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Recent resting-state functional MRI studies in stroke patients have identified two robust biomarkers of acute brain dysfunction: a

reduction of inter-hemispheric functional connectivity between homotopic regions of the same network, and an abnormal increase

of ipsi-lesional functional connectivity between task-negative and task-positive resting-state networks. Whole-brain computational

modelling studies, at the individual subject level, using undirected effective connectivity derived from empirically measured function-

al connectivity, have shown a reduction of measures of integration and segregation in stroke as compared to healthy brains. Here

we employ a novel method, first, to infer whole-brain directional effective connectivity from zero-lagged and lagged covariance

matrices, then, to compare it to empirically measured functional connectivity for predicting stroke versus healthy status, and patient

performance (zero, one, multiple deficits) across neuropsychological tests. We also investigated the accuracy of functional connectiv-

ity versus model effective connectivity in predicting the long-term outcome from acute measures. Both functional and effective con-

nectivity predicted healthy from stroke individuals significantly better than the chance-level; however, accuracy for the effective con-

nectivity was significantly higher than for functional connectivity at 1- to 2-week, 3-month and 1-year post-stroke. Predictive

functional connections mainly included those reported in previous studies (within-network inter-hemispheric and between task-posi-

tive and -negative networks intra-hemispherically). Predictive effective connections included additional between-network links.

Effective connectivity was a better predictor than functional connectivity of the number of behavioural domains in which patients

suffered deficits, both at 2-week and 1-year post-onset of stroke. Interestingly, patient deficits at 1-year time-point were better pre-

dicted by effective connectivity values at 2 weeks rather than at 1-year time-point. Our results thus demonstrate that the second-

order statistics of functional MRI resting-state activity at an early stage of stroke, derived from a whole-brain effective connectivity,

estimated in a model fitted to reproduce the propagation of neuronal activity, has pertinent information for clinical prognosis.
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Jülich Research Centre, 52425 Jülich, Germany
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Introduction
First-time stroke patients with heterogeneous lesion loca-

tion show widespread alterations of resting-state (RS)

functional connectivity (FC)—the temporal correlation of

the functional MRI (fMRI) signals across brain regions

and networks—in the acute stage,1–4 what is now called

‘connectional diaschisis’.5 The most common abnormal-

ities include a reduction of the inter-hemispheric (IH) FC

between homotopic regions of the same networks, and an

increase of intra-hemispheric FC between regions/net-

works that are typically not or negatively correlated (e.g.

task-positive and task-negative networks).6 Abnormalities

of FC are strongly correlated with acute behavioural defi-

cits and their recovery.6,7 The low dimensionality of FC

alterations across brain regions has been proposed as an

explanation for why behavioural deficits are also low di-

mensional and correlated across subjects, with three sets

of deficit components accounting for �70% of the behav-

ioural variance.8,9

Whole-brain network models of sub-acute stroke have

been used to characterize and understand the impact of

stroke.10,11 Adhikari et al. obtained a patient-specific,

optimized whole-brain model before calculating an infor-

mation theoretical measure of network segregation and a

graph theoretical measure of integration for each patient

and showed that they correlated with ipsilesional inter-

resting-state network (RSN) FC and IH FC between

homotopic regions, respectively. Starting with a group-

average structural connectivity matrix, model optimiza-

tion involved inference of a symmetric, undirected effect-

ive connectivity (EC) matrix from each patient’s own FC

using a heuristic, gradient descent approach. The effect of

lesions was modelled by weakening the structural edges

to/from a damaged cortical region.

A weakness of this approach is that FC captures the lev-

els of correlated activity between a pair of brain regions,

but it does not describe the causal influence from one re-

gion to another or the simultaneous influence of a third

region. A second weakness is that stroke lesions affect not

only cortical parcels but also predominantly white matter

pathways.8 Therefore, a better approach for estimating the

effect of lesions would be to take in account the structural

disconnection, between both damaged and non-damaged

regions, caused by lesions.

In contrast to FC, EC measures directed interactions

and indirectly, some form of causality. Partial correlations

Smith et al12 can be used to infer undirected EC, while

methods such as dynamic causal modelling13–15 can yield

directed EC. Recently, Gilson et al.16 demonstrated a the-

oretically robust technique to infer whole-brain EC from

zero-lagged and lagged RS-FC. Modelling each local

brain region with an Ornstein–Uhlenbeck process, the in-

ference procedure uses a mask of the putatively existing

anatomical connections as a topological prior and since it

also estimates non-symmetric lagged FC, the resulting EC

is directional for every connection, edge or link. In the

following, we will use link to connote a statistical or ef-

fective connection. EC changes were found to align with

those known from electrophysiology in the visual field

mapping between early visual cortices.17 Pallarés et al.18

showed that EC predicts in a cross-validated fashion the

identity of individual healthy participants from fMRI ses-

sions more accurately than FC.

