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Human heart development is a complex and tightly regulated process, conserving

proliferation, and multipotency of embryonic cardiovascular progenitors. At terminal

stage, progenitor cell type gets suppressed for terminal differentiation and maturation.

In the human heart, most cardiomyocytes are terminally differentiated and so have

limited proliferation capacity. MicroRNAs (miRNAs) are non-coding single-stranded RNA

that regulate gene expression and mRNA silencing at the post-transcriptional level.

These miRNAs play a crucial role in numerous biological events, including cardiac

development, and cardiomyocyte proliferation. Several cardiac cells specific miRNAs

have been discovered. Inhibition or overexpression of thesemiRNAs could induce cardiac

regeneration, cardiac stem cell proliferation and cardiomyocyte proliferation. Clinical

application of miRNAs extends to heart failure, wherein the cell cycle arrest of terminally

differentiated cardiac cells inhibits the heart regeneration. The regenerative capacity

of the myocardium can be enhanced by cardiomyocyte specific miRNAs controlling

the cell cycle. In this review, we focus on cardiac-specific miRNAs involved in cardiac

regeneration and cardiomyocyte proliferation, and their potential as a new clinical therapy

for heart regeneration.
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INTRODUCTION

An uninterrupted supply of oxygen and nutrients by the heart is vital for the function of every
cell, tissue, and organ in our body. Therefore, acquired and congenital heart diseases are a leading
cause of death in developed and developing countries (1). Irreversible damage to cardiomyocytes
is caused by myocardial infarction, ischemic heart disease, hypertension, and genetic mutations.
Thereby, deteriorating heart functioning to heart attack and eventually death (2). Unlike, neonatal
mammalian heart, adult mammalian heart regeneration is inadequate and forms scar tissue instead.
Scar formation hinders the cardiac blood supply, worsening cardiac damage to heart failure (3).
Current therapies and medical devices focus on symptomatic relief, however, undermines the
replacement of lost cardiac muscle. Stem cell-based therapies targeted toward cardiac repair are
being tested for more than a decade, showing insignificant improvement in cardiac function (4–8).
Additionally, the molecular basis of stem cells based cardiac function improvement is not evident.
Also, the retention of stem cells at the injured heart tissue is questionable. Thereby, suggesting
the unmet clinical application of therapeutic strategies to replace cardiomyocytes and ameliorate
cardiac regeneration.
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Prenatal mammals possess a unique potential to regenerate
their heart post-injury. But this regeneration capacity remains for
a very short period following birth (9). In neonatal mammals,
transitory cellular and molecular response initiated from pre-
existing cardiomyocytes drive the myocardial regeneration (10,
11). Various signaling pathways like thyroid hormone signaling
(12), Hedgehog (13), Notch (14), ErbB2/4 (15, 16), and
Hippo/YAP signaling pathways (17, 18) are being studied as a
potential for adult heart regeneration. Similarly, non-muscle cells
reprogramming to cardiac muscle cell fate in the injured heart to
potentially integrate and repopulate it is being investigated as an
alternative approach (19–22).

Recently, miRNAs (small non-coding RNAs, that regulate
target gene expression post-translationally) have emerged as a
potential therapeutic candidate for cardiomyocyte proliferation
and heart regeneration (23). Several miRNAs have been shown
to regulate and maintain cardiac cell fate specification of cardiac
progenitor cells (24). Thus, studies pertaining to understand
miRNA transcriptome and regulatory pathways in cardiac
progenitors, regulated by miRNAs are gaining momentum.
Furthermore, research in regenerative therapeutics of adult heart
to develop embryonic cardiovascular progenitor miRNAs and
adult cardiac-specific miRNAs based miRNA therapy is being
tested. Figure 1 implicates on the role of miRNAs in cardiac
development and regeneration. This review focuses on molecular
regulatory mechanisms governed by miRNAs that induce cardiac
regeneration and how these mechanisms can be targeted to
potentially achieve adult mammalian heart regeneration.

