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Effective connectivity extracts clinically
relevant prognostic information from resting
state activity in stroke

(®Mohit H. Adhikari,"? ®Joseph Griffis,> ®Joshua S. Siegel,?
®Michel Thiebaut de Schotten,** Gustavo Deco,'"® Andrea Instabato,' Matthieu Gilson'"”"*
and Maurizio Corbetta®??*

* These authors contributed equally to this work.

Recent resting-state functional MRI studies in stroke patients have identified two robust biomarkers of acute brain dysfunction: a
reduction of inter-hemispheric functional connectivity between homotopic regions of the same network, and an abnormal increase
of ipsi-lesional functional connectivity between task-negative and task-positive resting-state networks. Whole-brain computational
modelling studies, at the individual subject level, using undirected effective connectivity derived from empirically measured function-
al connectivity, have shown a reduction of measures of integration and segregation in stroke as compared to healthy brains. Here
we employ a novel method, first, to infer whole-brain directional effective connectivity from zero-lagged and lagged covariance
matrices, then, to compare it to empirically measured functional connectivity for predicting stroke versus healthy status, and patient
performance (zero, one, multiple deficits) across neuropsychological tests. We also investigated the accuracy of functional connectiv-
ity versus model effective connectivity in predicting the long-term outcome from acute measures. Both functional and effective con-
nectivity predicted healthy from stroke individuals significantly better than the chance-level; however, accuracy for the effective con-
nectivity was significantly higher than for functional connectivity at 1- to 2-week, 3-month and 1-year post-stroke. Predictive
functional connections mainly included those reported in previous studies (within-network inter-hemispheric and between task-posi-
tive and -negative networks intra-hemispherically). Predictive effective connections included additional between-network links.
Effective connectivity was a better predictor than functional connectivity of the number of behavioural domains in which patients
suffered deficits, both at 2-week and 1-year post-onset of stroke. Interestingly, patient deficits at 1-year time-point were better pre-
dicted by effective connectivity values at 2 weeks rather than at 1-year time-point. Our results thus demonstrate that the second-
order statistics of functional MRI resting-state activity at an early stage of stroke, derived from a whole-brain effective connectivity,
estimated in a model fitted to reproduce the propagation of neuronal activity, has pertinent information for clinical prognosis.
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Prognostic classification in stroke

Introduction

First-time stroke patients with heterogeneous lesion loca-
tion show widespread alterations of resting-state (RS)
functional connectivity (FC)—the temporal correlation of
the functional MRI (fMRI) signals across brain regions
and networks—in the acute stage,'™ what is now called
‘connectional diaschisis’.> The most common abnormal-
ities include a reduction of the inter-hemispheric (IH) FC
between homotopic regions of the same networks, and an
increase of intra-hemispheric FC between regions/net-
works that are typically not or negatively correlated (e.g.
task-positive and task-negative networks).® Abnormalities
of FC are strongly correlated with acute behavioural defi-
cits and their recovery.®” The low dimensionality of FC
alterations across brain regions has been proposed as an
explanation for why behavioural deficits are also low di-
mensional and correlated across subjects, with three sets
of deficit components accounting for ~70% of the behav-
ioural variance.®’

Whole-brain network models of sub-acute stroke have
been used to characterize and understand the impact of
stroke.'®" Adhikari et al. obtained a patient-specific,
optimized whole-brain model before calculating an infor-
mation theoretical measure of network segregation and a
graph theoretical measure of integration for each patient
and showed that they correlated with ipsilesional inter-
resting-state network (RSN) FC and IH FC between
homotopic regions, respectively. Starting with a group-
average structural connectivity matrix, model optimiza-
tion involved inference of a symmetric, undirected effect-
ive connectivity (EC) matrix from each patient’s own FC
using a heuristic, gradient descent approach. The effect of
lesions was modelled by weakening the structural edges
to/from a damaged cortical region.

A weakness of this approach is that FC captures the lev-
els of correlated activity between a pair of brain regions,
but it does not describe the causal influence from one re-
gion to another or the simultaneous influence of a third
region. A second weakness is that stroke lesions affect not
only cortical parcels but also predominantly white matter
pathways.® Therefore, a better approach for estimating the
effect of lesions would be to take in account the structural
disconnection, between both damaged and non-damaged
regions, caused by lesions.

