A RTl C L E W) Check for updates

Biocatalysed synthesis planning using data-driven
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Enzyme catalysts are an integral part of green chemistry strategies towards a more sus-
tainable and resource-efficient chemical synthesis. However, the use of biocatalysed reac-
tions in retrosynthetic planning clashes with the difficulties in predicting the enzymatic
activity on unreported substrates and enzyme-specific stereo- and regioselectivity. As of
now, only rule-based systems support retrosynthetic planning using biocatalysis, while initial
data-driven approaches are limited to forward predictions. Here, we extend the data-driven
forward reaction as well as retrosynthetic pathway prediction models based on the Molecular
Transformer architecture to biocatalysis. The enzymatic knowledge is learned from an
extensive data set of publicly available biochemical reactions with the aid of a new class
token scheme based on the enzyme commission classification number, which captures
catalysis patterns among different enzymes belonging to the same hierarchy. The forward
reaction prediction model (top-1 accuracy of 49.6%), the retrosynthetic pathway (top-1
single-step round-trip accuracy of 39.6%) and the curated data set are made publicly
available to facilitate the adoption of enzymatic catalysis in the design of greener chemistry
processes.
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ARTICLE

hemistry fostered the unprecedented rise of overall human

wealth and well-being during the past two centuries, and

today it is our trump card for averting and mitigating
global crisis while reshaping our lives towards a more responsible
use of natural resources’2. Innovation in synthetic chemistry will
be critical in making chemical processes and products more
sustainable, resource-efficient and CO2-neutral’. While the
design and development of catalysts are at the heart of greening
chemistry, biocatalysis, together with chemoinformatics and
artificial intelligence, can already accelerate the adoption of
existing sustainable catalytic processes?.

At the core of biocatalysis are enzymes, an integral part of all
living organisms used in important industrial processes thanks to
the multiple key advantages over conventional chemical reagents.
In addition to their extremely high catalytic activity, enzymes
catalyse chemo-, regio- and stereo-selective reactions and are
both reusable and allow for an easy recovery of products when
immobilised. A further advantage of enzyme-catalysed reactions
is that they are usually performed in water under mild conditions
and thus significantly reduce waste. Moreover, enzymes them-
selves are fully degradable in the environment, and as such, they
represent an important strategy towards greener chemistry6.
Therefore, it is not surprising that enzymes are one of the key
enablers of sustainable chemical processes”$, with a growing
interest in their use to convert waste into valuable raw materials
at an industrial scale®. Although the ability to use enzymes as
catalysts in the organic synthesis of chemical compounds gained
widespread attention for large-scale production!%-12, enzymes are
still far from being widely adopted in daily synthetic laboratory
works. The narrow substrate scope available from enzymatic
databases, the difficulties in identifying patterns within enzymes
classes that would extend the range of their applicability to
unreported substrates, and the distinct stereo- and/or regios-
electivities are domain-specific knowledge factors that make the
adoption of enzymatic processes a challenging problem for syn-
thetic chemists!3.

The knowledge gap between large corpora of enzymatic che-
mical reactions data and the human understanding of the
structure-activity relationship hinder the ability to predict suc-
cessful routes!4-16 when the substrates of interests are not directly
associated with an enzyme. Machine learning and data-driven
approaches may be useful strategies to capture the hidden pat-
terns in large enzymatic data sets, similar to the proven ability to
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Fig. 1 Introducing enzymes as green catalysts to data-driven template-
free chemical synthesis. The molecular transformer was trained on
chemical reactions extracted from the USPTO data set and the new
ECREACT data set using multitask transfer learning.

learn chemical reaction patterns from complex chemistry
knowledge collections!”. The extraction of chemical reaction rules
from large data sets of traditional organic chemistry reactions!8 is
one of the most successful examples!® of providing transparency
and explainability through AI applications in chemistry to date.

Despite the impact on traditional synthetic organic chemistry,
computer-aided synthesis planning tools using biocatalytic reac-
tions are in the early days of their development. Currently, only
rule-based methods for predicting biosynthesis pathways have
been examined, such as the ATLAS of Biochemistry or
RetroRules?0-22. Lately, RetroBioCat?® became the first che-
moinformatic approach for easing the adoption of biocatalytic
reactions specifically for chemical synthesis. However, the
implementation relies on a set of expertly encoded reaction rules
coupled with a system for retrieving database records to enable
the use of biocatalysis in synthetic organic chemistry. This use of
reaction templates slows down the curation of newly collected
data, requiring the intervention of human experts, and suffers
from the limitation in capturing the effects on the reaction centre
of long-range substituents. Shortly after, Kreutter et al.2* pre-
sented a forward reaction prediction model based on the Mole-
cular Transformer2®. This approach exploits a multitask transfer
learning to train a Molecular Transformer architecture, originally
trained with chemical reactions from the US Patent Office
(USPTO) data set, with 32,000 enzymatic transformations, each
one annotated with the corresponding enzyme name. The enzy-
matic transformer model predicts the products formed from a
given substrate and enzyme in the forward prediction task,
reaching an accuracy of 54% when using the enzyme name
information only and 62% when using the complete enzyme
information as a full sentence (often also including the organism
name). The approach addresses some of the concerns around
scalability and data curation of reaction templates. However, the
use of enzyme names as reaction tokens adds an additional level
of challenge when trying to learn chemical reactivity patterns
among enzymes with different names but belonging to closely
related families. In addition, the lack of a corresponding back-
ward model in this work does not allow for retrosynthetic
planning.

Here, we generalise the use of the Molecular Transformer by
adopting a tokenisation system based on enzyme classes and
introducing an extension of the retrosynthetic algorithm by
Schwaller et al.2® to biocatalysis. Compared to the previous work
by Kreutter et al., a backward model allows to predict substrates
and enzyme classes given a target product, enabling retrosynthetic
pathway prediction. In addition, we incorporate the EC (enzyme
commission) number into the reaction SMILES, rather than
encoding enzymes with their natural language name. Enzymatic
reactions and the accompanying EC numbers were extracted
from four databases, namely Rhea, BRENDA, PathBank and
MetaNetX and merged into a new data set, named ECREACT,
containing enzyme-catalysed reactions with the respective EC
number, as shown in Fig. 1.

