak
conductance of the neuron, ẼL is its resting potential, 1̃T affects
both the slope and the strength of the spiking current, Ṽth is the
threshold potential, τ̃w is the adaptation timescale, ã gives the

strength of subthreshold adaptation, b̃ gives the intensity of the
spike-triggered adaptation, and Ṽr is the reset potential. Ṽpeak is

the spike cutoff for the model. Ĩe is an external current to which
the neuron can be submitted.

The main difference of this model compared to the
well-known integrate-and-fire model is the presence of the
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second variable, the current w̃, which modulates the neuronal
excitability. The synaptic input received by a neuron is
represented by the variable Ĩs, which is usually time dependent.
The neuronal adaptation can be either subthreshold, through
the coupling between Ṽ and w̃ via ã, or spike-driven, from

the step increments of size b̃ that w̃ undergoes after a
spike.

The exponential spike generation present in the aEIF model is
more realistic than the hard threshold of the original Integrate-
and-Fire model, which leads to unrealistically fast spiking during
bursts. The soft threshold of the Izikevich model (Izhikevich,
2007), which also includes adaptation and could have been a
possible choice, is similar to that of the aEIF model and would
be analytically more tractable. However, it generates a divergence
which is not sharp enough, thus leading to overly long interspikes
and induces an undesired influence of the cutoff value (Vpeak) on
the neuronal dynamics (Touboul, 2009). Despite its non-analytic
nature, this feature of the aEIF model was therefore critical to
capture the inter-spike dynamics inside bursts.

In this study, and in accordance with the experimental
observations for several types of pyramidal neurons, we use only
neuronal parameters leading to adapting neurons which exhibit
periodic spiking. This state is reached through the persistent
current Ĩe, which drives their progressive depolarization and
makes them spike periodically; setting Vr < Vth ensures that the
neurons are not intrinsically bursting, as described in Naud et al.
(2008).

Contrary to the resting state, where one stable and one

unstable fixed point exist (points where both ˙̃V and ˙̃w are zero),
the periodic activity occurs after these two points disappear
through a bifurcation, as described in Brette and Gerstner (2005)
and Touboul and Brette (2008), when Ie becomes high enough.
In this spiking regime, no fixed point is present in phase space,
which allows the neuron to depolarize until Vpeak before being
reset to Vr , thus following a discontinuous limit cycle.
Illustration of the resting and spiking behaviors can be found
on Figures S2, S3, while biologically-relevant values of the
parameters used for the aEIF model can be found in Table S1,
in the Supplementary Material.

For these parameter sets, we have τ̃w ≫ τ̃m =
C̃m
g̃L
, as the typical

timescales for the continuous variation of w̃ relate to medium
and slow after-hyperpolarization, which occur over hundreds of
milliseconds (Sah and Louise Faber, 2002).

During the rest of the study, we use the dimensionless version
of the model:

{

V̇ = −(V − EL)+ eV − w+ Ie + Is
τwẇ = a(V − EL)− w

(2)

Details for the change of variables can be found in the
first section of the Supplementary Material, “Neuronal model

and parameters.” From then on, all equations involve only
dimensionless variables and parameters.

Synaptic Model
The coupling strength between a pre-synaptic neuron j and a
post-synaptic neuron i, such that j → i, is represented by the
total charge Qs transmitted from j to i. This charge is passed
dynamically through the ion channels of the synapses, which we
represent here by an alpha-shaped post-synaptic current (PSC)
(Roth and van Rossum, 2009). If neuron j spikes at time tj, the
triggered PSC is felt by i, after a delay dji, and is described by:

Is(t) = 2(t − tj − dji)Iji(t − tj − dji)

= sjiI0 · (t − tj − dji)2(t − tj − dji)e
−

t−tj−dji
τs . (3)

Where sji is the strength of the synaptic connection from j to i,
τs is the characteristic synaptic time, 2(x) is the Heaviside step
function, such that 2(x) = 0 is x ≤ 0 and 2(x) = 1 if x > 1,
and I0 =

1pA

g̃L1̃T
is the unit current which we set in this way to

be coherent with the conventions of the NEST simulator (Kunkel
et al., 2017). As such, the total charge delivered to i reads:

Qs,ji =

∫ ∞

0
Iji(t)dt = sjiI0τ

2
s . (4)

Network Models
This study is based on two non-spatial random network
models: a fully homogeneous network with fixed in-degree
which is useful to introduce the equivalent model, and more
heterogeneous Gaussian in-degree networks which are supposed
to be representative of connectivity in dissociated cultures
(Cohen et al., 2010). Both random networks are generated in
the same way by drawing a number ki (in-degree) of incoming
connections originating from randomly chosen other neurons in
the population. In the case of fixed in-degree networks, the in-
degree ki is fixed and identical for each neuron. For Gaussian
random networks, ki is drawn for each neuron from a Gaussian
distribution with mean value k and standard deviation σk. Note
that the fixed-in-degree networks can be seen as the limit case
of the Gaussian ones when the variance goes to zero. The out-
degree distributions are binomial and identical in both cases.
All networks where generated using the graph-tool or igraph
backends of the NNGT library.