In this study, we aimed to compare the predictive ability

of EC vis-à-vis FC in (i) distinguishing patients from healthy

controls, and (ii) predicting behavioural deficits of patients

longitudinally. We first obtained the EC for healthy partici-

pants and first-time stroke patients, using the approach of

Gilson et al., at 2-week, 3-month and 1-year post-onset of

stroke. Critically, the disconnection effect of lesions was esti-

mated embedding the volume of each lesion in an atlas of

normal white matter connections,19 and estimating the se-

verity of disconnection among cortical regions. Then we

classified this cohort in multiple classifications using EC or

FC values. The first classification diagnosed patients from

healthy controls at each time-point. The second classifica-

tion aimed to diagnose stroke individuals with different

numbers of behavioural deficits (zero, one, many) across

seven factors of behavioural impairments using EC and FC

values of links at the same time-point. Besides, we tried EC

and FC of links from previous time-points to predict future

behavioural deficit status.

We hypothesized that EC would be a more sensitive

biomarker than FC, especially for more dimensional be-

havioural predictions. This hypothesis is based on EC’s

theoretical ability to infer directional interactions and its

superiority (as compared to FC) in predicting individual

scans.18 Moreover, we hypothesized that EC predictive

topography will provide additional and complementary

information to FC topography.

Materials and methods

Stroke cohort

A total of 172 patients were prospectively enrolled in this

study, 132 of whom met the post-enrolment inclusion cri-

teria. Female participants made up 45% of the study

sample while 55% were male. Inclusion and exclusion

criteria are described in detail in an earlier manuscript.8

Healthy controls

A healthy control group (n¼ 25; 52% female, 48%

male) was matched with the study sample for age, gender

and years of education.

Patients and controls provided written informed consent

prior to participation in the study. Study procedures were

performed in accordance with the Declaration of Helsinki

ethical principles and approved by the Institutional

Review Board at Washington University in St. Louis. The
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complete data collection protocol is described in full de-

tail in a previous publication.8

Lesion identification

Each patient’s structural MRI scans were used to manual-

ly segment the lesions with the Analyze software pack-

age20. Surrounding vasogenic oedema was included in the

lesion definition for patients with haemorrhagic stroke.

Two board-certified neurologists (Maurizio Corbetta and

Alexandre Carter) reviewed all segmentations before they

were converted into binary lesion masks. These masks,

transformed to MNI atlas space, were used for subse-

quent processing and analysis.

Behavioural testing

Assessment of motor, language, attention, memory and

visual function was done for each participant after each

scanning session. Dimensionality of the behavioural per-

formance data was reduced as described previously8 to

identify a few factors that explained majority of across-

subject variance. We summarize these factors and their

loadings here for completeness. The ‘Motor’ score

describes contralesional deficits that correlated across

shoulder flexion, wrist extension/flexion, ankle flexion,

hand dynamometer, nine hole peg, action research arm

test, timed walk, functional independence measure and

the lower extremity motricity index. The ‘Visual Field

Attention’ score describes contra-lesional attention biases

in Posner, Mesulam and BIT centre of cancellation tasks.

A separate ‘Sustained Attention’ score loaded on non-spa-

tial measures of overall performance, reaction time and

accuracy on the same tests. A third ‘Shifting Attention’

score loaded on tests indexing attention shifts. The

‘Spatial Memory’ score loaded on the Brief Visuospatial

Memory Test and spatial span. The ‘Verbal Memory’

score loaded on the Hopkins Verbal Learning Test. The

‘Language’ score loaded on both comprehension and

production.

Factor scores for each patient were z-scored using

mean and standard deviation of corresponding factor

scores in age-matched healthy controls.K-nearest neigbour

(KNN) imputation was employed to impute the scores

for the missing domains in a patient using weighted aver-

age across five of its nearest-neighbours. A z-score of –2

or less was considered to be a deficit.

fMRI procedure and scanning

Patients were scanned at three time-points—2 weeks

(mean ¼ 13.4 days, SD ¼ 4.8 days), 3 months (mean ¼
112.5 days, SD ¼ 18.4 days) and 1 year (mean ¼
393.5 days, SD ¼ 55.1 days) post-onset of stroke. Healthy

controls were scanned at two time-points separated by a

3-month interval.

Scanning was performed with a Siemens 3T Tim-Trio

scanner at the School of Medicine of the Washington

University in St. Louis. Scanning parameters are described

in detail in previous publications.6,21 Six to eight resting

state fMRI runs, each including 128 volumes (30 min

total), were acquired.

fMRI data pre-processing

fMRI data underwent a preprocessing procedure consist-

ing of the following steps: (i) asynchronous slice acquisi-

tion was compensated by sinc interpolation to align all

slices; (ii) elimination of odd/even slice intensity differen-

ces resulting from interleaved acquisition; (iii) a whole

brain normalization corrected for changes in signal inten-

sity across scans; (iv) realignment within and across scans

to correct for head movement and (v) co-registration of

echo-planar imaging data to the subject’s T2-weighted

anatomical image, which in turn was co-registered with

the T1-weighted magnetization-prepared 180 degrees

radio-frequency pulses and rapid gradient-echo (MP-

RAGE).22 The MP-RAGE was then transformed to an

atlas-space Talairach and Tournoux23 representative tar-

get using a 12-parameter affine transformation. Data

were passed through several additional preprocessing

steps24: spatial smoothing (6 mm full width at half max-

imum Gaussian blur), filtering in the 0.009–0.08 Hz band

and removal, through linear regression, of (i) six parame-

ters obtained by rigid body correction of head motion;

(ii) the whole-brain signal averaged over a fixed region in

atlas space; (iii) signal from a ventricular region of inter-

est (ROI) and (iv) signal from a region centred in the

white matter.