FIGURE 1 | miRNAs in cardiac development and regeneration.

miRNA IN DEVELOPMENT

miRNA mechanism of action and biogenesis has been reviewed
extensively, as the field has evolved over the decade (25). Briefly,
miRNA controls post-translational gene expression and has
been shown to play a pivotal role in embryonic development
and pluripotency maintenance (26). For instance, in mice
the heterozygous mutant of Oct4 showed reduced protein
expression, suggesting a decrease in the stem cell pool in the
embryo. Furthermore, embryonic lethality was observed in mice
with homozygous Dicer 1 knockout. Thereafter, several miRNAs
involved in pluripotency maintenance of the embryonic stem
cells were discovered such as the miR- 290 family (miR-295,
miR-294, miR-291-3p) and miR-34a (27–29). Also, miR-372
and miR-302 showed increased efficiency in pluripotent stem
cell reprogramming (30, 31). Early embryogenesis entails the
differentiation of different cell types from single totipotent cells,
through morphogen gradients in order to transmit positional
information within the embryo (32). miRNAs also play an
important role in lineage differentiation and stem cell migration
into different tissues and organs. miR-430 monitors the nodal
morphogen gradient by acting on both the agonist and antagonist
of nodal, thereby avoiding patterning mistakes in the embryo
(33). miR-430 also enables degeneration of active morphogen
mRNAs that are not vital such as sdf1a transcript is degenerated
in all cells, except the cells actively transcribing new sdf1a (34, 35).
Conversely, several tissue-specific miRNAs have been shown to
promote trans-differentiation of the cells (36, 37). Furthermore,
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FIGURE 2 | miRNA based regulation of cardiogenesis. The initiating signals, i.e., extrinsic and intrinsic signals in the primary and secondary heart field regulate the

cardiogenesis. The nodes in blue represent the central transcription factor orchestrating the developmental signals. Nodes in red represent the transcription factor only

expressed in the primary heart field. Whereas, nodes in green represent the transcription factor only expressed in the secondary heart field. Nodes in light coral color

represent the miRNAs involved in the control of the overall cardiogenesis.

feedback and feed-forward loops between transcriptional factors
and miRNAs, reinforce or counterbalance cellular decisions
toward differentiation and controls cell fate (38). These findings
have established the miRNAs as a promising candidate for the
development of regenerative therapies.

miRNA IN MAMMALIAN CARDIOGENESIS

Myocardial cells (Fibroblasts and Cardiomyocytes) derived from
mesoderm at gastrulation contribute toward the formation of the
heart (39, 40). Early cardiac progenitors derived from the anterior
mesoderm forms the primary heart field, also called the cardiac
crescent. On the other hand, pharyngeal mesoderm contributes
toward the development of secondary heart field between and
anterior to cardiac crescent. In mice by the embryonic day
8, linear heart tube is formed by the cells migrated from
the cardiac crescent in order to provide a scaffold for heart
development. Furthermore, cells migrated from the secondary

heart field contribute toward the development of venous and
arterial poles. This leads to a beating heart tube, composed of
cardiomyocytes and underlying endothelial cells. By embryonic
day 8.5 primitive atria and ventricles are formed by uneven
remodeling and growth of linear heart tube. Heart maturation
leads to a separation between atria and ventricles by embryonic
day 15. Also, positioning the outflow tract and inflow tract on
the anterior pole of the heart. The right and left atria are formed
by both primary and secondary heart fields. Left ventricles are
formed from the primary heart field, while the right ventricle is
formed by the secondary heart field (41–45). Mammalian heart
development is well-orchestrated crosstalk between primary and
secondary heart field, along with extrinsic and intrinsic signals.
This cardiogenesis is tightly regulated by the network of signaling
pathways and transcriptional regulation, which is in turn highly
regulated by the miRNAs (41, 46) (Figure 2).

WNT signaling pathway from neural tube and notochord
suppress differentiation into cardiomyocytes, whereas Bone
morphogenetic protein (BMP) derived from endoderm enhances
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TABLE 1 | miRNAs involved in cardiac development.

miRNA Target Functions References

miR-1 Hand2, Delta, Delta-1 Promotes cardiomyocytes differentiation, enhances muscle and

cardiac progenitor cells expansion, cardiac lineage determination

and mesoderm formation.