All transmissions between neurons in the network are
subjected to the same delay d and have the same synaptic strength
s. which means that the complete dynamical system describing
the network is given, for each neuron i, by:















V̇i = −(Vi − EL)+ eVi − wi + Ie +
∑

j→i

∑

tj

sI0 · (t − tj − d)2(t − tj − d)e−
t−tj−d

τs

︸ ︷︷ ︸

Isyn,i(t)

τwẇi = a(Vi − EL)− wi

(5)

Where {j→ i} is the set of neurons j that are presynaptic neurons
for i and {tj} is the set of spike times for neuron j.
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Numerical Simulations
All dynamical simulations were performed using the NEST
simulator (Kunkel et al., 2017) with the aeif_psc_alpha

model implementation, that we developed, and which
corresponds to the Equations (2, 3) presented above. Neurons
were set to adaptive spiking using the neuronal and synaptic
parameters detailed in Table S1 and were connected using
static_synapses, i.e., without plasticity, but including a
delay d in the spike transmission. Simulations were started from
a population of neurons in an asynchronous random state, with
their state variable w̃ following a normal distribution of average
value 50 pA and standard deviation 10 pA. The runs were
performed on networks containing 1,000–100,000 neurons with
an average degree of 100, which is the typical value estimated in
mature neuronal cultures (Cohen et al., 2010).

Activity Analysis
For each simulation we computed the average firing rate ν =
Ns
T , where Ns is the total number of spike and T is the
simulation time. This gives us a characteristic timescale tν , which
would be the average interspike if the spikes were distributed
uniformly. Considering d as the transmission delay of action
potentials, bursts are identified as uninterrupted sequences of
spikes separated by less than min(tν/2, 3d); they must also
involve at least 20% of the neurons. This analysis was performed
using tools from the NNGT library and extra functions available
on our GitHub repository.

Equivalent Analytical Model
We derived an equivalent model that describes the system
dynamics and predicts the range over which the characteristic
frequencies can vary without the need to simulate the network
dynamics.Themodel focuses on the fully synchronized dynamics,
for which all neurons behave almost identically. The rationale
of the model is most apparent if we first consider the case of a
fixed in-degree network. As illustrated on Figure 1, in this case,
once the population is synchronized, all neurons receive the same
input, that is the contribution of k simultaneous spikes given by
the sum of k PSCs. Here, one neuron behaves exactly as any other
neuron, thus, ∀i, j, t Vi(t) = Vj(t) = V(t).

This means that the network of N neurons receiving k inputs
of strength s is equivalent to N isolated neurons, each one
forming a close loop with one autapse—that is, a self-loop—of
strength k × s. This simplification is inexact if all neurons do
not have the same number of incoming connections, however,
as shown in the Results section, this approximation holds very
well for homogeneous Gaussian networks and, through a slight
modification of the synaptic dynamics, even the behavior of more
heterogeneous Gaussian or scale-free networks can be estimated.

Based on this observation, exact for fixed in-degree networks,
we propose a model of bursting dynamics for any synchronized

FIGURE 1 | Schematic representation of the equivalence between a

fixed-in-degree network containing N = 6 synchronous neurons, with

in-degree k = 2 and connection strength s, and N isolated neurons, with a

self-loop connection of strength ks.

network, where we describe the whole population through the
behavior of an equivalent neuron, representative of the “average”
dynamics. This neuron is subjected to the “average” input
received by neurons in the network, and, under this simplified
description, Equation (5) is now the same for every neuron in
the network, since they are all approximated by this equivalent
neuron. As they all receive the same number of spikes (ns)
emitted at the same times {tj}, j ∈ [1, . . . , ns], and from the same
number k of neighbors, we obtain:















V̇ = −(V − EL)+ eV − w+ Ie +
∑

j

ksI0 · (t − tj − d)2(t − tj − d)e−
t−tj−d

τs

︸ ︷︷ ︸

Isyn(t)

τwẇ = a(V − EL)− w

(6)

This single dynamical system is then solved through several
approximations depending on the network state. A typical
approximation in the burst, on the interval [ti, ti + d] between
the emission of a spike and its arrival, consists in linearizing the
exponential term when V < Vth. On this interval, Isyn = 0 and
since d≪ τw, w can be considered as constant. This leads to an
approximate solution forV(t) that we will callVl(t), withVl(ti) =
Vr (see also Equations S2, S3 in Supplementary Material):

Vl(t) = Vre
−t + (EL + Ie − w)

(

1− e−t
)

for ti ≤ t < ti + d.
(7)

For V ∈ [Vth,Vpeak], we cannot solve the equation, but know
from simulations that this simply leads the neuron to spike with
a typical timescale of τm = 1.

From these analytic formula, we can then constrain the final
solution through a self-consistent equation. The solution of the
self-consistent equation will therefore assure that the spikes of
one neuron during a burst sustain the burst itself and drive the
subsequent ones (self-loop in the equivalent representation of
Figure 1), thus shaping a permanent and self-sustained bursting
activity, as observed experimentally. Such a solution gives a
complete description of the neuron’s dynamical properties in
time and allows us to obtain all the characteristics of the bursting
dynamics.
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This equivalent approach is applied here to three different
synaptic models (instantaneous, continuous, and alpha-shaped
synapses) leading to three transcendental self-consistent
equations; details of mathematical developments can be found
in the Supplementary Material. Python tools to solve the self-
consistent equations and compute the characteristics of the
bursting behavior are available on our GitHub repository; they
are based on the scipy implementation of Brent’s root-finding
method.