Quality control of RS data

For each frame of RS-fMRI scan, a DVARS (temporal

derivative of timecourses of RMS variance over voxels)

score was calculated.25 Here, RS-fMRI scan corresponds

to a time series, whereas frame corresponds to an image.

DVARS spikes represent large spikes in brain-wide signal

that are correlated very strongly with head movements.26

The DVAR threshold for patients, calculated as mean

plus 2 SD of DVARS values for all frames, excluding the

first four frames, in the group of age-matched control

subjects, was equal to 4.6. The threshold was chosen to

optimize reliability of FC measurements. All frames with

a DVARS value of 4.6 or higher were removed for the

calculation of FC. However, they were linearly interpo-

lated over in order to maintain the temporal continuity

for the calculation of lagged covariances in each scan.

Exclusion criteria for FC quality included (i) < 180 us-

able frames, and (ii) severe haemodynamic lags (>500 ms

IH difference) measured from RS-fMRI.27 Large haemo-

dynamic lags are confounds produced by altered neuro-

vascular coupling that are known to substantially alter

the relationships between neural activity and the blood

oxygen level dependent (BOLD) timecourse. The large

magnitude of these delays (relative to the homotopic
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region on the unaffected hemisphere) makes it possible to

separate them from neural lags attributed to neural activ-

ity. The threshold was chosen to mitigate the contribu-

tion of neurovascular damage in FC.28 After motion and

lag exclusion, 98 patients were included at 2 weeks, 74

patients at 3 months, 53 patients at 1 year, 23 controls

at time-point 1 and 22 controls at time-point 2.

Parcels and system assignments

FC and covariance matrices were obtained for all links be-

tween 324 cortical parcels from the Gordon333 cortical

parcellation and RS network assignments (available at

http://www.nil.wustl.edu/labs/petersen/Resources.html),29 and

consists of 333 cortical parcels associated with 13 RSNs.

Owing to very low number of vertices, nine parcels were

excluded as done in previous studies.6,7,21 The remaining

324 cortical parcels were assigned to these 13 RSNs: visual

(VIS), retro-splenial (RSP), somato-motor hand (SMH),

somato-motor mouth (SMM), auditory (AUD), cingulo-

opercular (COP), ventral attention network (VAN), salience

(SAL), cingulo-parietal (CPL), dorsal attention network

(DAN), frontal parietal network (FPN), default mode net-

work (DMN) and none of the above (NON).

Mask of neuroanatomical structural
links for EC estimation

The EC for each participant was estimated for a mask of

strongest neuroanatomical links. This mask

(EC_mask_Ctl), identical for each healthy control,

included (i) all links stronger than 0.5% of the strongest

link in the structural connectivity matrix (SC-Ctl) aver-

aged across SCs of healthy controls from this study,

obtained using diffusion weighted imaging (DWI) and

probabilistic tractography, and (ii) links in the Human

Connectome Project (HCP)-SCT—a structural connectome

template created from a publicly available tractography

atlas,19 constructed using DWI data from 842 HCP par-

ticipants and deterministic tractography. The mask for

each patient included all links in EC_mask_Ctl except,

those from and to a ROI with 100% grey matter damage

and all other completely damaged links in the patient’s

structural disconnectome (SDC).

Due to the end-to-end nature of tractography used by

Yeh et al., HCP-SCT links were too few (n¼ 4218) to

obtain a robust estimate of EC that can produce suffi-

ciently high fit between model and data.16,30 Therefore it

was necessary to include the strongest links in SC-Ctl

(n¼ 28 256). However, HCP-SCT links were found to

have stronger FC, on average, in both controls and

patients than those not present in HCP-SCT.31 Thus the

sparseness and reliability of HCP-SCT links allowed us to

use only them for classification and biomarker identifica-

tion, thus keeping the computational cost low without

losing the prediction accuracy (Supplementary Fig. 1). A

more clinically oriented reason is to seek the effect of

stroke on the structural backbone of brain, independently

of individual variability in SC as well as patient-specific

stroke characteristics. Also, incorporating impact of

lesions on white matter pathways through structural dis-

connections for each individual patient was possible only

through the HCP-SCT.

Structural connectivity for healthy
controls

DWI along with probabilistic tractography were used to

obtain the SC for each healthy participant in this study.

The complete methodological details are included in the

supplementary material. Number of streamlines between

every pair of ROIs in the Gordon parcellation divided by

the total number of vertices in them was taken as a

measure of SC strength between them. SC_Ctl was

obtained by averaging SC matrices of all healthy

participants.

HCP-SCT

HCP-SCT was constructed using the HCP-842 streamline

tractography atlas19 as previously described.21 In brief,

Yeh et al.19 performed deterministic fibre tracking32 on

the high-angular resolution diffusion MRI data from 842

participants and extracted 550 000 streamline trajectories

in MNI space. A 324 � 324 SC adjacency matrix AS

was constructed whose each entry AS
ij indexed the num-

ber of streamlines connecting regions i and j.