In contrast to FC, EC measures directed interactions
and indirectly, some form of causality. Partial correlations
Smith et al'?> can be used to infer undirected EC, while
methods such as dynamic causal modelling'?™"* can yield
directed EC. Recently, Gilson et al.'® demonstrated a the-
oretically robust technique to infer whole-brain EC from
zero-lagged and lagged RS-FC. Modelling each local
brain region with an Ornstein—-Uhlenbeck process, the in-
ference procedure uses a mask of the putatively existing
anatomical connections as a topological prior and since it
also estimates non-symmetric lagged FC, the resulting EC
is directional for every connection, edge or link. In the
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following, we will use link to connote a statistical or ef-
fective connection. EC changes were found to align with
those known from electrophysiology in the visual field
mapping between early visual cortices.'” Pallarés et al.'®
showed that EC predicts in a cross-validated fashion the
identity of individual healthy participants from fMRI ses-
sions more accurately than FC.

In this study, we aimed to compare the predictive ability
of EC vis-a-vis FC in (i) distinguishing patients from healthy
controls, and (ii) predicting behavioural deficits of patients
longitudinally. We first obtained the EC for healthy partici-
pants and first-time stroke patients, using the approach of
Gilson et al., at 2-week, 3-month and 1-year post-onset of
stroke. Critically, the disconnection effect of lesions was esti-
mated embedding the volume of each lesion in an atlas of
normal white matter connections,'” and estimating the se-
verity of disconnection among cortical regions. Then we
classified this cohort in multiple classifications using EC or
FC values. The first classification diagnosed patients from
healthy controls at each time-point. The second classifica-
tion aimed to diagnose stroke individuals with different
numbers of behavioural deficits (zero, one, many) across
seven factors of behavioural impairments using EC and FC
values of links at the same time-point. Besides, we tried EC
and FC of links from previous time-points to predict future
behavioural deficit status.

We hypothesized that EC would be a more sensitive
biomarker than FC, especially for more dimensional be-
havioural predictions. This hypothesis is based on EC’s
theoretical ability to infer directional interactions and its
superiority (as compared to FC) in predicting individual
scans.'® Moreover, we hypothesized that EC predictive
topography will provide additional and complementary
information to FC topography.

Materials and methods

A total of 172 patients were prospectively enrolled in this
study, 132 of whom met the post-enrolment inclusion cri-
teria. Female participants made up 45% of the study
sample while 55% were male. Inclusion and exclusion
criteria are described in detail in an earlier manuscript.®

A healthy control group (2=25; 52% female, 48%
male) was matched with the study sample for age, gender
and years of education.

Patients and controls provided written informed consent
prior to participation in the study. Study procedures were
performed in accordance with the Declaration of Helsinki
ethical principles and approved by the Institutional
Review Board at Washington University in St. Louis. The
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complete data collection protocol is described in full de-
tail in a previous publication.®

Each patient’s structural MRI scans were used to manual-
ly segment the lesions with the Analyze software pack-
age®’. Surrounding vasogenic oedema was included in the
lesion definition for patients with haemorrhagic stroke.
Two board-certified neurologists (Maurizio Corbetta and
Alexandre Carter) reviewed all segmentations before they
were converted into binary lesion masks. These masks,
transformed to MNI atlas space, were used for subse-
quent processing and analysis.

Assessment of motor, language, attention, memory and
visual function was done for each participant after each
scanning session. Dimensionality of the behavioural per-
formance data was reduced as described previously® to
identify a few factors that explained majority of across-
subject variance. We summarize these factors and their
loadings here for completeness. The ‘Motor’ score
describes contralesional deficits that correlated across
shoulder flexion, wrist extension/flexion, ankle flexion,
hand dynamometer, nine hole peg, action research arm
test, timed walk, functional independence measure and
the lower extremity motricity index. The ‘Visual Field
Attention’ score describes contra-lesional attention biases
in Posner, Mesulam and BIT centre of cancellation tasks.
A separate ‘Sustained Attention’ score loaded on non-spa-
tial measures of overall performance, reaction time and
accuracy on the same tests. A third ‘Shifting Attention’
score loaded on tests indexing attention shifts. The
‘Spatial Memory’ score loaded on the Brief Visuospatial
Memory Test and spatial span. The ‘Verbal Memory’
score loaded on the Hopkins Verbal Learning Test. The
‘Language’ score loaded on both comprehension and
production.