Exploration of Parameter Space
Thanks to the fast computation of the equivalent model, we were
able to compute the dynamical properties for a large number
of parameter sets. These results were normalized and analyzed
through a Principal Component Analysis algorithm, using the
scikit.learn package, in order to obtain the correlation
matrix linking the collective dynamical properties to the precise
values of the neuronal parameters.

For each parameter set, we first ensure that there is no
stable fixed-point in phase-space and that the model predicts
a solution, i.e., the existence of bursts with mathematically
coherent properties. Secondly, we assess the biological relevance
of the solution by (1) ruling out dynamics for which the voltage
decreases to values lower than −120 mV during the giant
hyperpolarization following a burst; (2) restricting the maximum
value of the slow current w to 1,000 pA; (3) preventing cellular
bursting for individual neurons by asserting Vr < Vth—this
restricts the neurons to single-spike intrinsic behaviors (Naud
et al., 2008).

These constraints limit the number of “valid” parameter sets
and make the parameters inter-dependent; this leads to a non-
trivial parameter/parameter correlation matrix (Figure S1).

RESULTS

As mentioned in the introduction and discussed in the
Supplementary Material, synchronization is highly resilient and
we focus here solely on the fully synchronized bursting network.
We start from individual neurons which are spiking periodically,
a behavior that seems to originate from persistent sodium
currents like INa,p or Ih in neuronal cultures (Penn et al.,
2016); it is modeled here by a constant input current Ie. When
these neurons are coupled, however, their periodic dynamics is
drastically modified as they adopt a collective bursting behavior
(Borges et al., 2017).

We describe the attractor characterizing the dynamics of the
synchronous bursting state. Our key result details the properties
of this attractor and shows how they are linked to both the
biological parameters of the neurons and the network topology.

The behavior shows features of a relaxation oscillator (see
Figure 4A): the current w slowly decreases during the quiescent
phase, then rapidly increases during the bursting phase until
it reaches a threshold value w∗, which determines the burst
termination and the start of a new cycle.

The main characteristic which determines the dynamics is
the maximum value of the adaptation current, w∗ reached at
the end of a burst. It depends on the neuronal and network

parameters, and qualitatively obeys the following equation
(details in subsection 5.3 of the Supplementary Material):

w∗ ≈ EL + Ie +
Vre
−d + kQs

1− e−d
+ C (8)

where C is a constant. Since the firing rate during the burst is
mostly linked to w∗, this equation directly shows that higher

coupling (kQs), higher excitability (EL), or higher reset voltage
(Vr) will increase the bursting intensity. The effect of the
transmission delay d is slightly more complex but roughly
decreases bursting intensity when increased.

Taking into account finer effects and spike-driven adaptation
then leads to more complete equations delivering additional
results about the influence of the remaining parameters.
These are considered in more details in the Discussion
section.

In the following subsections, we describe and explain the
bursting dynamics, then discuss themore detailed, self-consistent
versions of Equation (8) (complete derivation of these equations
can be found in the SupplementaryMaterial). Finally, we describe
how our model accounts for the structural heterogeneity that is
present in neuronal cultures.

The Attractor, Inner Structure of a Burst
The synchronous attractor is composed of intermittent bursts of
activity, as shown in Figure 2 in the (V ,w) phase space. During
a cycle, the neuron state variables (V , w) do not follow the
attractor at constant velocity: the neuron spends much longer on
the recovery path (low V) compared to the bursting period (high
V)—see Figure 4 to see this trajectory in time.

This attractor is modified by the presence of heterogeneity in
the network’s topology—quantified by σk for Gaussian in-degree
networks—which impacts both its duration and regularity.
Indeed, heterogeneity noticeably smooths the average behavior
and reduces the number of spikes in a burst which goes down
from 6 spikes per burst for the fixed in-degree graph, to 3–5
if σk = 4, and is roughly reduced to 2 when σk = 20. For
the fully synchronized fixed in-degree network, all neurons are
responding to the exact same input—they receive spikes from the
same number of neighbors—hence they are all equivalent to a
single average neuron.

As can be seen on Figure 3 for a fixed in-degree network,
synchronized bursting of the population consists of a
succession of active periods, called bursts1, separated by
long inactive intervals, which we call recovery periods. As can
be seen on the inset, the burst displays a strongly ordered
inner structure composed of successive synchronized burst
slices, which are consistent sets of spikes stemming from a
common input.

This inner structure, based on spike events, helps us define
several quantities that characterize the dynamics such as the

1Let us insist once again that the term burst always refers here to the concerted

activity of a large fraction of the neuronal population (i.e., a network burst) and

should not be confused with single neuron bursting behavior—though they share

common characteristics—since they have different origins and population bursts

occur on much longer timescales.
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FIGURE 2 | Attractors for three different networks of 1,000 identical neurons

with average degree 100. Fixed-in-degree is represented by the blue solid line

(spike positions are represented by empty squares and reset positions by full

circles). For Gaussian in-degree networks, the logarithm of the number of

states per bin—over 200 simulations with 4 cycles each—was used to

compensate the non-constant velocity across the whole attractor. The larger

attractor, in green, is associated to σk = 4; the smaller one, in purple, is for

σk = 20; both attractors are delimited by a dashed line (limit of a unique visit

per bin). Bin size is approximately 0.05 mV along the V-axis and 1 pA along

the w-axis.