Structural lesion features and SDC

As described in detail in Griffis et al.,21 parcel-wise grey

matter damage measure was obtained for each patient by

computing the proportion of each grey matter parcel that

overlapped with the lesion. Subsequently, the expected

disconnection for each patient was obtained by intersect-

ing their MNI-registered lesion and the HCP-SCT (AS)

normalized by AS.21

EC estimation

The method16,30 for EC estimation optimizes the effective

weights of a mask of structural links (quantifying the

causal interactions along them) using a multivariate

Ornstein–Uhlenbeck (MOU) process model for each re-

gion and zero-lagged and lagged empirical covariances.

Optimization is done using a gradient descent algorithm

that minimizes the model error.

Estimation of lagged and zero-lagged covariances

and FC

For every session of T time frames, we denote the BOLD

time series by st
i for each region 1 � i � N whose mean

signal over time is denoted by �si ¼ 1
T

P
ts

t
i . The empir-

ical BOLD covariances to be optimized without and with

time lag are then given by:
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Q̂
0

ij ¼
1

T � 2

X
1� t�T�1

ðst
i � siÞðst

j � sjÞ (1)

Q̂
1

ij ¼
1

T � 2

X
1� t�T�1

ðst
i � siÞðstþ1

j � sjÞ (2)

and the FC between region i and region j is given by:

FCij ¼
Q̂

0

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂

0

iiQ̂
0

jj

q (3)

MOU process to model whole-brain dynamics

The activity variable, xi, for each region decays exponen-

tially with a time constant, sx and evolves depending on

the activity of other populations:

dxi ¼
�xi

sx
þ
X
j 6¼i

Cijxj

 !
dt þ dBi (4)

Here, the fluctuating inputs, dBi, are independent and

correspond to a diagonal covariance matrix R. In the

model, all variables, xi, have zero mean. The spatio-tem-

poral zero-lagged and lagged covariances are denoted by

Q0
ij and Q1

ij and can be calculated by solving the follow-

ing consistency equations:

JQ0 þ Q0J
† ¼ � R (5)

Q1 ¼ Q0eJ
†

(6)

Here J is the Jacobian of the dynamical system;

Jij ¼ �dij

sx
þ Cij, where, dij is the Kronecker delta function

and † denotes matrix transpose. Lyapunov optimization

is used to tune EC values Cij so that the model covarian-

ces Q0 and Q1 reproduce the emprical Q̂
0

and Q̂
1

(see

supplementary material30).

Classification

We used values of EC and FC as measures to classify the

cohort at each time-point in two schemes: (i) healthy con-

trols versus patients and (ii) patients without a deficit,

those with deficit in a single factor, and those with mul-

tiple deficits. For the first classification, we pooled data

from healthy controls at two time-points separated by 3

months to improve the balance between class frequencies.

We selected EC values of HCP-SCT links (n¼ 4218)

and, due to symmetry, FC values of half of them

(n¼ 2109) for each participant, z-scored and rearranged

them as a vector. Participants were randomly split into

stratified training (80% from each class) and test (20%)

sets and a multinomial logistic regression (MLR) classifier

was trained using EC/FC values of all links in the train-

ing set and tested on the test set. The procedure was

repeated for 100 splits and the significance of mean ac-

curacy was tested, at 0.05 level, against the null hypoth-

esis of chance by comparing it with a chance-level

accuracy distribution. Here, for each split, we randomly

permuted class labels across individuals and obtained 100

chance-level accuracy values. We also calculated the con-

fusion matrices that compares the true class labels with

the predicted.30 Identical splits were used to compare the

accuracy of EC and FC for each classification.

Statistical comparison of
classification accuracy

As we used identical train-test splits to calculate the clas-

sification accuracy of EC and FC as well as the chance-

level, we used Wilcoxon signed rank test to test whether

the median, across 100 splits, of paired difference in the

accuracy was significantly different from zero. In case of

comparison with the chance-level, we used the one-tailed

test where the alternate hypothesis is that the median dif-

ference is positive.

We also calculated the variance explained by EC and

FC for each classification. As our statistical model is not

a linear but a logistic regression for prediction of discrete

class-labels, the definition of variance explained or R2 in

this case is based on using maximum likelihood estimates

as model fit.33 Following Nagelkerke, R2 in this case is

defined as:

R2 ¼ 1� exp�2ðlogL Bð Þ�logLð0ÞÞ=N

1� exp2ðlogL 0ð ÞÞ=N

where, Log L(B) and Log L(0) are the log likelihood of the

fitted and null models, respectively, and n is the number of

samples. The R2 is normalized so that the maximum value

is 1. When the fitted model performs worse than the null

model, the R2 values can be negative and unbounded.

Identification of important links for
classification

We used recursive feature elimination (RFE) to identify the

most predictive links. Here, we used 90% of participants

in each class as the training set, ranked the links via RFE,

trained the MLR using one link at a time, in the order of

the ranking, and calculated its accuracy as a function of

links, on the remaining 10% participants. We then identi-

fied, as the predictive links for that train-test split, a min-

imum number of highest ranked links for which the slope

of the smoothed accuracy curve was less than a millionth

(to locate saturation) and the accuracy was at least 90%

of the mean accuracy obtained with all links considered.