The forward prediction model achieves an accuracy of 49.6%,
63.5% and 68.8% top-1 and top-5, and top-10 respectively, while
the single-step retrosynthetic model shows a round-trip accuracy
of 39.6%, 42.3% and 42.6%, top-1, top-5 and top-10, respectively.

Results

Data set. The enzymatic reaction data set with related EC (enzyme
commission) numbers was created by merging entries extracted
from Rhea (n=8659), BRENDA (n=11130), PathBank
(n=31047) and MetaNetX (n = 34485)27-30, This data set was
then further processed by (1) removing products that occur as
reactants in the same reaction, (2) removing known co-enzymes
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Fig. 2 Enzyme class, substrate and product distributions of the data set ECREACT. a The distribution of samples at EC-levels 1 (corresponding to enzyme
classes) and 2 (corresponding to enzyme sub-classes) for oxidoreductases (class 1), transferases (class 2), hydrolases (class 3), lyases (class 4),
isomerases (class 5), ligases (class 6) and translocases (class 7), in the ECREACT EC3 data set. A more extensive visualisation of the distribution of EC-
levels 1, 2 and 3 can be found in Supplementary Fig. 3. TMAPs visualising the distribution of MAP4-encoded (b) reactants and (c) products in the
ECREACT EC3 subset coloured by enzyme class corresponding to EC-level 1. Distributions of molecular distances (MAP4) per class are shown in
Supplementary Fig. 1. While molecules of transferase- (class 2), lyase- (class 4), and, to a lesser extent, hydrolase-catalysed (class 3) reactions populate
regions of the chemical space specific to each class (homogeneous), molecules from other classes are found in predominantly heterogeneous regions.

and common byproducts from the products in reactions that
exceed one product (Supplementary Tables 1 and 2), (3) removing
molecules with a heavy atom count < 4 from the products and (4)
removing reactions with >1 or <1 products or no reactants. The
resulting data set contains 62,222 unique reaction-EC number
combinations. The data set is available in 5 different token
schemes: With no EC number (ECO0, #n = 55115), only EC-level 1
(EC1, n=55707), EC-levels 1-2 (EC2, n = 56222), EC-levels 1-3
(EC3, n=56579) and EC-levels 1-4 (EC4, n = 62222). The dif-
ferent token schemes result in different set sizes as the removal of
EC-levels leads to duplication and removal of extended reaction
SMILES. Given the low specificity of enzyme information in EC1
and EC2 tokens, and the insufficient sampling for EC4, which is
often confined to one enzyme-substrate example only, the EC3
data set remained the only one containing sufficient variability in
terms of enzyme-substrate examples across individual tokens.
Figure 2a shows the composition of the data set with token
scheme EC3, containing 62,403 unique enzymatic reactions. At
EC-level 1, which corresponds to enzyme classes, EC 2.xxx
(transferases) account for 53.5% of total entries, EC 1.x.x.x (oxi-
doreductases) for 24.5%, EC 3.x.xx (hydrolases) for 10.7%, EC
4.xxx (lyases) for 6.3%, EC 6.x.xx (ligases) for 2.3%, EC 5.xx.x
(isomerases) for 2.2% and EC 7.x.x.x (translocases) for 0.4%. The
high fraction of transferase-catalysed reactions is a consequence of
the large number of non-primary lipid pathways stored in Path-
Bank. Among transferases, the most common subclasses at EC-
level 2 are EC 2.7.xx (transferases transferring phosphorus-
containing groups) at 24.5%, EC 2.3.xx (acetyltransferases) at
168% and EC 2.1.xx (transferases transferring one-carbon
groups) 7.5%. The complete information on the distribution of
samples across EC-levels 2 and 3 is provided in the supplementary
information (Supplementary Tables 3 and 4, with a breakdown of
the data set by data source shown in Supplementary Fig. 2).

The distribution of the available data reveals a heavy imbalance
in the distribution of the enzyme-substrate examples. Whereas
transferase-catalysed reactions encompass few subclasses at EC-
level 3 with large sample size, the oxireductase- and hydrolase-
catalysed reactions are divided into many subclasses with a small
sample size at EC-level 3. Although lyases, isomerases, ligases and
translocases are split into fewer subclasses at EC-level 3, most of

them contain very few samples. Therefore, the evaluation of the
performance of the data-driven models will need to consider the
different populations of each EC-level 3 subclass for a proper
assessment.

A further property of interest regarding the reaction is the
distribution of reactants and products within and across the
enzyme classes at EC-level 1. The data set created with the EC3
token scheme contains 141,051 (56,017 unique) reactants and
62,403 (53,658 unique) products. Given the nature of the data
sources, most reactants and products are metabolites. In Fig. 2b, c,
we show the distribution of the compounds in the substrate and
product chemical spaces using the 2048-dimensional binary MAP4
fingerprints and embedding them using TMAP31:32. The data
points, coloured by enzyme class corresponding to EC-level 1,
highlight the different distributions within the substrate set
(containing cofactors) and the product set (where co-enzymes
and common byproducts have been removed). Substrates and
products of transferase- (class 2), lyase- (class 4) and, to a lesser
extent, hydrolase-catalysed (class 3) reactions populate regions of
the chemical space specific to each class (homogeneous), with little
overlap with other classes. The chemical space covered by the
molecules belonging to the remaining classes is non-specific
(heterogeneous), with wide areas shared among different classes.
The location of the substrates and products in homogeneous
regions acts as an implicit feature, reducing the importance of the
EC number token (explicit feature) during training. The lack of
implicit features in substrates and products belonging to hetero-
geneous regions requires the use of explicit tokens (EC numbers)
during training to learn the chemical transformation rules.