FIGURE 3 | Spike raster of bursting activity for a fixed 100-in-degree network.

Inset provides details on the behavior of the neurons during a single burst, with

successive synchronized burst slices separated by longer and longer intervals

as the adaptation increases.

burst and inter-burst durations. However, information about the
spike times alone is not sufficient to provide insights regarding
the phenomena involved in the burst initiation or termination.
Therefore, we will use the time evolution of the neuron’s state
variables to perform a phase-plane analysis and investigate
possible mechanisms for both the bursting and recovery
periods.

Neuronal Trajectory, Assessment of the
Theoretical Model
From the simulation, we can record the evolution of V and
w during the whole dynamics to reconstruct the trajectory of
the neuronal state, both in time and in phase-space. Figure 4A
represents the time evolution of the equivalent neuron (see
Figure 1) during a bursting dynamics on a regular fixed
in-degree network and the comparison with the trajectory
predicted by the “alpha” equivalent model (see section 6 of the
Supplementary Material, “A more detailed model: alpha-shaped
synapses”). The close agreement between these trajectories shows
that the theoretical model has a good predictive power. Indeed,
the most visible discrepancy between the equivalent model and
the simulations concerns the precise spike times, as shown in
the inset of Figure 4A; however, though the difference can be
significant on the intraburst timescale, it is in fact limited to a
few milliseconds, which is negligible compared to the duration
of a cycle.

The dynamics can be understood most easily when looking
at w since its behavior can be seen as relaxation oscillations:
after a burst (0), the adaptation variable undergoes a quasi-
exponential decrease until it reaches its minimum value wmin—
passing through points (1) to (4). At this point, the burst starts
and w increases rapidly toward a peak value w∗—point (5) on
Figure 4, which characterizes the trajectory, and will be derived
below. Once this maximum value is reached, the neuron stops
spiking, the increase of w stops, then the cycle starts again (see
Supplementary animation online).

The evolution of V can then be seen as an interplay between
the influence of w, Ie, and the synaptic currents in the active
period:

• During the burst, each new spike induces a strong
depolarization of the membrane, thus leading to another
spike—point (4) to (5) on the figure.
• Once w reaches its peak value w∗, its influence becomes

predominant and prevents the neuron from firing; once
the effect of the last spike vanishes, it drives a fast
hyperpolarization of the neuron down to point (1).
• After V has reached a quasi-equilibrium value along its

nullcline, it instantaneously adapts to the slow decay of w and
increases progressively until the trajectory reaches the lowest
point of the V-nullcline—point (3). This recovery from the
strong hyperpolarization is greatly influenced by Ie.
• At this point, the potential starts increasingmore rapidly as the

first spike is initiated until the bursting starts again with (4),
where the first spike predicted by the equivalent model occurs.

Understanding the Initiation and
Termination of a Burst
One of the main interests of this equivalent model is that
it provides an intuitive understanding of the mathematical
conditions describing the initiation and the termination of bursts.
As shown on Figures 4B, 5, the whole existence of the short active
period can be understood from the position of the neuronal state
in phase space compared to the V-nullcline (curve V̇ = 0),
which can be seen as an effective threshold. Indeed, the initiation
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FIGURE 4 | (A) Time evolution of parameters V and w for the theoretical model (thick black lines and circled numbers) and for a simulation (thin red curve for V, blue
for w) on a fixed in-degree graph with k = 100. Two bursts are represented and the intraburst dynamics is presented in the inset, where the spike times predicted by

the equivalent model are marked by black dots. The numbered circles mark the main points of the theoretical dynamics, where the behavior changes, as described in

the SI. (B) Plot of the attractors in phase space, both for the theoretical model (thick black curve), and through a simulation (thin brown). The three first periods

following a burst are denoted by blue arrows: there is first a sharp decrease of V down to its minimum value as it crosses the V-nullcline (dashes); it is followed by a

short interval where the neuronal state moves rapidly toward the “recovery curve” (dotted line), which is then followed until the minimum of the V-nullcline and the

bursting sequence. The spike trajectory is cut on the figure (marked by empty squares) and the following reset point is marked by a filled circle, as the voltage is set

back to Vr and w is increased by b. Neuronal and synaptic parameters are detailed in Table S1, Set 1. The w-nullcline is outside the range of (B).

of the burst simply occurs when w becomes low enough so
that the trajectory can “pass under” the V-nullcline; this can be
understood easily since the excitability of the neuron increases
when w decreases. The lowest value wmin represent the situation
where the excitability of the neuron has become so high that it
spontaneously emits a spike.

A key result is then the derivation of a condition for burst
termination. We show that the end of the spiking sequence
that constitutes a burst is ensured by the intrinsic dynamical
properties of single neurons—through adaptationmechanisms—
and does not require inhibition nor plastic synapses.

To understand the succession of spikes during the burst and
why this spiking process comes to an end, we must introduce a
description of the dynamic coupling between the neurons. We
first explicit this coupling for two limit cases: firstly instantaneous
couplings in perfectly regular fixed in-degree networks, using
synapses modeled by Dirac delta functions (called Dirac synapses
in the following); secondly, mimicking the effect of highly
disordered networks, where synapses release a constant current
over the entire burst duration. Thirdly, we consider a more
biologically relevant coupling using alpha-shaped synapses,
detailed in section 6 of the Supplementary Material, which lies
between these two previous limits.