(59, 60, 63)

miR-15 Chk1 Cardiac cell proliferation (64)

miR-17-92 Isl1, Tbx1, PTEN Governs cardiac progenitor cells proliferation. (61, 65)

miR-126 VEGF pathway, SPRED1 and

PIK3R2/p85-β

Cardiac Vascularization (66, 67)

miR-130a Fog-2 Organizes myocardium growth. (62)

miR-133a Cyclin D2, Serum response

factor

Regulates cardiomyocytes proliferation through negative feedback. (58)

miR-138 Cspg2 Governs maturation of ventricular cardiomyocytes. (68)

miR-208 Mby6, Mby7, Thrap1 Myosin expression and switching during fetal and adult stage. (69)

miR-218 Slit2, Robo1 Cardiac Morphogenesis (70)

miR-222 P27, HMBOX1, HIPK1 Regulates proliferation and differentiation of cardiomyocytes. (71)

the cardiomyocytes specification (47). Furthermore, Pitx2
transcription factor modulates wnt signaling and miRNAs (miR-
1, miR-29, andmiR-200) which, in turn leads to Ca+2 remodeling
(48). Other signals such as Notch, sonic hedgehog (SHH),
Hand1/2, and FGF are involved in the downstream activation of
genes encoding transcriptional activators (45, 49, 50). Thereby,
inducing cardiac progenitor migration and setting up of primary
and secondary heart fields. Transcription factor T-box 1(TBX1),
centrally regulates the secondary heart field, by controlling the
cardiac outflow tract development. NKX2−5 (NK2 homeobox 5)
and GATA4 are central transcription factors in the primary and
secondary heart fields.NKX2−5 and Isl1 contribute to heart tubes,
chambers, and nodes formation (51–54). These transcription
factors are also cell type-specific, such as transcription factor
T-box 5 (TBX5) is solely expressed in the primary heart field.
Similarly, Isl1 is only expressed in the secondary heart field.

miRNA machinery is co-opted to repress inhibitors of
cardiac differentiation, thus increasing the expression of
cardiac specific-genes during cardiogenesis. Cardiac tissue-
specific Dicer knockout ceased the cardiac development. Also,
acquired pathological abnormalities like fibrosis, biventricular
enlargement, hypertrophy, and heart failure (55). Several cardiac-
specific miRNAs like miR-133 and miR-1, suppress ectoderm
and endoderm lineage expression and mesoderm formation
(56, 57). Furthermore, miR-133 acts on cyclin D2 and serum
response factors to aid cardiomyocytes proliferation (58, 59).
miR-1 inhibits Delta-1 from embryonic stem cells and promotes
differentiation into cardiac lineage cells (59). miR-1 targets
the miRNA response element (MRE) in the 3′ UTR region
of the Hand2 and Irx5, which has been shown to have a
key effect on cardiac development (60). Cardiac progenitors
in the second heart field express the BMP signals that co-
ordinate with miR-17−92 and repress the progenitor gene
expression of Isl1 and Tbx1. Thereby, promoting myocardial
lineage differentiation toward the cardiac outflow tract (61).
Furthermore, miR-130a targets Friend-of-GATA 2 (FOG2) and
regulates cardiac development in mice (62). Other miRNAs
having a vital role in cardiac development are enlisted in Table 1.

Currently, there is dearth of knowledge about the miRNA
involved in human cardiac development. Although studies have
shown the involvement of miRNAs in heart chamber, outflow
tract, and septum development (72). Our current understanding
is particularly reliant on in vitro human pluripotent stem cell
differentiation into cardiac lineage cells like cardiomyocytes,
cardiac progenitors, smooth muscle cells, and endothelial cells
(73). miR-1 promotes differentiation to cardiomyocytes and
repress endothelial cell fate by inhibitingWNT and FGF signaling
pathways via. suppressing the expression of FZD7 and FRS2,
respectively (74). miR-1 also represses gene expression of Hand2,
KCNJ, HDAC4, GJA1 that are crucial for cardiac function and
development (75). miR-499 through SOX6 inhibition governs
the differentiation of cardiac progenitor cells to cardiomyocytes.
Other cardiac-specific miRNAs like miR-669, miR-204, and miR-
23 are shown to enhance cardiac progenitor differentiation,
however, their mechanism needs to be studied (76, 77).
Therefore, precise and orchestrated expression of miRNA is viral
for proper morphological and electrophysiological development
of the heart.