Model selection. A forward and backward model was trained for
each of the ECREACT token schemes, with ECO0 acting as a control
on the influence of including enzymatic information in the reaction.
The trained models were evaluated for forward, backward, round-
trip and EC number prediction accuracy using 5% test splits with the
condition that a product in the test split must not occur as a product
in the training split (Fig. 3). The results show that the EC3 token
scheme has a better forward performance than ECO and EC2, yet
performs slightly worse than EC1 and EC4 (Fig. 3a). In the back-
ward prediction task, EC3 performs slightly worse than EC0, EC1
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Fig. 3 Overall accuracies of models based on different ECREACT token schemes ECO, EC1, EC2, EC3 and EC4. Accuracies are reported for a forward
prediction, b backward prediction, ¢ round-trip prediction (a forward prediction followed by a backward prediction) and d backward EC number only
prediction. Top-n indicates the accuracy when checking the top n predictions for the correct one.

and EC2, but significantly better than EC4; this is most likely due to
the low number of samples in each EC4 category (Fig. 3b and
Supplementary Table 5). Regarding the round-trip accuracy?®, EC3
performs better than both EC2 and EC4 (Fig. 3c). When solely
focusing on the prediction of the correct EC number in the back-
ward prediction, the models perform better the less detailed infor-
mation they have to predict (Fig. 3d). These data show that the
inclusion of enzymatic information in the form of the EC number
does not affect the prediction performance negatively as long as each
EC category has a sufficient number of training samples, which
restricts the use of EC4 (Supplementary Fig. 16). The EC1 token,
although performing well across different metrics, averages across
reaction classes with different schemes and is for this reason of little
interest for retrosynthetic purposes. The EC3 token scheme balances
specificity of enzyme information with performance compared to
the other ECREACT token schemes, resulting in a prediction per-
formance similar to or better than EC1 and EC2, while retaining
detailed information of the reaction-specific enzyme. Therefore, the
relative performance among the five ECREACT token schemes ECO,
EC1, EC2, EC3 and EC4, identifies EC3 as the one with the richest
amount of statistically significant information.

Forward prediction. The Dataset was constructed following the
details reported in the Methods, Data Sets and Model Training. We
split the EC3 data set (1 =156,579) into a test and a training set,
enforcing a zero overlap between the product distributions of the
two ensembles, ie. no product molecule present in the test set
appears in the training set. Although this splitting penalises the
measure of the performance of the forward model when compared
to random splitting?>2%, it prevents the evaluation of the forward
and backward predictions to be affected by memorisation of reaction
records rather than by learning enzyme-substrate patterns. Despite
the various similarities between the use of EC number and the use of
catalyst tokens in chemical reactions, we assessed the learning of

biocatalytic signals by randomising the EC numbers in the test set
within and across classes (corresponding to EC-level 1) and mea-
suring the performance of the forward prediction models in different
scenarios. The resulting overall accuracy for evaluation tests in which
the EC tokens were not randomised, randomised within the same
class, and randomised across different classes was 49.6%, 41.3% and
38.3%, respectively. The benefit of using EC numbers becomes
apparent upon grouping the test samples by class (Supplementary
Table 8, Fig. 4a and Supplementary Figs. 6a and 7a) and linking each
to their own sample size (Fig. 4b and Supplementary Figs. 4b-d,
6b-d and 7b-d). Tests belonging to EC-level 3 subclasses containing
a large number of samples perform well even with incorrect EC
numbers. The larger data set size of Oxidoreductase- (class 1) and
transferase- (class 2) reactions, and for transferases also the homo-
geneity of the chemical space covered by substrates/products, make
the presence of the EC number non-essential to determine the
outcome of the chemical transformation. On the other hand, the
accuracy among small and medium-sized classes drops, inversely
correlating with the number of test and training samples for each
EC-level 3 category over all classes (Supplementary Fig. 15). The
performance on the ligases (class 6) shows a marginal increase from
32.3% to 33.9% when EC numbers are randomised within the same
class and drops to 8.1% when EC numbers are randomised across
different classes, suggesting that the attention relies on the class level
of the EC number for accurate predictions. As a general trend over
all classes and experiments, the accuracy increases while increasing
the number of predictions to match (top-k, k € {1,2,3,4,5}), with
the biggest effect between k=1 and k=2.

Therefore, the models can use EC numbers to learn the
biocatalysis signal as shown in Supplementary Fig. 8 for a
selection of successfully predicted reactions. On the other hand,
the analysis of incorrectly predicted reaction outcomes, reported
in Fig. 5, highlights peculiar patterns. Reactions (1) and (2) are
both catalysed by an oxidoreductase acting on the CH-NH, group
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represents an EC-level 3 subclass coloured by the number of test samples N. Large EC-level 3 subclasses (red) greatly influence the performance of
predicting transferase-catalysed reaction (class 2) outcomes. Oxidoreductase-catalysed reactions (class 1) are distributed among many EC-level

3 subclasses, causing a lower performance compared to other classes with fewer samples overall. Detailed accuracies for top-2 and top-5 predictions can

be found in Supplementary Fig. 4.
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Fig. 5 Inspection of forward predictions labelled as incorrect. For each reaction, the ground truth is shown in black while the prediction is shown in red. The
reactions are catalysed by (1, 2) oxidoreductases acting on the CH-NH, group of donors with oxygen as acceptor, (3) a zeatin 9-aminocarboxyethyltransferase,
(4) a cyclic-CMP phosphodiesterase, (5) a chloromuconate cycloisomerase, (6) and a pantothenate synthetase.

of donors. The predicted reaction (1) contains an excessive
number of carbon atoms. The inferred product of the reaction (2)
is equivalent to the ground truth, as the linear and cyclic forms
are in equilibrium. (3) shows an example of the model correcting
an error in the data set and predicting the correct stereochem-
istry. The discrepancies also highlight the possibility of false
negatives due to the prediction of zwitterions. Concerning the
diester hydrolase-catalysed reaction (4) and the intramolecular
lyase reaction (5), it is worth noting that the data set contains few
chemical reaction records with identical substrates and EC

numbers that result in different products. With sufficient data,
the model would be able to recommend, given an EC-number, the
various transformations of a single substrate into different
products with corresponding confidence levels. However, due to
the limited data volume and the random nature of the split into
training, validation, and test sets, it is unlikely that all possible
outcomes of a single substrate and EC number will be used for
training. As a result, the two reactions are predicted incorrectly.
(6) is an example of the model failing to predict the correct
stereochemistry of a product. Prediction of correct
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attention weight computed by the forward Molecular Transformer.