In general, the synaptic coupling Is between the neurons
is time-dependent, which makes the resolution of the system’s
dynamics (Equation 2) highly complex. As a result the V-
nullcline (V̇ = 0) is not generally fixed over a whole cycle. This
complicates the threshold condition on w∗ in the case of the
“alpha” synapses. Therefore, the Dirac and continuous synaptic
models are more convenient since they enable us to get an insight
on the bursting mechanisms through a static representation of
the phase diagram during a burst.

Regular Networks and Dirac Synapses
The rationale for the condition of burst termination is most
easily understandable in the case of regular networks assuming
a coupling in the form of Dirac synapses. Indeed, the arrival of a
spike then simply results in a step increment of the post-synaptic
neuron’s membrane potential:

V(t+sp) = V(t−sp)+ kQs (9)

where tsp is the time at which the spike is delivered to the post-
synaptic neuron; t−sp, t

+
sp are respectively the instants immediately

before and after spike delivery. Qs is the total charge delivered by
the spike and reflects the coupling strength in the network.

The behavior of the neuron can easily be understood by
looking at the situation in phase space on Figure 5. Due to the
instantaneous coupling through the Dirac function, there is no
finite period of time where the equation for V receives a non-
zero input. Consequently, in this limit the V-nullcline remains
fixed at all times. Therefore, the condition for the occurrence
of a new spike during the burst depends only on the position
of V(t+sp) compared with the value of the V-nullcline at the
same w: VNV (w). During an interspike of duration TI(w), w
can be considered as constant since τm,TI(w)≪ τw (quasi-static
approximation). Hence, either V(t+sp) > VNV (w) and a new spike

occurs, or V(t+sp) ≤ VNV (w) and the burst terminates.
Developing this condition mathematically leads to the

following self-consistent equation:

w∗ = EL + Ie − Vr +

[

W−1

(

−eEL+Ie−w
∗
)

+ kQs

]

ed (10)

whereW−1 is the lower branch of the Lambert W function.
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FIGURE 5 | Trajectory of a “Dirac burst” in dimensionless phase space; the

gray numbers indicate the order of the burst initiation. After a reset, the

potential first decreases (leftmost parts of the trajectory) until the spike arrives

(brown square), at which point the potential is suddenly shifted to the

corresponding brown dot on the rightmost part of the trajectory. The decay

before the spike arrival becomes more and more significant as w increases

since it contributes negatively to V̇. Burst continues until w becomes greater

than w∗, denoted by the green dot, where the V-nullcline (black line,

representing the set of points (VNV (w),w)) is crossed. Once wmax is reached

(circled 0), the burst ends and the recovery period starts.

Heterogeneous Networks and Continuous Synapses
For very heterogeneous networks, the broad in-degree
distribution leads the neurons to fire at seemingly random
times during the bursting period. In the limit where the time
distribution of the spikes inside a burst becomes completely
uniform, we can approximate it through a window-like synaptic
current which is zero during the interburst, then jumps to a finite
constant value during the burst.

To obtain an effect equivalent to the spikes described in the
previous subsection, devoted the Dirac model, the total charge
transmitted during the burst should be the same if an equal
number of spikes is emitted. This condition reads, for an average

in-degree k, and a mean synaptic current I
(c)
s during the burst,

I(c)s TB = nskQs. (11)

where ns is the number of spikes inside the burst. As described
previously, the burst termination occurs when the trajectory
crosses the V-nullcline. Figure 6 shows this condition in this
heterogeneous limit, i.e., as the input received by the neurons
becomes continuous during the burst.

Because of the quasi-static hypothesis on w during an
interspike, burst termination arises when w goes above the lowest

point of the V-nullcline, which occurs for w∗ = 1+EL+ I
(c)
s + Ie.

This is obtained by setting V = 0 in wNV (V). After a few lines
of calculation detailed in the Supplementary Material (Equations
S8–S10), we obtain the self-consistent equation:

w∗ = wmin + b
[

ts(w
∗)− d

]

+ kQs. (12)

FIGURE 6 | Trajectory of a burst in dimensionless phase space for neurons

coupled via continuous synapses. Once the first spike occurs (marked by 4),

the burst is initiated, i.e., a continuous current I(c)s is injected into the neurons,

thus shifting the resting V-nullcline (dashed curve) upwards (solid black). The

neuron spikes until the last shift of b brings w above w∗, at wmax , where it

encounters the nullcline. This marks the end of the burst and the beginning of

the recovery period (circled 0).

where ts(w
∗) is the average interspike interval (ISI) in the

burst. As in the previous equations (Equations 8, 10), the
critical value of the adaptation current wj at which the burst

terminates (1) increases when the coupling strength (kQs)
increases (2) decreases when the transmission delay d increases.
Furthermore, this self-consistent equation also shows the effect
of the spike-driven adaptation b which increases the maximum
value of the adaptation current that can be reached.

Summary of the Theoretical Description
Once w∗ has been computed using one of the theoretical models,
we can derive all the dynamical properties, starting with:

wmax =

{ ⌈
w∗−wmin

b

⌉

b for fixed in-degree networks

w∗ with heterogeneity
(13)

where ⌈·⌉ denotes the ceiling function. Though the self-consistent
equations derived above are less easy to interpret compared
to the approximated solution (Equation 8), they allow precise
quantitative predictions of the network’s dynamics without too
much computational cost.