miRNA AND CARDIAC PROLIFERATION

Cardiomyocytes are the most abundant cell mass in the heart
but are outnumbered by the total of endothelial cells, fibroblast,
smooth muscle cells, and inflammatory cells (78). This group
of cells forms a microenvironment that affects cardiac cells
proliferation by paracrine signaling of the secreted molecules
like growth factors, cyclins, cyclin-dependent kinase (CDKs),
and cytokines and thus, are vital for cardiac repair and cell
cycle reentry (79–83). Overexpression of cell cycle activators like
SV40T antigen, cyclinD, cyclinA2 promotes proliferation and
dedifferentiation of post-mitotic cardiomyocytes (84–87). miR-
195 has been shown to be overexpressed in cardiomyocytes,
leading to cell cycle arrest at the G2 phase. miR-195 targets
checkpoint kinase 1 (Chek1), which encodes protein kinase
promoting mitotic progression and G2-M transition (64). In
mice, overexpression has also led to ventricular septal defects
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and hypoplasia like defects, and post-myocardial infarction
lead heart regeneration (64). On the other hand, anti-miRNAs
having a similar seed sequence as miR-195 showed increased
cardiomyocytes in the mitotic phase. The mice treated with anti-
miR-195 showed improved contractile function after ischemic
reperfusion injury (88). miR-199a-3p and miR-590-3p target
mRNA of HOP homeobox (HOPX), its protein product
suppresses cardiomyocytes proliferation. Both miRNAs also
target mRNA HOMER1, whose protein product alters Ca+2

signaling by interacting with the ryanodine receptor (RyR).
Furthermore, miR-590-3p targets chloride intracellular channel 5
(CLIC5), which is a cell proliferation inhibitor. In neonatal mice,
miR-199a-3p and miR-590-3p expression in cardiomyocytes
improved cardiac function and reduced fibrotic scar formation
after cardiomyocytes loss following injury. miR-302-367 cluster
promotes cardiomyocytes mitosis by either targeting the Hippo
pathway or by upregulating the expression of homeodomain
transcription factor Pitx2. Pitx2 in turn activates gene expression
of ROS scavengers, Nrf2, and electron transport chain to
promote cardiomyocytes mitosis (89). Mechanistically miR-302-
367 targets 3′ untranslated region (3′ UTR) of LATS2 and Mst1,
which are key components of Hippo signaling and regulators of
cardiomyocytes proliferation (90, 91). However, the prolonged
expression of miR-302-367 leads to a decrease in cardiac function
and cardiomyocytes dedifferentiation (90). miR-128 deletion
induce cell cycle re-entry by upregulating chromatin regulator
SUZ12 (Polycomb protein SUZ12), which in turn activates CDK2
and cyclin E and repress p27 (92).

miR-214, miR-17-92 cluster, miR-222 cluster have also
been shown to enhance in vivo cardiac repair (65, 71, 93,
94). Furthermore, cardiac-specific overexpression of miR-17-
92 cluster leads to increased cardiomyocytes proliferation,
heart weight, and hyperplasia without cardiac hypertrophy
(65). In vitro studies showed miR-17-92 cluster induced
downregulation of PTEN expression leads to cardiomyocytes
proliferation. Anti-miR-34a in adult mice has been shown
to reduce fibrosis and necrosis post-myocardial infarction
additionally boosts cardiac regeneration andmyocardial function
(95, 96). miR-34a acts on cyclin D1, Bcl2, Sirt1, and PPP1R10
that by cardiomyocytes cell cycle arrest, apoptosis, DNA damage
response, and telomerase shortening to improve cardiac function.
Other several miRNAs that promote/repress cardiomyocytes
proliferation and heart regeneration are listed in Table 2. These
findings demonstrate the therapeutic potential of miRNAs
in increasing cardiomyocytes proliferation, improving cardiac
function, cell-cycle reentry, and decreasing scar formation in
injured heart tissue.

miRNA IN CARDIOVASCULAR DISORDERS

miRNAs disturbance associated with cardiac development and
progenitors leads to structural abnormalities of the heart.
Several miRNAs associated with cardiogenesis and cardiac
progenitors showed dysregulation in congenital heart defects.
Whereas, adult heart-specific miRNAs are co-related with
cardiovascular pathologies like myocardial infarction, ventricular

hypertrophy, and arrhythmias (109–111). miRNAs are also
being investigated as a diagnostic biomarker to detect cardiac
diseases and understand disease pathology (112). Defects
in cardiomyocytes proliferation and migration pathways are
associated with congenital heart disease. miRNA transcriptome
shows distinct expression of miRNAs in different pathological
conditions, suggesting dysregulation of the pathways. Several
studies depicts disease specific distinct miRNAs expression. For
instance, low expression of miR-30b, miR-103, miR-142-3p, miR-
342-3p is observed in heart failure patients as compared to
chronic pulmonary obstructive disease (113). Further several
studies stated distinguishing cardiac pathologies like dilated
cardiomyopathies, ischemic cardiomyopathy, and aortic stenosis
based on miRNAs levels. Ikeda et al. showed 43 differentially
expressed miRNAs, of which at least one miRNA was distinct to
a specific disease group (114). mRNA expression profile when
compared with miRNA expression could provide a promising
diagnostic tool to differentiate diverse cardiac pathologies.
Cardiac disease-specific miRNAs identification also provides a
platform for a new drug target which, can be harnessed to
treat currently incurable heart disease. A list of miRNAs, their
expression profile in cardiomyocytes, along with their targets,
and associated cardiovascular diseases are listed in Table 3.