Factor scores for each patient were z-scored using
mean and standard deviation of corresponding factor
scores in age-matched healthy controls.K-nearest neigbour
(KNN) imputation was employed to impute the scores
for the missing domains in a patient using weighted aver-
age across five of its nearest-neighbours. A z-score of -2
or less was considered to be a deficit.

Patients were scanned at three time-points—2 weeks
(mean = 13.4days, SD = 4.8days), 3 months (mean =
112.5days, SD = 18.4days) and 1 year (mean =
393.5 days, SD = 55.1days) post-onset of stroke. Healthy
controls were scanned at two time-points separated by a
3-month interval.

Scanning was performed with a Siemens 3T Tim-Trio
scanner at the School of Medicine of the Washington
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University in St. Louis. Scanning parameters are described
in detail in previous publications.®?! Six to eight resting
state fMRI runs, each including 128 volumes (30 min
total), were acquired.

fMRI data underwent a preprocessing procedure consist-
ing of the following steps: (i) asynchronous slice acquisi-
tion was compensated by sinc interpolation to align all
slices; (ii) elimination of odd/even slice intensity differen-
ces resulting from interleaved acquisition; (iii) a whole
brain normalization corrected for changes in signal inten-
sity across scans; (iv) realignment within and across scans
to correct for head movement and (v) co-registration of
echo-planar imaging data to the subject’s T,-weighted
anatomical image, which in turn was co-registered with
the T;-weighted magnetization-prepared 180 degrees
radio-frequency pulses and rapid gradient-echo (MP-
RAGE).*> The MP-RAGE was then transformed to an
atlas-space Talairach and Tournoux”® representative tar-
get using a 12-parameter affine transformation. Data
were passed through several additional preprocessing
steps>*: spatial smoothing (6 mm full width at half max-
imum Gaussian blur), filtering in the 0.009-0.08 Hz band
and removal, through linear regression, of (i) six parame-
ters obtained by rigid body correction of head motion;
(ii) the whole-brain signal averaged over a fixed region in
atlas space; (iii) signal from a ventricular region of inter-
est (ROI) and (iv) signal from a region centred in the
white matter.

For each frame of RS-fMRI scan, a DVARS (temporal
derivative of timecourses of RMS variance over voxels)
score was calculated.” Here, RS-fMRI scan corresponds
to a time series, whereas frame corresponds to an image.
DVARS spikes represent large spikes in brain-wide signal
that are correlated very strongly with head movements.”®
The DVAR threshold for patients, calculated as mean
plus 2 SD of DVARS values for all frames, excluding the
first four frames, in the group of age-matched control
subjects, was equal to 4.6. The threshold was chosen to
optimize reliability of FC measurements. All frames with
a DVARS value of 4.6 or higher were removed for the
calculation of FC. However, they were linearly interpo-
lated over in order to maintain the temporal continuity
for the calculation of lagged covariances in each scan.
Exclusion criteria for FC quality included (i) < 180 us-
able frames, and (ii) severe haemodynamic lags (>500 ms
IH difference) measured from RS-fMRIL?’ Large haemo-
dynamic lags are confounds produced by altered neuro-
vascular coupling that are known to substantially alter
the relationships between neural activity and the blood
oxygen level dependent (BOLD) timecourse. The large
magnitude of these delays (relative to the homotopic
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region on the unaffected hemisphere) makes it possible to
separate them from neural lags attributed to neural activ-
ity. The threshold was chosen to mitigate the contribu-
tion of neurovascular damage in FC.*® After motion and
lag exclusion, 98 patients were included at 2 weeks, 74
patients at 3 months, 53 patients at 1 year, 23 controls
at time-point 1 and 22 controls at time-point 2.