stereochemistry has been reported by Schwaller et al.2° as a major
challenge for the molecular transformer and is linked to the lack
of coherent stereochemical information in the USPTO data set®3.
Similarly, the correct stereochemical prediction, affected by the
limited data coverage on stereochemical examples, remains the
major challenge for the model, especially when predicting
reactions catalysed by isomerases (class 5, Fig. 4a). The removal
of all stereochemical information from the predicted products
increases the accuracy of isomerase-catalysed reaction prediction
by a factor of two (Supplementary Fig. 5).

Inspired by the work of Schwaller et al.l® we unboxed the
forward prediction model to better understand how it exploits
enzyme information. Figure 6 shows an example of an enzymatic
reaction and the attention relationship between the EC and the
product tokens. The EC tokens relate to the centre of the
nucleophilic addition as well as the reactive nucleophile. A more
extended analysis of the attention patterns and additional
examples can be found in the supplementary information. The
analysis of the attention weights confirms the capacity of the
forward Molecular Transformer to use the EC token for
discerning the enzymatic reaction centre while capturing
enzymatic reaction rules.

Backward prediction. Here, we will use both the round-trip%®
and the top-k accuracy for the evaluation of the backward model.
Both metrics will provide evidence of how good the model is at
proposing different enzymatic reactions that can lead to the
desired target (round-trip accuracy) or the one specifically
reported in the ground truth (top-k accuracy). With a top-1
accuracy of 60%, the backward model has a behaviour similar to
the forward model in the performance between and within classes
(Fig. 7), as well as in the correlation between the size of the
training samples and accuracy (Supplementary Fig. 16). In
addition to the substrates, the model also predicts the enzyme
EC-level 3 token; the accuracy of predicting EC numbers only is
shown in Supplementary Fig. 10. The analysis of the model shows
an exceptional performance on transferase-catalysed reactions
(class 2), traceable to the two large EC-level 3 subclasses EC
23.1x, and EC 2.7.8x., which contain 17%, and 20% of all
available samples, respectively (Fig. 7b). This analysis further
explains the comparatively low prediction accuracy in the class of
oxidoreductases (class 1) as it contains a large number of EC-level

3 subclasses, each small in size (Fig. 7 and Supplementary
Table 4). Translocases are involved in catalysing the movement of
molecules or ions across membranes. Together with the limited
set of reaction records (191), this specific function causes the
substrates and products to have lower diversity than those in
other classes. The limited data reduces the statistical significance
for this class, and we have thus opted to exclude Translocases
from a detailed analysis.

The confusion matrix (Supplementary Fig. 12) provides further
insight into the backward prediction performance. The model’s
ability to assign a product to the correct enzymatic class differs
significantly between classes and is again influenced by the cohort
of each class. Despite the larger population of the oxidoreduc-
tases, the split into many EC-level 3 subclasses causes the
backward model to perform worse in predicting substrates for
oxidoreductase-catalysed reactions than for hydrolase-, lyase- and
ligase-catalysed reactions (Fig. 7a). However, the prediction of the
enzyme class (EC number) only shows high accuracy (71.97%)
for the class of oxidoreductases. This result shows that given a
diverse reaction data set, the model can distinguish between
classes but does not have enough data to predict the correct
substrates. A challenge in terms of predicting the correct enzyme
class are the isomerases (class 5), as they encompass intramole-
cular oxidoreductases, transferases and lyases. This is reflected in
the relatively high misassignment of isomerases to oxidoreduc-
tases, transferases and lyases (classes 1, 2 and 4).

Similar to the forward reaction prediction model, we report a
set of successful (Supplementary Fig. 14) and unsuccessfully
predicted backward reactions (Fig. 8), together with their ground
truth. The successful examples reflect the models’ capability to
predict substrates across enzyme classes. Among the unsuccessful
ones, Example (1) highlights the prediction of a different EC-level
3 token to catalyse the reaction. Whereas the ground truth
reaction is catalysed by an oxidoreductase acting on the CH-OH
group of donors with oxygen as an acceptor (1.1.3.x), the
prediction suggests the reaction to be catalysed by an oxidor-
eductase acting on the CH-OH group of donors with NAD™ as an
acceptor (1.1.1.x). This choice may reflect the respective number
of training samples for the two classes (3,220 and 176 for 1.1.3.x
and 1.1.1x, respectively) and could be considered a viable
alternative to the ground truth. Example (2) shows a correct EC-
level 3 prediction (hexokinase). However, the substrate did not
match the ground truth because the model predicted the acyclic
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predictions can be found in Supplementary Fig. 9.

rather than the linear form of aldehydo-D-galactose. (3) is an
example of the model adding stereochemistry information
missing in the test data set. In the ground truth, only
L-tyrosine is represented by an isomeric SMILES, while PAPS
(3’-Phosphoadenosine-5'-phosphosulfate) and the product are
represented in their racemic form. The model predicts both 1-
tyrosine and PAPS with the correct stereochemistry. In (4), the
model predicts an alternative way to synthesise 2-fluorobenzoate.
Rather than hydrolysing a coenzyme A thioester using a
thioesterase, the model suggests an aldehyde dehydrogenase
acting on the -CHO group of 2-fluorobenzaldehyde with NAD*
as an acceptor. In contrast to the ground truth, the carboxylic acid
can be obtained by mild oxidation of a commercially available
substrate. Finally, for (5), the model fails to predict an enzymatic
reaction for the synthesis of 3,5-dichloro-2-methylmuconolactone
and falls back to a reaction learned from the USPTO data set.