In mice, overexpression of miR-21 has shown to reduce
apoptosis and myocardial infarction by 36.9%. miR-21 also
enhances cardiomyocytes proliferation and viability post-
myocardial infarction by targeting PTEN and the Akt pathway
(128). Circulating miRNAs are widely studied to harness the
potential of biomarkers as a risk assessment tool for heart failure.
About 30 differentially expressed miRNA has been identified
for heart failure, miR-199a, miR-27a, miR-26b, miR-18a, miR-
652, miR-30, and miR-106a are significantly less expressed
in patients with heart failure. Also, miR-1 is downregulated
and miR-21 is upregulated in patients with symptomatic HF
(129). miR-210 levels are directly correlated with the severity of
heart disease. Inversely, patients recovering from heart failure
show a decrease in miR-210 levels (130). Furthermore, miR-423
negatively correlates while, miR-208b, miR-499, miR-1306, and
miR-1254 positively correlate with the mortality of heart failure
patients (127, 131–133).

Plasma levels of miR-21 are significantly higher in patients
with acute myocardial infarction (AMI). Additionally, miR-21
levels are correlated with creatine kinase and cardiac troponin
I (cTnI) that are traditional biomarkers for AMI (111, 134).
Similarly, miR-208 upregulation was observed in patients with
AMI and had a high mortality rate within 6 months (135,
136). Post-cardiomyocyte injury, the high levels of miR-499 are
highly associated with cTnI in patients with AMI (137). The
combination of miR-1, miR-208, and miR-499 has significantly
higher predictive value for AMI patients as compared to
conventional biomarkers (138).

miR-150 levels were observed to be reduced by 3.2 folds
in atrial fibrillation patients, affecting pathways associated
with fibrosis, platelet function, and inflammation (121, 139).
Dysregulation of miR-29 and miR-208b is observed in patients
with atrial fibrillation (AF). Their downstream targets involve
genes implicated in apoptosis and cardiac fibrosis (140–142).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 February 2022 | Volume 9 | Article 835138

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Shah and Shah Restoring Ravaged Heart: Role of miRNA

TABLE 2 | miRNAs that controls cardiomyocytes proliferation and heart regeneration.

miRNAs Positive

control/negative

control

Target Function References

Let-7i Negative Ccnd2, e2f2 Overexpression leads to inhibition of

cardiomyocytes differentiation and proliferation.

(97)

miR-1 Negative Hand2, ccnd1 Overexpression suppress G1/S phase transition of

cardiomyocytes.

(98, 99)

miR-19a/19b Positive PTEN Overexpression or miR-mimics leads to enhanced

cardiac regeneration post-myocardial infarction.

Also stimulates cardiomyocytes proliferation.

(65)

miR-25 Positive Bim, FBXW7 miR-mimics leads to cardiomyocytes proliferation in

both neonatal and adults.

(100, 101)

miR-34a Negative Bcl2, ccnd1 and

sirt1

Inhibition leads to increase in cardiomyocytes

proliferation and improves recovery post-myocardial

infarction.

(96)

miR-133a Negative Srf and ccnd2 Loss of expression leads to aberrant

cardiomyocytes proliferation and ectopic expression

of smooth muscle genes in heart.

(58)

miR-195 Negative Chek1 Overexpression leads to ventricular septal defects

and ventricular hypoplasia.

(64)

miR-204 Positive Jarid2 Enhance cardiomyocytes proliferation throughout

embryonic and adult stage.

(102)

miR-216a Negative Jak2 Overexpression inhibits cardiomyocytes

proliferation, whereas inhibition stimulates

cardiomyocytes proliferation.

(103)

miR-294 Positive Wee1 Overexpression leads to cell cycle re-entry and cell

cycle activity. Thereby, enhancing heart function.

(104)

miR-302-367

cluster

Positive Hippo signaling

pathway

miR-mimics promotes cardiac regeneration

post-myocardial infarction. Also improves cardiac

function.