We repeated this procedure for 90 train-test splits and

links that were part of the predictive set in at least 20%

of all splits constituted the most-predictive set. This per-

centage threshold was used as the accuracy, using the

most-predictive links, began to drop below 1 beyond it

(Supplementary Figs 1 and 2). We also compared the size

of the union of predictive links from all splits with the

total number of links to test the stability of the ranking.
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The rank of links in each training set was linearly

transformed to a normalized rank so that the highest and

lowest ranked links were rank-normalized to 1 and 0 re-

spectively. Subsequently, the normalized ranking for each

link was averaged across all train-test splits.

Data availability statement

The full set of neuroimaging and behavioural data are

available at http://cnda.wustl.edu/app/template/Login.vm.

Specific data and analysis scripts are available on request

to the authors.

Figure 1 Masks of structural links used in estimating the effective connectivity. For healthy controls, the mask shown in D is the

union of links stronger than 0.5% of the strongest value in the SC_Ctl, shown in A, matrix averaged across healthy control participants (SC_Ctl,

see Materials and methods section), and existing links in the HCP-SCT, shown in B. From this mask, we remove all links that are completely

damaged by the lesion in an individual patient, shown in C, to find an individualized mask for the patient, shown in E. (F and G) Box plots of

Pearson correlation values between the empirical and model lagged and non-lagged co-variances for age- and education-matched healthy

controls at two time-points, 3 months apart, shown in F and stroke patients at three time-points: 2 weeks, 3 months and 1 year post onset of

stroke, shown in G.
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Results

EC estimation for individual
participants

We first obtained FC matrices for each participant using

zero-lagged Pearson’s correlation between BOLD signals

of all 324 ROIs. Then we fit the model to reproduce the

zero-lagged and lagged empirical BOLD covariances by

estimating EC for a mask of plausible neuro-anatomical

links. This mask, EC_mask_Ctl (Fig. 1D), was identical

for each healthy participant. It included all links with

value stronger than 0.5% of the strongest SC value in

SC-Ctl (Fig. 1A), a SC averaged across all healthy indi-

viduals from this study, and all links in the HCP-SCT

(Fig. 1B). For each patient, we built an individual mask

(Fig. 1E), by excluding from EC_mask_Ctl, all completely

damaged links (Fig. 1C).

Using the structural connections mask for each partici-

pant as a constraint on the model (akin to a topological

Figure 2 Performance of EC and FC in classification of patients and healthy controls. Distributions of accuracy in

distinguishing healthy controls and patients using EC and FC values for all links in the HCP-SCTat 2-weeks, shown in

A, 3-months, shown in B, and 1-year, shown in C, post onset of stroke. Orange violin displays chance-level accuracy distribution and asterix

denotes significantly higher median accuracy than chance level (P< 1E-16 Wilcoxon signed rank test). Median EC accuracy was significantly

greater than median FC accuracy at all three time-points (P< 1E-4, Wilcoxon signed rank test, Bonferroni corrected for three comparisons).

D–I shows confusion matrices using EC, shown in D–F, and FC, shown in G–I, values for classifying healthy controls and patients at the 2 weeks,

shown in D and G, 3 months, shown in E and H, and 1-year time-point, shown in F and I.
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prior), we inferred individual EC matrix that maximized

the Pearson’s correlation between model and empirical

lagged and non-lagged covariances. Average fit across

healthy controls and patients was found to be 0.65 and

0.7 respectively (Fig. 1F and G).

Distinction of patients from healthy
controls using EC and FC

Statistical comparison of median EC values, between

healthy control and patients groups, for all HCP-SCT

links showed significant difference for only 14 and 5

links at the 2-week and 3-month time-points, respectively

(P< 0.05, Mann–Whitney test, corrected for multiple

comparisons using false discovery rate). No significant

differences was found at the 1-year time-point. Next we

assessed the predictive power of EC and FC using their

values for HCP-SCT links. We had EC and FC values

for 45 Control scans, and, 95, 73 and 53 patients at the

2-weeks, 3-month and 1-year time-points, respectively.

Figure 2A–C show the distributions of accuracy of these

measures in classifying healthy controls versus patients,

along with chance-level distributions. At all three time-

points, median accuracy values for EC (0.86, 0.88 and

0.8) and FC (0.85, 0.79 and 0.8) were significantly

higher than chance (P< 1E-16; Wilcoxon signed-rank

test, signed rank statistic: 4.94Eþ 3 for all three compari-

sons involving EC and 4.95Eþ 3, 4.83Eþ 3 and

4.47Eþ 3 for all comparisons involving FC). However, a

statistically significant difference between EC and FC ac-

curacy values was found (P< 1E-4; Wilcoxon signed-rank

test, Bonferroni corrected; signed rank statistic: 2.17Eþ 3,

3.37Eþ 3 and 2.60Eþ 3 for three comparisons, respect-

ively) at all three time-points.