Retrosynthesis use-cases. The trained forward and backward
models allow us to extend the approach for template-free retro-
synthesis prediction?® to enzymatic reactions, introducing the
first template-free biocatalysed synthesis planning tool (see the
Methods section for details). Here, we present the predicted
pathways for a selected number of target molecules and compare
them to classical organic synthesis routes. We selected the target
molecules from the RetroBioCat’s curated set of biocatalysed
pathways3# based on the intersection of chemistry coverage in our
data set ECREACT and the data set of RetroBioCat. In fact, the
encoding of ECREACT and the RetroBioCat test set using rxnfp3”
shows that the RetroBioCat test set reactions are forming distinct
clusters in the TMAP-embedded reaction space (Fig. 9a), in
which the fraction of nearest neighbours from the set itself is
consistently higher compared to reactions from ECREACT
(Fig. 9b). This analysis highlights the different chemistry captured
by the data sets and anticipates a poor performance for those
RetroBioCat examples poorly covered in the ECREACT data set
(see Supplementary Fig. 21 for a coverage-analysis of the reac-
tions in the curated set from Finnigan3* and ECREACT on a per-
class basis).

In Fig. 10 we report the synthesis of the target molecules as
recommended by the model using enzymatic transformations in
mild conditions. Aminoalcohol (1) can be synthesised by
regioselective transamination of the precursor dione, followed by
reduction of the aminoketone with NADH as the hydride source.

This approach represents an alternative to gaseous hydrogen or
other solid hydride sources typically employed in the reduction of
carbonyls, which often represent a safety concern when employed
already on gram-scale. Homoaspartate (2) can be accessed by a
series of chemoselective enzymatic transformations of L-erythrose
to the corresponding carboxylic acid, followed by regioselective
dehydration to the a-ketoacid. Finally, the model infers that a
transamination with glutamate on the newly-introduced keto
functionality ensures the delivery of the target amino acid. Given
the similar reactivity of the -OH groups within the substrate, such
a series of transformations would require considerable effort using
non-enzymatic approaches®. For the third example, the model
predicts that 4-hydroxy-L-glutamic acid (3) can be obtained from
oxidation of inexpensive r-hydroxyproline in the presence of
NADT (catalysed by EC 1.5.5.x), followed by a further oxidation
of the aldehyde intermediate with EC 1.2.1x and NADP.
Enzymatic reactions enable oxidations to be also carried out in the
presence of O,, as exemplified by the prediction of the synthesis of
a-ketoacid (4). The chemoselective oxidation of the amino group
of L-tyrosine leaves the sensitive and electron-rich aromatic
moiety unaltered and obviates the use of stronger oxidising agents.
Lastly, the model predicts that an enzymatic Pictet-Spengler
reaction catalysed by EC 4.2.1x, can convert dopamine and the
corresponding aldehyde to the alkaloid (S)-norlaudanosoline (5)
enantioselectively, which typically requires the presence of
organocatalysts or transition metals3’=3%. It is interesting to
compare the routes suggested by our model with the ones from
RetroBioCat?3. In reaction (1) the starting substrate is styrene,
which undergoes epoxidation in the presence of an epoxidase,
followed by epoxide opening, partial oxidation of the primary
alcohol to aldehyde and transamination. Homoaspartate (2) is
instead shown to be obtained via aldol addition of sodium
pyruvate on formaldehyde, followed by transamination with
alanine. Similarly, RetroBioCat shows that 4-hydroxy-L-glutamic
acid (3) can be prepared by treatment of pyruvic acid with
glyoxylic acid in the presence of an aldolase, delivering the target
compound after transamination with an amino donor. Pyruvic
acid is also the substrate suggested for the synthesis of a-ketoacid
(4), which is delivered upon reaction with phenol in the presence
of a lyase. Alkaloid (S)-norlaudanosoline (5) is synthesised in a
similar fashion as suggested by our model with a norcoclaurine
synthase, which acts on the same primary amine and aldehyde
substrates shown by the Molecular Transformer. With the

| (2022)13:964 | https://doi.org/10.1038/s41467-022-28536-w | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

EC 1.1.3.x

o se— @A

EC1.1.1.x
EC 2.7.1.x OH
o] —— o :
I H
HO o K P OH OH
2 ~No” ! ~OH
OH
HO " "OH
i EC27.1.x HO,
OH — '
HO” O
EC 2.8.2.x
—
o HO
3 o OH
N7
/) \O NH,
© EC2.8.2x
e —
HO
O:P /\OH
N \
EC3.1.2x ; o
P — N
F N:/ o]
4 0
N
N =
0 EC 1.2.1.x I HO? OH
_ N '
N
N=/ o)
EC5.5.1.x
—
cl
= (e}
5 O

OH

+ 02
+  NAD*
20 + arp
+  ATP
OH
I \_OH
1% N::\ (0] _PQ /S/
N 071 07y
OH + HN 2 OH
o
N N N HO o on
O™ Non
le) 1] \ _OH
Nf\Nl o] "\\\O/'I:\O/ N
OH + HN z gj\ o
NH, \N ()
N7 HO I _oH
O™ o
F
o) o)

OH OH /\)'L + HO
o\é/oxﬁ/o N N/A\V/S

1l 1l H H

O (e}

\“\(g ”N{%\ Ij o

9] OH o)
al C(O)O -tBu deprotection
J< CI + F%OH
F
F
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reaction and fell back on a reaction learned from USPTO data.

exception of route (5), which is highly substrate-specific, one can
appreciate the dissimilarity of the synthetic pathways suggested by
our model when compared with RetroBioCat. While RetroBioCat
algorithmically constructs a set of potential substrates using
expert-curated rules, our model incorporates both the implicit

reaction rules and its knowledge about the substrates contained
within the training set into the generation of potential substrates.
Based on the ECREACT training set, which contains mainly
biosynthetic reactions, the suggested substrates resemble natural
products with potentially high affinity towards the wild-type
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enzymes. The use of commercial biocatalytic reaction-specialised
data sets, not accessible to the authors and the general public,
would likely lead to quite different and possibly more similar
predictions to the ones suggested by RetroBioCat. However, even
with the biosynthetic-specific nature of our data set, the model
remains flexible when tasked to predict never-seen substrates by
associating enzyme classes with the centre of the enzymatic
reaction (Fig. 6 and Supplementary Fig. 18). As the molecular
transformer-based model allows for retraining or fine-tuning
using different data sets, these examples show that the substrate-
scope can be narrowed down or expanded, depending on the use-
case and available data. These properties open a way to
synthetically useful compounds from a variety of different
inexpensive substrates once experimentally validated.