(90)

miR-590-3p Positive Homer1, Hippo

signaling pathway.

Overexpression leads to cardiomyocytes

proliferation and reduces scar area.

(105, 106)

miR-708 Positive Mapk14 Positively regulates cardiac function and

regeneration

(107)

miR-1825 Positive Hippo signaling

pathway

Overexpression leads to improved heart function

and robust cardiomyocytes proliferation.

(108)

Also, miR-328 controls atrial remodeling by acting on Ca+2

channel protein expression, specifically L-type Ca+2 channels
α1c (CACNA1C) and β1 (CACNB2) subunit (123, 143).
Similarly, upregulation of miR-21 in atria affects the mitogen-
activated protein kinase pathway. Thereby, governing the level
of cardiac hypertrophy and interstitial fibrosis (144).

CLINICAL APPLICATION POTENTIAL OF
miRNAS

miRNAs by the virtue of their small size, ability to control
the expression of various mRNA, and relatively pleiotropic
effects have emerged as a promising therapeutic candidate to
treat cardiac diseases. Besides post-translational silencing by
miRNAs, gene expression can be altered by other methods like
epigenetic modification, inhibition or degradation of translated
protein, decreasing transcription factor levels, and entire gene
knockout (145–149). However, drugs inhibiting and degrading
transcription factors or translated protein are small molecules,

which require large-scale screening to check the efficacy (150).
Additionally, certain protein targets are non-druggable, i.e.,
without small molecule interaction specific binding pockets
(151). Targeted gene mutagenesis with CRISPR system is into
clinical trials but the field is very naive and requires supportive
data (152). Small molecules used for epigenetic modification
of DNA are typically unspecific in their interaction and tend
to cause global modification of the target cell’s genomic DNA.
miRNAs are versatile and provide a transient control over gene
expression. Since the last decade, several cardiac specific miRNAs
have been elucidated. Once miRNAs have been identified,
complementary oligonucleotide sequence synthesis is trifling to
develop drugs for treatment. Currently, miRNA based drug
substances are based on locked nucleic acid (LNA) to develop
antisense oligonucleotide for target mRNA sequence, thereby
silencing target gene (153). A large number ofmiRNAs regulatory
target predicting databases have emerged in the last decade
(154, 155). Several independent algorithms like TargetScan that
predict miRNA binding sites based on seed regions, that are
critical for protein-coding mRNA binding and its associated
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TABLE 3 | Cardiovascular disease associated with miRNAs.

miRNAs Expression

profile

Target Disease condition References

miR-1 Underexpressed Mef2a, Hand2,

SOX9

Cardiac hypertrophy, Ventricular septal defect. (60, 74, 115)

miR-21 Overexpressed unknown Myocardial Infarction (111)

miR-23a Overexpressed Foxo3a Cardiac hypertrophy (110)

miR-26b Overexpressed GATA4

Cox5a

Heart failure

Myocardial infarction

(116, 117)

miR-29b Overexpressed Unknown Myocardial Infarction (111)

miR-30c Underexpressed ATG5 Heart failure with preserved ejection fraction. (118)

miR-126 Underexpressed PI3KR2a Faulty angiogenesis (119)

miR-133 Overexpressed Bmf, Bim Ventricular tachycardia (120)

miR-146a Underexpressed TRAF6 Heart failure with preserved ejection fraction. (118)

miR-150 Underexpressed EGR1 Atrial fibrillation

Myocardial fibrosis

(121)

(122)

miR-181 Overexpressed BMPR2 Ventricular septal defects (74)

miR-195 Overexpressed CHECK1 Ventricular septal defects (64)

miR-328 Overexpressed CACNA1c,

CACNb2

Atrial Fibrillation (123)

miR-421 Overexpressed SOX2 Tetralogy of fallot (124)

miR-483 Overexpressed Igf1 Atrial fibrillation (125)

miR-499 Overexpressed Mef2 Myocardial infarction (126)

miR-1254 Overexpressed Smurf1 Chronic heart failure (127)

biological networks are developed. Other databases like Kegg and
Ingenuity pathway analysis are being used for disease state and
putative biological pathways. Furthermore, in silico programs
that estimate free energy between RNA sequences, lower free
energy suggests stable and strong binding (156, 157).