We calculated the explained variance, R2 in a cross-

validated fashion using the 80–20 train-test splits by com-

paring the fitted MLR classifier with a null model of uni-

form predictive probability for each of the two

classifications we considered. Median R2 values, across

train-test splits, were found to be 0.65, 0.67 and 0.57 for

EC and were significantly higher (P< 0.001; Wilcoxon

signed rank test) than the values with FC—0.60, 0.49

and 0.44 for the controls versus stroke classification at

all three time-points, respectively (Supplementary Fig. 3).

Figure 3 Most predictive links for distinguishing patients from healthy controls. Predictive links using EC values (top panels)

and FC values (bottom panels) for classification of healthy controls and patients at the 2 weeks, shown in A and D, 3-months

B and E, and 1 year, shown in C and F, time-points, respectively. The node colours represent different RSNs.
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There was a significant correlation between the R2 and the

accuracy values obtained by predicting the labels in each

case (Supplementary Fig. 4). The R2 values vary consider-

ably across the splits as they are based on log likelihood

estimates while accuracy values, obtained by predicting

labels for test-set subjects, do not. However, the strong

correlation between these two metrics shows that the ac-

curacy can be used to interpret the variance explained.

Bottom panels of Fig. 2 display the confusion matrices

for the three time-points using EC (D–F) and FC (G–I)

values. The asymmetry of confusion matrices at the 2-

week and 3-month time-points shows that classification

error is mostly due to some patients being classified as

controls. Mean accuracy using FC values for all links be-

tween 324 ROIs was not significantly different from that

using FC values for only HCP-SCT links (Supplementary

Fig. 5), confirming that HCP-SCT links were sufficiently

informative for classification.

EC and FC biomarkers for
distinguishing patients from controls

A biomarker, in this context, is a subset of all HCP-SCT

links sufficient for an accurate classification. We found

that the ranking was stable across different splits as the

union of predictive links from at least two splits

accounted for only a small fraction of all links—9.6%,

12.7% and 7.2%—, in case of EC, and—18.2%, 4.6%

and 10.3%—in case of FC at the three time-points, re-

spectively. Predictive links in at least 20% of all splits

were identified as biomarkers.

Figure 3A–C display the biomarker EC links for the

three time-points, respectively, while Fig. 3D–F display

the corresponding, most predictive FC links. Figure 4

demonstrates within- and IH predictive links according to

RSNs, with EC (Fig. 4A–C) and FC (Fig. 4D–F) as meas-

ures, for the classification at the three time-points, re-

spectively. Arrows in the top panels indicate the

directionality of predictive EC links. Next, we compared,

for each RSN, the average ranking weighted by the frac-

tion of links in each of the four sub-groups, namely (i)

efferent, IH; (ii) afferent, IH; (iii) efferent, intra- or with-

in-hemispheric (WH) and (iv) afferent, WH, of predictive

EC links. We also found average weighed ranking across

all WH and IH predictive links for classifications involv-

ing FC. Supplementary Fig. 6 shows mean (6SEM) nor-

malized rank across splits of these sub-groups of links.

First, the IH links were relatively more important than

Figure 4 Distribution of predictive links for distinguishing patients from healthy control in terms of RSNs and hemispheres.

Predictive links according to RSNs for EC (top panels) and FC (bottom panels) for the classification of healthy controls versus

stroke patients at each time-point (2 weeks, A and D; 3 months B and E; 1 year C and F). Arrows in the top panel figures show the

directionality of interaction in the predictive EC links.
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the WH links for most RSNs. At the 2-week time-point,

efferent WH links from DAN and VAN, IH links from

DMN and SMH and afferent WH links to DMN and IH

links to SMH were significantly more important than

other groups for EC-based classification while for FC-

based classification, WH links in VIS, VAN, DAN and

DMN, and IH links in SMH and COP were most im-

portant. At the 3-month time-point, most relevant con-

tributors to EC-based classification were efferent WH

links from VAN and IH links from COP, SMH, VAN,

DMN and VIS; afferent WH links to SAL, DMN and

SMH and IH links to SMH while for FC-based classifica-

tion, COP and DAN WH links and VIS and COP IH

links were the most important. Finally for the 1-year EC-

based classification, efferent WH links from SMM and

VAN and IH links from DMN; afferent WH and IH

links to SMH, and for the FC-based classification, WH

COP links and IH links in COP, VIS, SMH, AUD and

VAN were the most prominent contributors.

Normalized ranking of all links, averaged across splits,

was correlated across time-points for both EC and FC as

well as between EC and FC at each time-point

(Supplementary Fig. 7); however, sets of most predictive

links in any two cases had few common members. This

points to the fact that physiological changes caused by

stroke are not static and while changes at earlier time-

point could recover at later time-points, network re-

organizations could happen at later time-points. Mean

rankings of links were not related to their mean struc-

tural disconnections (Supplementary Fig. 8) or the

Figure 5 Performance of EC and FC in prediction of behavioural deficits in patients. Accuracy of classification of stroke

patients according to the number of deficits using EC and FC values of all links in the HCP-SCT. Top panels: classification of

patients at the 2-week, shown in A, 3-month, shown in B, and 1-year, shown in C, time-points using EC and FC values at the same

respective time-points; bottom panels: prognostic accuracy of EC and FC—classification of patients at the 3-months, shown in D, and 1-year,

shown in E, time-points using EC and FC values at the 2-week time-point. Orange violin displays chance-level accuracy distribution and asterix

denotes significantly higher median accuracy than chance level (P< 1E-6, Wilcoxon signed rank test). Median classification accuracy using

2-weeks EC links for classifying patients at 2-weeks and 1-year time-points was significantly higher than that using corresponding FC values

(P< 1E-2, Wilcoxon signed rank test, Bonferroni corrected for five comparisons).
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frequency of disconnection at any time-point indicating

that the average structural damage alone could not ex-

plain a link’s relevance for this classification.