FC and covariance matrices were obtained for all links be-
tween 324 cortical parcels from the Gordon333 cortical
parcellation and RS network assignments (available at
http:/Awww.nil.wustl.edu/labs/petersen/Resources.html),*” and
consists of 333 cortical parcels associated with 13 RSNs.
Owing to very low number of vertices, nine parcels were
excluded as done in previous studies.””*' The remaining
324 cortical parcels were assigned to these 13 RSNs: visual
(VIS), retro-splenial (RSP), somato-motor hand (SMH),
somato-motor mouth (SMM), auditory (AUD), cingulo-
opercular (COP), ventral attention network (VAN), salience
(SAL), cingulo-parietal (CPL), dorsal attention network
(DAN), frontal parietal network (FPN), default mode net-
work (DMN) and none of the above (NON).

The EC for each participant was estimated for a mask of
strongest neuroanatomical links. This mask
(EC_mask_Citl), each healthy control,
included (i) all links stronger than 0.5% of the strongest
link in the structural connectivity matrix (SC-Ctl) aver-
aged across SCs of healthy controls from this study,
obtained using diffusion weighted imaging (DWI) and
probabilistic tractography, and (ii) links in the Human
Connectome Project (HCP)-SCT—a structural connectome
template created from a publicly available tractography
atlas,'” constructed using DWI data from 842 HCP par-
ticipants and deterministic tractography. The mask for
each patient included all links in EC_mask_Ctl except,
those from and to a ROI with 100% grey matter damage
and all other completely damaged links in the patient’s
structural disconnectome (SDC).

Due to the end-to-end nature of tractography used by
Yeh et al., HCP-SCT links were too few (n=4218) to
obtain a robust estimate of EC that can produce suffi-
ciently high fit between model and data.'®3° Therefore it
was necessary to include the strongest links in SC-Ctl
(n=28 256). However, HCP-SCT links were found to
have stronger FC, on average, in both controls and
patients than those not present in HCP-SCT.>! Thus the
sparseness and reliability of HCP-SCT links allowed us to
use only them for classification and biomarker identifica-
tion, thus keeping the computational cost low without
losing the prediction accuracy (Supplementary Fig. 1). A
more clinically oriented reason is to seek the effect of

identical for
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stroke on the structural backbone of brain, independently
of individual variability in SC as well as patient-specific
stroke characteristics. Also, incorporating impact of
lesions on white matter pathways through structural dis-
connections for each individual patient was possible only
through the HCP-SCT.

DWI along with probabilistic tractography were used to
obtain the SC for each healthy participant in this study.
The complete methodological details are included in the
supplementary material. Number of streamlines between
every pair of ROIs in the Gordon parcellation divided by
the total number of vertices in them was taken as a
measure of SC strength between them. SC_Ctl was
obtained by averaging SC matrices of all healthy
participants.

HCP-SCT was constructed using the HCP-842 streamline
tractography atlas'” as previously described.”' In brief,
Yeh et al.'” performed deterministic fibre tracking®® on
the high-angular resolution diffusion MRI data from 842
participants and extracted 550 000 streamline trajectories
in MNI space. A 324 x 324 SC adjacency matrix A®
was constructed whose each entry Aisj indexed the num-
ber of streamlines connecting regions i and j.

As described in detail in Griffis et al.,' parcel-wise grey

matter damage measure was obtained for each patient by
computing the proportion of each grey matter parcel that
overlapped with the lesion. Subsequently, the expected
disconnection for each patient was obtained by intersect-
ing their MNI-registered lesion and the HCP-SCT (A%)
normalized by A®2!

The method'®*® for EC estimation optimizes the effective
weights of a mask of structural links (quantifying the
causal interactions along them) using a multivariate
Ornstein—Uhlenbeck (MOU) process model for each re-
gion and zero-lagged and lagged empirical covariances.
Optimization is done using a gradient descent algorithm
that minimizes the model error.