Note that the neurons follow a well-defined and unique
attractor, with w changing by discrete steps, only in the case
of a fixed in-degree network, where they are all equivalent and
synchronous, hence the dual form of Equation (13). In the
presence of heterogeneity, the attractor has fuzzy boundaries, as
shown by numerical simulations on Figure 2. In this case, the
average adaptation over all neurons has a smooth dynamics and
wmax is closer to the statistical value at which the neurons stop
bursting: w∗.

The complete dynamics of the model can be completely
captured by the relaxation behavior of w, which displays
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two phases: one resting period where the adaptation variable
decreases until it reaches its lowest value, and an active period
wherew increases rapidly up to its peak value. The duration of the
resting period (interburst interval, or IBI) can be approximated as
the sum of the following terms:

Tdown characterizes the time necessary for the neuron to
undergo its strong hyperpolarization and reach its lowest
membrane potential—from (0) to (1) on Figure 4,

TR is the duration of the recovery—from (2) to (3),
Tfs is the time necessary for the initiation of the first spike

which is roughly equivalent to the membrane time
constant τm—from (3) to (4).

This allows us to obtain the characteristic values of the dynamics
(see section 8 of the Supplementary Material, “Resting period”,
for detailed calculations):

ns =

⌈
w∗ − wmin

b

⌉

(average number of spikes in a burst),

TB =

ns−1∑

j=1

ts(wmin + jb), where ts(w) is the interspike

interval (ISI) for a given value of w,

Tdown = ln

(
λ

λ− Vmax + EL + Ie − wmax

)

,

TR =
τw − a

1+ a
ln

(

w(2) − a
1+a Ie

wmin −
a

1+a Ie

)

, where w(2) is the value

of w at point (2),
IBI ≈ Tdown + TR + 1.

Because these results are analytic, thus immediate to compute,
this has the significant advantage over simulations that it allows
us to quickly predict the properties of the collective dynamics
for a large number of parameter sets, i.e., of individual neuron’s
behaviors.

Evolution of the Properties with Neuronal
and Synaptic Parameters
In order to assess the separate influence of the different neuronal
parameters on the bursting properties, we used the model to
test in a systematic way the influence of the separate variables.
As can be seen on Figure 7, this allows to compare the
relative influence of any desired set of parameters in a fast and
systematic way. Thus, it is a valuable tool to make preliminary
explorations in order to prepare for subsequent experimental
tests.

This matrix allows us to confirm obvious trends, such as
the negative influence of the driving current Ie on the IBI,
as it tends to quicken the depolarization of the neurons.
Likewise, τw is almost linearly related to the IBI since it
dictates the decay time for w. However, this systematic study
also revealed less predictable correlations. Indeed, one of the
most interesting features is the quasi-absence of influence of
the subthreshold adaptation variable a compared to the spike-
driven adaptation (characterized by b and Vr) on the most
visible features of the activity, namely the IBI and burst
duration.

FIGURE 7 | Correlation matrix for the main characteristics of the bursting

dynamics vs. neuronal parameters. 〈ISI〉 is the mean value of the interspike

over one burst. Correlations were performed over 2 million randomly-drawn

neuronal parameter sets using the predictions of the equivalent model. The

experimentally observable features are the IBI, TB, ns, and 〈ISI〉.

Correlations for 〈ISI〉 should be treated with care as this
value is the average of the interspike interval over a burst.
An additional spike (increment in ns) automatically increases
〈ISI〉 since the new interspike interval will be larger than the
previous ones. This is due to the monotonic growth of ISI
with w as the burst progresses. Thus, if Vr indeed reduces
the interspike duration on the whole, the negative correlation
between 〈ISI〉 and b mainly comes from the decrease of ns as b
increases.

Due to the sheer amount of calculation this would require,
the theoretical values returned by the equivalent model during
this large exploration of parameter-space cannot be verified by
simulations in a systematic way. However, the distributions of
the bursting characteristics (number of spikes, interburst, and
burst duration) are in biologically relevant ranges—see Figure 8.
This shows that adaptation alone can lead to network bursts
with periods varying from a few tenths of milliseconds to several
seconds.

Predictive Ability of the Burst Model for
Heterogeneous Networks
Our description of periodic bursts predicts the main features of
the synchronized bursting rhythmic activity such as its period
and firing rate, which are significantly influenced by the presence
of heterogeneity in the network’s structure, as was already visible
in Figure 2. Indeed, as the heterogeneity—namely σk—increases,
the sharpness of the synchronized burst slices decreases until the
spikes contained in the burst becomemore uniformly distributed;
this is clearly visible on Figure 9, which shows the comparison
of a burst for two Gaussian in-degree networks with different
standard deviations.

Our model is able to take this heterogeneity into account
through three synaptic descriptions (Dirac, alpha-shaped, or
“continuous”): this allows us to predict the interval in which
the bursting properties of most networks should be contained.
As shown on Figure 10, they fall in between the Dirac and
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FIGURE 8 | Distributions of the burst burst duration TB and of the IBI (both in ms) for 2 million parameter sets.