Predicting number of behavioural

deficits and prognosis

Next, we sought to predict the behavioural deficit sever-

ity in patients by classifying them into three classes: (i)

patients without a deficit across all seven factors; (ii)

patients with a deficit in one factor and (iii) patients with

deficits in multiple factors across four behavioural

domains. At time-point 1, 16, 30 and 49 patients, at

time-point 2, 23, 22 and 25, and at time-point 3, 20, 25

and 9 were in these three classes, respectively. Then, we

used EC and FC links to classify patients in these three

classes. In the first analysis, EC and FC links at one

time-point classified patients’ number of deficits at the

same time-point. In a clinically more pertinent analysis

from a prognostic point-of-view, we used links at the 2-

week time-point to predict patients’ number of deficits at

later time-points.

Figures 5A–C show the accuracy of same time-point

EC and FC links in classifying patients’ number of

deficits. Figures 5D and E show the prognostic accuracy

of 2-week time-point EC and FC links in classifying

patients at the 3-month and 1-year time-points, respect-

ively. EC performed significantly better than the chance-

level in all cases (P< 1E-6, Wilcoxon signed-rank test,

Bonferroni corrected; signed rank statistic: 4Eþ 3,

3.4Eþ 3, 2.1Eþ 3, 3.9Eþ 3 and 4.4Eþ 3 for the five

cases outlined in Fig. 5A–E) with the corresponding me-

dian accuracy values of 0.63, 0.4, 0.5, 0.43 and 0.64 re-

spectively. Median accuracy of only the 2-week time-

point FC, 0.63, 0.43 and 0.54, respectively, in predicting

the patient deficits at all three time-points was significant-

ly higher than chance (P< 1E-9, Wilcoxon signed rank

test, Bonferroni corrected; signed rank statistic: 4.3Eþ 3,

3.4Eþ 3, 3.6Eþ 3 for the three cases outlined in Fig. 5A,

D and E). Median accuracy of 2-week EC links in classi-

fication of 2-week and 1-year time-points patients was

significantly higher than the accuracy of 2-week FC links

(P< 1E-2, Wilcoxon signed-rank test, Bonferroni cor-

rected; signed rank statistic: 2.5Eþ 3, and 2.3Eþ 3 re-

spectively) while no significant difference in the

performance of two-weeks EC and FC in classifying

patients at the 3-month time-point was observed. Median

R2 for both EC and FC were close to 0 indicating a

Figure 6 Confusion matrices for the three-way classification of patients by number of behavioural deficits. Only 2-weeks EC

(top row) and FC (bottom row) values for all links in the HCP-SCTare used for classifying patients at the 2 weeks, shown in

A and D, 3 months, shown in B and E, and 1 year, shown in C and F, time-points.
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much worse model fit than the case of healthy controls

versus stroke classification (Supplementary Fig. 9). This is

also reflected in levels of accuracy seen (Fig. 5) in com-

parison to those found for the controls versus patients

classification (Fig. 2).

Figure 6 displays the confusion matrices for classifica-

tion of patients at all three time-points using 2-week EC

(A–C) and FC (D–F) links. While both EC and FC pre-

dicted patients with multiple deficits at the 2-week time-

point (Fig. 6A and D) well, both failed to predict partici-

pants without any deficit. At the 1-year time-point, since

several patients with multiple deficits at the 2-week time-

point have recovered, this is a very small class (nine par-

ticipants) and both EC and FC fail to predict it well.

Predictive 2-week EC links for
number of behavioural deficits and
prognosis

Next, we looked for the biomarker links whose 2-week

EC values were most predictive of patient deficits at 2-

week and 1-year time-points. Ranking of links across dif-

ferent training sets was robust as the fraction of all EC

links that were predictive in at least 2 of the 90 realiza-

tions at the 2-week and 1-year time-point were 11% and

9.7%, respectively (Supplementary Fig. 10A and B). The

normalized average ranking of all links was correlated

across the two time-points (r¼ 0.32, Supplementary Fig.

10C); however, the most predictive links in the two cases

Figure 7 Most predictive links for prediction of behavioural deficits in patients. A and B: Predictive links (top panels) and their

distribution according to RSNs (bottom panels) from EC values at the 2-week time-point in classifying patients according to the number of

behavioural deficits at the 2-week (A and C) and 1-year (B and D) time-points. Arrows in the bottom panel figures show the directionality of

interaction in the predictive EC links.
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had few common members. Finally, the average normal-

ized ranking of all and predictive links did not correlate

with their average structural disconnection (Supplementary

Fig. 10D and E) or the frequency of disconnection.