Discussion

We presented forward and backward prediction models based on
Molecular Transformer trained on enzyme-catalysed reactions
extended with EC (enzyme commission) numbers. Our results
show that the Molecular Transformer performs well in predicting
products given EC number and substrates, predicting substrates
and EC number or EC number alone given a product. The
enzymatic models reach an overall top-1 accuracy of 49.6%, 60%
and 39.6% in forward, backward and round-trip accuracy,
respectively. The accuracies correlate heavily with the amount of
training data in each token class, presenting a major challenge
given the limited data availability. In addition to the trained
models for biocatalysed synthesis planning, we introduced an
aggregated data set, ECREACT, containing preprocessed enzyme-
catalysed reactions sourced from different publicly available
databases. The primary limitation of the data set, and thus of the
model, is the scarcity of samples for some classes, such as iso-
merases, which results in an imbalanced data set. However, as
interest in biocatalysis grows and the research community
embraces open data, we anticipate an increase in the quantity and
quality of available training data, as well as experimental valida-
tion of proposed synthetic routes. In addition, the data has been
sourced from databases containing mainly biosynthesic reactions
due to the lack of publicly available data on the biocatalysed
synthesis of non-natural products, leading the model preferably
suggest natural products as substrates. Despite this bias, we
showed that the model generalises by learning the association
between enzyme classes and the centres of the enzymatic reac-
tions, which is a valuable property given the limited availability of
biocatalytic reaction data. The research community will be able to
build on the legacy of the present work to retrain models with
higher accuracy and broader scope without the limitation of
humanly curating reaction rules. Finally, we presented several
use-cases based on well-understood pathways that showed how
template-free machine learning models trained on enzymatic
reactions can play an essential role in promoting the adoption of
greener chemistry strategies in daily laboratory work.

Methods

Transfer learning. We used the USPTO data set, which contains 1 million organic
chemical reactions, together with the more specific enzymatic reaction data set to
train the molecular transformer using multi-task transfer learning. The USPTO
data is used to learn general chemistry knowledge and the SMILES grammar, as the
comparatively small enzymatic reaction data set does not provide sufficient
information for these tasks. This approach was previously successfully applied to
carbohydrate reactions by Pesciullesi et al.33. The reactions in the USPTO data set
are encoded as so-called reaction SMILES, using the same convention of Schwaller
et al.2%, An example is the reaction SMILES CC(=0)0.0CC>0S(=0)(=0)
0O>CC(=0)OCC.O encoding a Fischer esterification. The main conceptual dif-
ference lies in extending the reaction SMILES tokeniser to handle enzymatic
reactions represented by the EC number as detailed in the section Preprocessing.
The Molecular Transformer models were implemented following the protocol
introduced by Schwaller et al.?. Multi-task transfer learning was implemented, as

described by Pesciullesi et al.33, using a convex weighting scheme for USPTO and

ECREACT, 9 and 1, respectively. Both encoder and decoder were of type trans-
former with 6 layers, word vectors and RNN of size 512, the gradient was accu-
mulated 8 times with a maximum vector norm of 0.0, and adam was used as an
optimiser (f; = 0.9, 8, = 0.998). Batch size was set to 4096, and the batch type as
well as the gradient normalisation method to fokens. The learning rate was set to
2.0 with noam as decay method. Dropout and label smoothing (¢) were set to 0.1.
Parameter initialisation was disabled and position encoding enabled. All models
were trained using a version of OpenNMT4? adapted for the Molecular
Transformer*!.

Preprocessing. The standard definition of a reaction SMILES was extended to
include EC numbers (e.g. the reaction catalysed by the maltose alpha-D-
glucosyltransferase is written as A|5.4.99>>B, where the SMILES for p-maltose and
a,a-trehalose have been replaced by A and B for brevity). We denote this extension
to reaction SMILES enzymatic reaction SMILES.

We adapted the tokenisation operation used by Schwaller et al.>* for the molecular
transformer to handle enzymatic reaction SMILES. EC-levels 1-3 are treated as unique
tokens to enable the transformer to learn the hierarchical structure of the EC
numbering scheme. Because digits are already used to represent ring closures in
SMILES, a number prefix is added to each level (v for EC-level 1, u for EC-level 2 and t
for EC-level 3) during tokenisation. In addition, each EC token is encapsulated in
brackets to simplify the tokenisation and detokenisation process. An example
tokenisation of an enzymatic reaction SMILES is shown in Supplementary Fig. 22.

Finally, the resulting tokenised data set was split into a training, validation and test
set (90%, 5% and 5%, respectively). The training set was sampled so that none of the
products contained within it are present in the training and the validation data sets.

Retrosynthesis routes prediction. We adapted the methodology proposed by
Schwaller et al.?°, extending the retrosynthetic routes’ prediction to handle enzyme
information using the EC number format. The hyper-graph exploration algorithm,
at each step, proposes disconnections using the backward model and computes a
score for each prediction, in a Bayesian sense, based on the confidence of the
forward model reweighted by the SCScore*? measured on the precursors. The
pathways are then prioritised, exploiting the score by using beam search until a
terminating condition is satisfied, i.e., commercial availability of the precursors (see
Supplementary Fig. 23).

For the analysis of the targets from?? we used an interactive version of the
approach, where the backward Molecular Transformer allowed us to explore the
synthetic routes iteratively until reaching commercially available precursors and
proposing, at the same time, enzymes (represented up to EC level 3) that catalyse
the corresponding reaction.