FIGURE 9 | Rasters of the bursting activity for 2 different Gaussian networks with 1,000 neurons and an average in-degree of 100; each inset details the inner

structure of a burst with the successive slices. (A) Homogeneous Gaussian in-degree network with k = 100 and σk = 5 leads to well-defined synchronized burst

slices inside the bursts. (B) Heterogeneous Gaussian in-degree network with k = 100 and σk = 20 leads to fuzzy synchronized burst slices.

“continuous-synapses” models. This description successfully
accounts for dynamics of networks with low heterogeneity. For
high levels of heterogeneity and low synaptic strengths, themodel
tends to overestimate the synchrony, although prediction of the
bursting period remains correct.

DISCUSSION

In all the simulations we performed, we observed that oscillating
adaptive spiking neurons synchronize, then start emitting bursts
of spikes as the coupling increases.

Our model provides a predictive framework which allows us
to determine how this bursting behavior is affected by changes in
the individual properties of the neurons.

In the following subsections, we first discuss the validity range
of the analytic model. Then, through a thorough mapping of
the aEIF parameters to ion channels and biological mechanisms,
we make experimentally-testable predictions about the possible
influence the main adaptation channels on the bursting behavior.
Namely, we suggest how adaptation-channel blockers may
affect the dynamics when applied on a bursting neuronal
culture.

Validity Range of the Equivalent Model
In order to get meaningful results within the framework of the
present model, one must take care to use sets of parameters that
lead to adaptive spiking neurons.

More importantly, the conceptual boundaries of the model
are reached in the limit of either a very weakly or very
strongly coupled neuronal network. For strong coupling the
discrepancy between the equivalent model and the simulations
mostly occurs because PSCs becomes so intense that a single
input can generate several spikes. This can occur in silico but
has little biological relevance for adaptive spiking neurons.
The weak coupling limit, however, is more revealing since a
progressive transition from an asynchronous state to a bursting
phase occurs. This transition first involves oscillating firing
rates, then synchronous slices containing between one and two
spikes, before bursts containing multiple spikes appear. Our
equivalent model, designed to describe a fully synchronous

bursting dynamics, cannot faithfully capture this smooth
transition.

Regarding the network structure, more heterogeneous (e.g.,

scale-free) networks may also be described by the “continuous-

synapse” model on some range of the coupling strength
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FIGURE 10 | Variation of the IBI depending on maximum value of the PSC (in

pA). Values predicted by the equivalent model are shown in dashed,

dot-dashed and dotted lines respectively for the Dirac, alpha and continuous

models. Simulated values for a Gaussian network with σk = 4 (blue) and

σk = 20 (green) are superimposed: the main curve represents the average

value, while the filled area marks the 5th to 95th percentiles.

as the qualitative bursting behavior is still present on such
networks.

The Influence of Adaptation and Its
Biological Origin
Despite its simplicity, the aEIF model takes into account
most of the adaptation phenomena involved in biological
neurons. Thus, voltage-gated subthreshold adaptation currents,
like the muscarinic potassium current IM (Womble and Moises,
1992) are quantified by the constant a in Equation (2).
On the other hand, spike-triggered adaptation, which mostly
comes from calcium-gated potassium channels leading to after-
hyperpolarization (AHP) phenomena (Sah and Louise Faber,
2002), are quantified by the reset conditions. These calcium-
activated currents can be separated into three main types (Sah,
1996; Sah and Louise Faber, 2002; Vogalis et al., 2003) according
to their timescales. Over a few milliseconds (1–10 ms) the fast
hyperpolarization current fAHP contributes to action potential
repolarization, and is thus taken into account by the model
through the value of Vr in Equation (1). On an intermediate
(“medium”) timescale, the current mAHP has a fast rise-time
(less than 10 ms), followed by a decay over 50 to several hundred
milliseconds (Storm, 1989); it is modeled by the b step of w
after a spike, in Equation (1). Finally, the slow hyperpolarization
(Shah and Haylett, 2000; Andrade et al., 2012) current sAHP
has a slow rise of 100 ms or more, and an even slower decay
over several seconds. It is mostly revealed after a train of action
potentials and peaks between 400 and 700 ms. Though this
current is not explicitly taken into account by the aEIF model,
in the case of bursts, its qualitative effect can be obtained
approximately by an increase of τw, which lengthens the effect
of the potassium current after a burst. One of the limits of the

model is its unique timescale for all of the adaptation-related
features.

From the exploration of parameter-space, we obtain the
correlation matrix of Figure 7, which shows a significant
influence of spike-triggered adaptation on the dynamics
compared to subthreshold adaptation. A previous study
(Augustin et al., 2013) also hinted at the importance of a
non-zero b value to obtain low-frequency oscillations. Using the
equivalent model, this can be explained easily by the quasi-static
hypothesis and the shape of Equation (12). Indeed, the second
term of the right-hand side involves the average ISI—which is an
increasing function of w∗—and the spike-driven increment for
the adaptation, b. Thus, the higher the effect of the spike-driven
adaptation, the higher w∗, which leads to longer interbursts.
On the other hand, the quasi-static hypothesis states that the
evolution of w is slow compared to that of V , meaning that
the subthreshold variations given by a are limited by their slow
evolution on a timescale of τw.