For every session of T time frames, we denote the BOLD
time series by s for each region 1 < i < N whose mean
signal over time is denoted by —s; = £>°,s. The empir-
ical BOLD covariances to be optimized without and with
time lag are then given by:


http://www.nil.wustl.edu/labs/petersen/Resources.html
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab233#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab233#supplementary-data
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and the FC between region i and region j is given by:
A0
Qj
FCj= ———= (3)

Qi Q)

The activity variable, x;, for each region decays exponen-
tially with a time constant, 7, and evolves depending on
the activity of other populations:

dx,- = Bl
W A

Here, the fluctuating inputs, dB;, are independent and
correspond to a diagonal covariance matrix X. In the
model, all variables, x;, have zero mean. The spatio-tem-
poral zero-lagged and lagged covariances are denoted by

l»/ and Ql and can be calculated by solving the follow-
ing consistency equations:

,‘/Xj) dt + dB, 4)

JQ°+ QY = = (5)

Q' =% (6)

Here ] is the Jacobian of the dynamical system;
Ji = ')" + Cjj, where, 0;; is the Kronecker delta function

and T denotes matrix transpose. Lyapunov optimization
is used to tune EC values C; so that the model covarlan-
ces Q° and O' reproduce the emprical Q and Q (see
supplementary material®?).

We used values of EC and FC as measures to classify the
cohort at each time-point in two schemes: (i) healthy con-
trols versus patients and (ii) patients without a deficit,
those with deficit in a single factor, and those with mul-
tiple deficits. For the first classification, we pooled data
from healthy controls at two time-points separated by 3
months to improve the balance between class frequencies.

We selected EC values of HCP-SCT links (7=4218)
and, due to symmetry, FC values of half of them
(n=2109) for each participant, z-scored and rearranged
them as a vector. Participants were randomly split into
stratified training (80% from each class) and test (20%)
sets and a multinomial logistic regression (MLR) classifier
was trained using EC/FC values of all links in the train-
ing set and tested on the test set. The procedure was
repeated for 100 splits and the significance of mean ac-
curacy was tested, at 0.05 level, against the null hypoth-
esis of chance by comparing it with a chance-level
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accuracy distribution. Here, for each split, we randomly
permuted class labels across individuals and obtained 100
chance-level accuracy values. We also calculated the con-
fusion matrices that compares the true class labels with
the predicted.® Identical splits were used to compare the
accuracy of EC and FC for each classification.

As we used identical train-test splits to calculate the clas-
sification accuracy of EC and FC as well as the chance-
level, we used Wilcoxon signed rank test to test whether
the median, across 100 splits, of paired difference in the
accuracy was significantly different from zero. In case of
comparison with the chance-level, we used the one-tailed
test where the alternate hypothesis is that the median dif-
ference is positive.

We also calculated the variance explained by EC and
FC for each classification. As our statistical model is not
a linear but a logistic regression for prediction of discrete
class-labels, the definition of variance explained or R* in
this case is based on using maximum likelihood estimates
as model fit.>® Following Nagelkerke, R* in this case is
defined as:

1— eXp72(logL B)—logL(0))/N

1— exp 2(logL(0))/N

R* =

where, Log L(B) and Log L(0) are the log likelihood of the
fitted and null models, respectively, and # is the number of
samples. The R* is normalized so that the maximum value
is 1. When the fitted model performs worse than the null
model, the R* values can be negative and unbounded.

We used recursive feature elimination (RFE) to identify the
most predictive links. Here, we used 90% of participants
in each class as the training set, ranked the links via RFE,
trained the MLR using one link at a time, in the order of
the ranking, and calculated its accuracy as a function of
links, on the remaining 10% participants. We then identi-
fied, as the predictive links for that train-test split, a min-
imum number of highest ranked links for which the slope
of the smoothed accuracy curve was less than a millionth
(to locate saturation) and the accuracy was at least 90%
of the mean accuracy obtained with all links considered.
We repeated this procedure for 90 train-test splits and
links that were part of the predictive set in at least 20%
of all splits constituted the most-predictive set. This per-
centage threshold was used as the accuracy, using the
most-predictive links, began to drop below 1 beyond it
(Supplementary Figs 1 and 2). We also compared the size
of the union of predictive links from all splits with the
total number of links to test the stability of the ranking.
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Results

EC estimation for individual
participants

We first obtained FC matrices for each participant using
zero-lagged Pearson’s correlation between BOLD signals
of all 324 ROIs. Then we fit the model to reproduce the
zero-lagged and lagged empirical BOLD covariances by
estimating EC for a mask of plausible neuro-anatomical

links. This mask, EC_mask_Ctl (Fig. 1D), was identical
for each healthy participant. It included all links with
value stronger than 0.5% of the strongest SC value in
SC-Ctl (Fig. 1A), a SC averaged across all healthy indi-
viduals from this study, and all links in the HCP-SCT
(Fig. 1B). For each patient, we built an individual mask
(Fig. 1E), by excluding from EC_mask_Ctl, all completely
damaged links (Fig. 1C).