We based the selection of the targets on a comparative analysis of the coverage
of the chemistry embedded in the reactions from the RetroBioCat?3 test set and the
ECREACT data set. We annotated reaction SMILES for each step of the
biocatalytic cascades considered in the test set from Finnigan et al.?3, excluding
solvents information. For each reaction SMILES we extracted fingerprints using
rxnfp3> and we computed among the k-nearest neighbours (k = 10), the fraction of
neighbours belonging to RetroBioCat test set. The visualisation of the embedded
reactions was generated using TMAP3L.

Data availability

The ECREACT data set is publicly available at the URL https://github.com/
rxn4chemistry/biocatalysis-model. The trained models are made publicly available as
part of IBM RXN for Chemistry (https://rxn.res.ibm.com/).

Code availability
Code is available at the URL https://github.com/rxn4chemistry/biocatalysis-model.

Received: 30 August 2021; Accepted: 25 January 2022;
Published online: 18 February 2022

References

1. Antony, T. Malthus foiled again and again. Nature 418, 668-670 (2002).

2. Matlin, S. A. & Abegaz, B. M. In The Chemical Element: Chemistry’s
Contribution to Our Global Future. (eds Garcia-Martinez, J., Serrano-
Torregrosa, E.) (Wiley-VCH, 2011).

3. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Walter, L. Designing for
a green chemistry future. Science 367, 397-400 (2020).

4. Stanislav, M., Zbynek, P. & Jiri, D. Machine learning in enzyme engineering.
ACS Catal. 10, 1210-1223 (2020).

5. Homaei, A. A, Reyhaneh, S., Fabio, V. & Roberto, S. Enzyme immobilization:
an update. J. Chem. Biol. https://link.springer.com/article/10.1007/s12154-013-
0102-9 (2013).

10 | (2022)13:964 | https://doi.org/10.1038/s41467-022-28536-w | www.nature.com/naturecommunications


https://github.com/rxn4chemistry/biocatalysis-model
https://github.com/rxn4chemistry/biocatalysis-model
https://rxn.res.ibm.com/
https://github.com/rxn4chemistry/biocatalysis-model
https://link.springer.com/article/10.1007/s12154-013-0102-9
https://link.springer.com/article/10.1007/s12154-013-0102-9
www.nature.com/naturecommunications

ARTICLE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry.
Chem. Rev. https://doi.org/10.1021/acs.chemrev.7b00203 (2018).

Katrin, H., Hans-Peter, M., Roland, W. & Rebecca, B. Biocatalysis in the swiss
manufacturing environment. Catalysts 10, 1420 (2020).

Shuke, W., Radka, S., Moore, J. C., Kai, B. & Bornscheuer, U. T. Biocatalysis:
enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. Engl. 60,
88-119 (2021).

Andler, S. M. & Goddard, J. M., Transforming food waste: how immobilized
enzymes can valorize waste streams into revenue streams. npj Sci. Food 2, 19
(2018).

Sheldon, R. A, Dean, B. & Bode, M. L. The Hitchhiker’s guide to biocatalysis:
recent advances in the use of enzymes in organic synthesis. Chem. Sci. 11,
2587-2605 (2020).

Winkler, C. K., Schrittwieser, J. H. & Wolfgang, K. Power of biocatalysis for
organic synthesis. ACS Central Sci. 7, 55-71 (2021).

Strohmeier, G. A., Harald, P., Oliver, M. & Mandana, G.-K. Application of
designed enzymes in organic synthesis. Chem. Rev. 111, 4141-4164 (2011).
Sheldon, R. A. & Pereira, P. C. Biocatalysis engineering: the big picture. Chem.
Soc. Rev. 46, 2678-2691 (2017).

Turner, N. J. & O’reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9,
285-288 (2013).

Souza, Rodrigo O. de, Miranda, L. S. & Bornscheuer, U. T. A retrosynthesis
approach for biocatalysis in organic synthesis. Chemistry 23, 12040-12063
(2017).

Moritz, H., Philipp, S., Turner, N. J. & Carreira, E. M. Enantioselective chemo-
and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56,
8942-8973 (2017).

Kjell, J., Anna, T., Christoph, B., Christian, S. & Per-Ola, N. Organic reactivity
from mechanism to machine learning. Nat. Rev. Chem. 5, 240-255 (2021).
Philippe, S., Benjamin, H., Jean-Louis, R., Hendrik, S. & Teodoro, L.
Extraction of organic chemistry grammar from unsupervised learning of
chemical reactions. Sci. Adv. https://advances.sciencemag.org/content/7/15/
eabe4166 (2021).

Timur, M. et al. Atom-to-atom mapping: a benchmarking study of popular
mapping algorithms and consensus strategies. Mol. Inform. https://chemrxiv.org/
articles/preprint/Atom-to-Atom_Mapping A_Benchmarking_Study_of_Popular_
Mapping_Algorithms_and_Consensus_Strategies/13012679 (2020).

Noushin, H., Jasmin, H., Adrian, S., Aikaterini, Z. & Vassily, H. ATLAS of
biochemistry: a repository of all possible biochemical reactions for synthetic
biology and metabolic engineering studies. ACS Synth. Biol. 5, 1155-1166
(2016).

Thomas, D., Melchior, du Lac, Pablo, C. & Jean-Loup, F. RetroRules: a
database of reaction rules for engineering biology. Nucleic Acids Res. 47,
D1229-D1235 (2018).

Mayank, B. et al. A deep learning architecture for metabolic pathway
prediction. Bioinformatics 36, 2547-2553 (2020).

William, F., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a
computer-aided synthesis planning tool for biocatalytic reactions and
cascades. Nat. Catal. 4, 98-104 (2021).

David, K., Philippe, S. & Jean-Louis, R. Predicting enzymatic reactions with a
molecular transformer. Chem. Sci. http://pubs.rsc.org/en/Content/
ArticleLanding/2021/SC/D1SC02362D (2021).