A significant advantage of this simple description is that the
mechanisms proposed by our equivalent model, in light of the
correlation matrix on Figure 7, allow us to make qualitative
predictions that could be tested to validate it experimentally.
Thus, we predict that blocking the voltage-gated adaptation
(Stiefel et al., 2008) should have only limited influence on the
dynamics through a slight increase in the number of spikes
during a burst. On the contrary, blocking one of the calcium-
gated channels should lead to drastic changes in the collective
behavior:

• Blocking the fAHP channels should be equivalent to increasing
Vr , hence increasing the number of spikes in a burst, leading
to higher wmax, therefore longer IBI.
• Blocking themAHP channels through apamin (Sah and Louise

Faber, 2002) would be equivalent to lowering the value of b,
which should strongly impact the number of spikes inside a
burst, therefore its duration. Yet, this should not change wmax

significantly, so it should not strongly impact the IBI if the
sAHP is significant enough. However, in the case of complete
blocking, if the sAHP is not strong enough to compensate,
this should lead to the complete disappearance of the bursting
behavior.
• Specific blocking of sAHP channels via noradrenaline (Sah

and Louise Faber, 2002) should lead to a small increase of
the number of spikes during a burst, but would mostly be
equivalent to lowering τw. In situation where adaptation has
the strongest influence over the bursting period, this would
lead to a significant decrease of the IBI. This is however
unlikely to happen in neuronal cultures, as will be explained
below.

These experiments would enable to test the adaptation hypothesis
and assess the relative strength of the different processes we
described. In fact, some previous studies by Empson and
Jefferys (2001) and de Sevilla et al. (2006) have shown results
that seem to corroborate the previous predictions, at least
regarding the effect of apamin on bursting in slices. However,
the first study records only from few individual neurons, and
the second uses 4-aminopyridine and Mg2+-free medium to
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FIGURE 11 | Modification of the original dynamics (left), where only excitatory

neurons are present, by the introduction of 20% of non-oscillating, fast-spiking

inhibitory neurons (middle), or of plastic synapses exhibiting short-term

depression (right). The coherence of the qualitative aspect over three very

different systems is remarkable.

trigger the epileptiform activity. To assess the general validity
of the proposed mechanisms, one would thus need additional
measurements using cultures in physiological conditions, and
where each ion-channel would be tested independently while
recording larger fractions of the network, either through calcium
imaging or MEAs.

Moreover, other features, such as slow modulation of
extracellular potassium concentration due to neuronal activity
(Bazhenov et al., 2008) have been described in the context of
rhythmic activities; these experiments would also help determine
whether such phenomena are required as driving forces or only
contribute to strengthening existing bursting activities. In our
simulations, network bursting is very robust against the following
modifications of the system: addition of inhibitory neurons in
the network or inclusion of short-time depression in the synaptic
dynamics, as shown on Figure 11. It is thus likely that the
underlying mechanism we detailed for excitatory synapses can
be generalized to these cases. Indeed, the mechanism remains
unchanged by plasticity, while adding inhibitory neurons in
the population essentially translates into an effective decrease
of the excitatory coupling; the latter has been pointed out for
percolation in networks of integrate-and-fire neurons.

Eventually, previous studies (Cohen and Segal, 2011) have
hinted at the importance of synaptic fatigue in the burst
termination: they showed that the duration of an evoked burst
was strongly dependent on the elapsed time since the previous
burst, due to the time needed to repopulate the pools of
neurotransmitters. What we showed here is also compatible
with these results, since they can easily be understood in the
framework of our model: a smaller recovery time leads to a
higher initial value of the adaptation current, thus shortening
the burst duration because the maximum value of w is reached
sooner. The effects of synaptic plasticity and adaptation should
thus be similar; however, given the timescales reported in the
literature, termination could be mostly mediated by adaptation,

while the IBI might depend more strongly on synaptic
recovery time. In such a case, blocking sAHP as proposed
above should not dramatically change the IBI of neuronal
cultures.

CONCLUSION

This study explains the dynamical processes determining
synchronous network bursting of a population of oscillating
neurons coupled through excitatory synapses. In particular we
explain why adaptation is a sufficient condition for collective
bursting. We reproduce a large range of biological rhythms with
burst frequencies spanning almost 3 orders of magnitude, from a
few hundred milliseconds to tens of seconds, in agreement with
experimental observations.

Thanks to a phase-space analysis, we are able to propose a
mechanism for the initiation and termination of the bursting
period related to spike-driven adaptation, which we link to the
underlying biological phenomena. The derivation of analytic
equivalent models describing the complete bursting dynamics
allows us to predict the evolution of the characteristics of
the global behavior from the properties of the individual
units—neurons and synapses. This enables us to propose a
set of experiments which should clarify the role of adaptation
currents in network bursting, as well as their relative importance
compared to other biological processes such as exhaustion of
vesicle pools.

In our description, each new spike in the burst is caused by the
previous one, which means that the delay between the emission
of a spike and its reception by the post-synaptic neuron has a
significant influence on the dynamics. Indeed, we understand
intuitively that the longer the delay, the lower the excitability of
the neurons when the PSC arrives, since the membrane potential
can decay to lower values. This fact, added to the effect of
heterogeneity—which tends to reduce the interburst interval—
hints at the existence of a limit to the spatial extension which can
sustain coherent bursting. Exploring the effect of heterogeneity
and spatial embedding (through propagation delays) therefore
constitutes a natural continuation of this work. This is certainly
necessary to address experimental observations in large cultures,
such as the tendency of the activity to initiate in specific regions
before it propagates to the rest of the network (Orlandi et al.,
2013).
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