Using the structural connections mask for each partici-
pant as a constraint on the model (akin to a topological
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Figure 3 Most predictive links for distinguishing patients from healthy controls. Predictive links using EC values (top panels)
and FC values (bottom panels) for classification of healthy controls and patients at the 2 weeks, shown in A and D, 3-months
B and E, and | year, shown in C and F, time-points, respectively. The node colours represent different RSN.

prior), we inferred individual EC matrix that maximized
the Pearson’s correlation between model and empirical
lagged and non-lagged covariances. Average fit across
healthy controls and patients was found to be 0.65 and
0.7 respectively (Fig. 1F and G).

Distinction of patients from healthy
controls using EC and FC

Statistical comparison of median EC values, between
healthy control and patients groups, for all HCP-SCT
links showed significant difference for only 14 and 5
links at the 2-week and 3-month time-points, respectively
(P<0.05, Mann-Whitney test, corrected for multiple
comparisons using false discovery rate). No significant
differences was found at the 1-year time-point. Next we
assessed the predictive power of EC and FC using their
values for HCP-SCT links. We had EC and FC values
for 45 Control scans, and, 95, 73 and 53 patients at the
2-weeks, 3-month and 1-year time-points, respectively.
Figure 2A-C show the distributions of accuracy of these
measures in classifying healthy controls versus patients,

along with chance-level distributions. At all three time-
points, median accuracy values for EC (0.86, 0.88 and
0.8) and FC (0.85, 0.79 and 0.8) were significantly
higher than chance (P<1E-16; Wilcoxon signed-rank
test, signed rank statistic: 4.94E + 3 for all three compari-
sons involving EC and 4.95E+3, 4.83E+3 and
4.47E + 3 for all comparisons involving FC). However, a
statistically significant difference between EC and FC ac-
curacy values was found (P < 1E-4; Wilcoxon signed-rank
test, Bonferroni corrected; signed rank statistic: 2.17E + 3,
3.37E+43 and 2.60E+3 for three comparisons, respect-
ively) at all three time-points.

We calculated the explained variance, R* in a cross-
validated fashion using the 80-20 train-test splits by com-
paring the fitted MLR classifier with a null model of uni-
form predictive probability for each of the two
classifications we considered. Median R? values, across
train-test splits, were found to be 0.65, 0.67 and 0.57 for
EC and were significantly higher (P <0.001; Wilcoxon
signed rank test) than the values with FC—0.60, 0.49
and 0.44 for the controls versus stroke classification at
all three time-points, respectively (Supplementary Fig. 3).


https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab233#supplementary-data
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Figure 4 Distribution of predictive links for distinguishing patients from healthy control in terms of RSNs and hemispheres.
Predictive links according to RSNs for EC (top panels) and FC (bottom panels) for the classification of healthy controls versus
stroke patients at each time-point (2 weeks, A and D; 3 months B and E; | year C and F). Arrows in the top panel figures show the

directionality of interaction in the predictive EC links.

There was a significant correlation between the R* and the
accuracy values obtained by predicting the labels in each
case (Supplementary Fig. 4). The R* values vary consider-
ably across the splits as they are based on log likelihood
estimates while accuracy values, obtained by predicting
labels for test-set subjects, do not. However, the strong
correlation between these two metrics shows that the ac-
curacy can be used to interpret the variance explained.

Bottom panels of Fig. 2 display the confusion matrices
for the three time-points using EC (D-F) and FC (G-I)
values. The asymmetry of confusion matrices at the 2-
week and 3-month time-points shows that classification
error is mostly due to some patients being classified as
controls. Mean accuracy using FC values for all links be-
tween 324 ROIs was not significantly different from that
using FC values for only HCP-SCT links (Supplementary
Fig. 5), confirming that HCP-SCT links were sufficiently
informative for classification.

EC and FC biomarkers for
distinguishing patients from controls

A biomarker, in this context, is a subset of all HCP-SCT
links sufficient for an accurate classification. We found

that the ranking was stable across different 