Philippe, S. et al. Molecular transformer: a model for uncertainty-calibrated
chemical reaction prediction. ACS Cent. Sci. 5, 1572-1583 (2019).

Philippe, S. et al. Predicting retrosynthetic pathways using transformer-based
models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316-3325 (2020).
Rafael, A. et al. Rhea - a manually curated resource of biochemical reactions.
Nucleic Acids Res. 40, D754-D760 (2012).

Ida, S., Antje, C. & Dietmar, S. BRENDA, enzyme data and metabolic
information. Nucleic Acids Res. 30, 47-49 (2002).

Wishart, D. S. et al. PathBank: a comprehensive pathway database for model
organisms. Nucleic Acids Res. 48, D470-D478 (2020).

Ganter, M., Bernard, T., Moretti, S., Stelling, J. & Pagni, M. MetaNetX.org: a
website and repository for accessing, analysing and manipulating metabolic
networks. Bioinformatics 29, 815-816 (2013).

Daniel, P. & Reymond, J. L. Visualization of very large high-dimensional data
sets as minimum spanning trees. J. Cheminform. 12, 12 (2020).

Alice, C., Daniel, P. & Reymond, J. L. One molecular fingerprint to rule them
all: drugs, biomolecules, and the metabolome. J. Cheminform. 12, 43 (2020).
Giorgio, P., Philippe, S., Teodoro, L. & Reymond, J. L. Transfer learning
enables the molecular transformer to predict regio- and stereoselective
reactions on carbohydrates. Nat. Commun. 11, 1-8 (2020).

Will, F. RetroBioCat database files. Figshare https://figshare.com/articles/
software/RetroBioCat_database_files/12696482 (2020).

35. Philippe, S. et al. Mapping the space of chemical reactions using attention-
based neural networks. Nat. Mach. Intell. 3, 144-152 (2021).

36. Victoria, D. & Taylor, M. S. Site-selective functionalization of hydroxyl groups
in carbohydrate derivatives. Chem. Rev. 118, 11457-11517 (2018).

37. Klausen, R. S., Kennedy, C. R,, Hyde, A. M. & Jacobsen, E. N. Chiral thioureas
promote enantioselective pictet-spengler cyclization by stabilizing every
intermediate and transition state in the carboxylic acid-catalyzed reaction. J.
Am. Chem. Soc. 139, 12299-12309 (2017).

38. Nicolas, G.-O., Shengwen, Y., Pascal, R., Vincent, G. & Xavier, G.,
Enantioselective gold-catalyzed pictet-spengler reaction. Org. Lett. 21,
9446-9451 (2019).

39. Dan, H.,, Fangxi, X., Xufeng, L. & Yanguang, W. Highly enantioselective
pictet-spengler reaction catalyzed by SPINOL-phosphoric acids. Chemistry 18,
3148-3152 (2012).

40. Guillaume, K., Yoon, K., Yuntian, D., Jean, S., Alexander, R. OpenNMT: open-
source toolkit for neural machine translation. In: Proceedings of ACL 2017,
System Demonstrations. Vancouver, Canada: Association for Computational
Linguistics. 67-72. https://www.aclweb.org/anthology/P17-4012 (2017).

41. IBM, RX.N. ONMT adaptation for rxn4chemistry. https://github.com/
rxn4chemistry/OpenNMT-py

42. Coley, C. W,, Luke, R., Green, W. H. & Jensen, K. F. SCScore: synthetic
complexity learned from a reaction corpus. J. Chem. Inform. Model. 58,
252-261 (2018).

Acknowledgements

This publication was created as part of NCCR Catalysis (grant number 180544), a
National Centre of Competence in Research funded by the Swiss National Science
Foundation.

Author contributions

The project was conceptualised by D.P., M.M., F.P. and T.L;; D.P. and M.M. curated the
data, developed the methodology, and carried out the formal analysis, investigation and
validation. D.P., M.M. and Y.T. created the visualisations and software. D.P., M.M., Y.T.
and A.C. wrote the original draft. A.C. validated the test set and curated the data for the
use cases. T.L. supervised and administered the project, reviewed and edited the writing
and acquired funding and resources.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28536-w.

Correspondence and requests for materials should be addressed to Daniel Probst.

Peer review information Nature Communications thanks Tiago Rodrigues and the
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
2 Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

| (2022)13:964 | https://doi.org/10.1038/s41467-022-28536-w | www.nature.com/naturecommunications 1


https://doi.org/10.1021/acs.chemrev.7b00203
https://advances.sciencemag.org/content/7/15/eabe4166
https://advances.sciencemag.org/content/7/15/eabe4166
https://chemrxiv.org/articles/preprint/Atom-to-Atom_Mapping_A_Benchmarking_Study_of_Popular_Mapping_Algorithms_and_Consensus_Strategies/13012679
https://chemrxiv.org/articles/preprint/Atom-to-Atom_Mapping_A_Benchmarking_Study_of_Popular_Mapping_Algorithms_and_Consensus_Strategies/13012679
https://chemrxiv.org/articles/preprint/Atom-to-Atom_Mapping_A_Benchmarking_Study_of_Popular_Mapping_Algorithms_and_Consensus_Strategies/13012679
http://pubs.rsc.org/en/Content/ArticleLanding/2021/SC/D1SC02362D
http://pubs.rsc.org/en/Content/ArticleLanding/2021/SC/D1SC02362D
https://figshare.com/articles/software/RetroBioCat_database_files/12696482
https://figshare.com/articles/software/RetroBioCat_database_files/12696482
https://www.aclweb.org/anthology/P17-4012
https://github.com/rxn4chemistry/OpenNMT-py
https://github.com/rxn4chemistry/OpenNMT-py
https://doi.org/10.1038/s41467-022-28536-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Biocatalysed synthesis planning using data-driven learning
	Results
	Data set
	Model selection
	Forward prediction
	Backward prediction
	Retrosynthesis use-cases

	Discussion
	Methods
	Transfer learning
	Preprocessing
	Retrosynthesis routes prediction

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