miRNA based therapeutics can be beneficial by inducing
differentiation, proliferation, and migration of terminally
differentiated cardiomyocytes. Reversal of myocardium
undergoing mitotic arrest toward proliferative progenitor
cells can enable tissue repair and repopulation. MGN-1374 is
an anti-miR of the miR-15 family seed region. It stimulates
cardiomyocyte proliferation of post-myocardial infarction
heart (158, 159). Cardiac specific miRNA like miR-208 has
been shown to be critical for heart failure as it prevents
myosin switching and improves cardiac function by targeting
MED13 (Metabolic regulator and insulin sensor). Anti-miR-
208 potential as a therapeutic option is being investigated
for heart failure (159). Wills tumor gene 1 (Wt1) expression
in the epicardial layer promotes proliferation, differentiation
into cardiac lineage cells, and neovascularization (160–162).
Post-myocardial infarction, Wt1+ epicardial cells undergoes
epithelial to mesenchymal transition (EMT) to enable cardiac
repair (119). Let-7 miRNA expression inhibition has been linked
with increased expression of EMT-related genes in epicardial
cells (163). Thus, can be a promising therapeutic candidate to
stimulate cardiac regeneration by providing a proliferative niche
in the infarcted heart.

Targeted delivery of miRNAs to the cardiac tissue needs
to overcome certain barriers such as nuclease degradation,

endothelial barrier, cell membrane transfer, andminimal toxicity.
Certain delivery systems like viral lipid based delivery systems
are under validation. Viral-based delivery, particularly with
Adeno-Associated Virus (AAV) is studied extensively. AAV9
based delivery of hsa-miR-590 and has-miR-199 showed stable
expression with increased cardiomyocytes proliferation in mice
heart (106). Similarly, lipid based delivery of miR-199 was
able to activate cardiomyocyte proliferation and provide robust
cardiac regeneration in mice (164). Both the delivery system has
some limitations that need to be addressed before their clinical
application. For instance, the viral delivery system prohibits
single mature miRNA specific expression and the long term
persistence of viral vector in transduced cardiomyocytes leads to
compounding of overall therapeutic effect. Thus, leads to several
unwanted downstream consequences (23, 90). On the other
hand, lipid based system particle size is comparatively larger
(>1µm) that has been linked to severe toxicity and inflammation
in animal studies (165). Exosomes and biocompatible injectable
hydrogels-based delivery of miRNAs in vivo have shown efficient
transduction in cardiomyocytes (108, 166, 167). Taking into
account that most of our current understanding is based on
small animals in which miRNA delivery is quite easy as well
as their cardiomyocyte biology and cardiac physiology are
markedly distinct from humans. Additional preclinical studies
elucidating the appropriate treatment dosage, location, and
duration in models, which represent human physiology are
warranted to enable the clinical application. Although nomiRNA
based drug candidate has entered clinical trial phase 3 in
clinicaltrials.gov database, there are several clinical trials in

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 February 2022 | Volume 9 | Article 835138

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Shah and Shah Restoring Ravaged Heart: Role of miRNA

early phase trials. Clinical trial for LNA-modified antisense
oligonucleotide (MRG 110) that antagonize miR-92 is under
study for heart failure (Clinicaltrials.gov). Overall, these studies
and reports indicate a promising future of miRNA-based
therapeutics for cardiac diseases.

CONCLUSION AND FUTURE
PERSPECTIVE

The end goal of restoring ravaged heart is complete heart
regeneration through cardiomyocytes renewal, scar reduction,
and neovascularization. Cardiac regeneration is governed by a
network of complex and strictly controlled processes. Studies
pertaining to the role of the regulatory network and signaling
pathway critical for cardiac development have resulted in novel
strategies to induce cardiac repair and regeneration. Central to
this development is the miRNAs based gene regulation, which
has heralded next-generation in situ regenerative therapies for the
heart. miRNA inhibitors and mimics are easily synthesized and

delivered by viral and non-viral transfection methods in small
animals. Current strategies for cardiomyocytes proliferation are
vastly inefficient and have been primarily tested in rodents.
Therefore, preclinical trials on large animals, organoids are vital
to demonstrate safety and efficacy of the therapeutic strategies.
Also, with the advent of single-cell sequencing techniques,
characterization of cell type specific function and expression
of miRNAs will further enhance our understanding. In near
future, the combination of developmental regulatory mechanism
and cellular transplantation along with artificial matrices and
decellularized tissue scaffolds can drive toward successful adult
heart repair and regeneration.
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