Figure 7A and B display these predictive EC links,

while Fig. 7C and D display their distribution according

to RSNs in each hemisphere. Bidirectional WH links in

DAN and IH links from and to visual, SMH along with

efferent, IH links from DAN and VAN and afferent, IH

links to DMN stood out for the 2-week time-point classi-

fication. On the other hand, at the 1-year time-point, ef-

ferent WH links from SMH, FPN and DMN and IH

links from SMH and DAN while afferent WH links to

AUD, DAN and VAN and IH links to VIS, SMH and

DMN found to be the most prominent contributors

(Supplementary Fig. 11).

Discussion
In this paper, we classified stroke patients using RS-FC

and a linear model-based EC inferred from lagged and

non-lagged second-order statistics of the RS-fMRI data.

While both EC and FC performed significantly better

than chance in distinguishing controls from patients’ 2-

weeks, 3-month and 1-year post-onset, accuracy for EC

was significantly higher than for FC at each time-point.

More importantly, EC values at 2-week time-point were

significantly more predictive than chance as well as FC

values in classifying patients according to the number of

behavioural deficits not only at the 2-week time-point but

also at the 1-year time-point. Thus, the EC could extract

information from RS neurophysiological signals at an

early time-point that was relevant, not just for the diag-

nosis of patients but also their prognosis. We also identi-

fied biomarker sub-networks for stroke diagnosis and

prognosis.

Estimation of EC is robust when a mask of neuro-ana-

tomically plausible links is used as a prior in the infer-

ence.30 In this study, we combined two SC masks to, (i)

define the links for which EC was estimated in healthy

controls and (ii) to define the corresponding links for

each patient by excluding from the combined mask all

completely damaged links in that individual’s brain. The

first mask, consisting of strongest links in the SC aver-

aged across controls obtained using DWI and probabilis-

tic tractography, was necessary to have a reasonable

minimum number of estimated links (27%), so that the

fit between empirical and model covariances was suffi-

ciently high (�0.7 on average). The second mask, consist-

ing of existing links in the HCP-SCT, found using end-

to-end tractography with DWI scans in 842 HCP partici-

pants, was too sparse (4% edge density) but necessary as

these were the only links used for classification; their

sparseness ensuring low computation cost of biomarker

identification. Second, and more importantly, FC, aver-

aged across HCP-SCT links was found to be significantly

stronger than the average across other links31 in both the

healthy and the patients groups. Their importance for

classification was evident from the comparison of mean

accuracy with that using all links (Supplementary Fig. 1).

Our application of structural constraints to optimize

the sparsity of our connectivity model is a key aspect of

characterizing EC—in the current setting and more gener-

ally. The key difference between FC and EC is that func-

tional connections can exist between all pairs of regions,

even if there are only a sparse number of links. This fol-

lows from the fact that correlations can be induced

through multi-link pathways (i.e. involving network

effects). Technically, this becomes an important consider-

ation as a manner to regularize the estimates of EC. In

terms of model optimization, this corresponds to finding

the model of EC with the greatest evidence or marginal

likelihood. Crucially, the marginal likelihood can always

be decomposed into accuracy minus complexity.

Therefore, we minimize model complexity by imposing

sparsity constraints on the parameters, thereby promoting

models with the greatest evidence. This is important be-

cause models with a higher evidence are those that have

the greatest predictive validity. In other words, they are

the models that generalize to new data because they do

not overfit. In our work, we used a heuristic proxy for

model evidence via the cross-validation accuracy (i.e. clas-

sification patients versus controls, of cognitive deficits),

beyond the ‘simple’ goodness of fit of the empirical

BOLD data.

While both EC and FC were significantly more accur-

ate than chance at distinguishing patients from healthy

controls at all three time-points, EC’s performance was

better than FC especially at the two later time-points as

the confusion matrix in Fig. 2 also shows. Recent papers

on recovery from stroke7 Ramsey et al34 have shown

that as patients recover from behavioural deficits, a corre-

sponding recovery of FC alterations observed at the sub-

acute stage (1–2 weeks post onset) takes place. Therefore,

it is reasonable to expect that as patients recover, the

magnitude of FC differences between healthy controls

and patients at later time-points is reduced in comparison

with the early time-point. Hence, making the distinction

between patients and healthy individuals using FC, that

only measures spatial correlation, would be less accurate

at later time-points than at the earlier one. In contrast,

the EC, that is inferred using both spatial and temporal

correlations, continues to predict the two classes well at

later time-points.

Prediction of stroke severity in terms of number of be-

havioural deficits was a significantly more complex task.

Here, the class definitions were driven by a consideration

to balance predictability with interpretability. Sufficient

number of participants in each class and balanced class

frequencies were required to ensure predictability. The

notion of behavioural deficit was based on a clinical def-

inition of a score 2 SD below the average control score.

We did consider other class definitions—one, in
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particular, to assess recovery distinguished patients

according to the change in either the within-domain def-

icit or in the number of deficits across domains.

However, here, we did not have sufficient samples in

each such class to ensure predictability. Also, some

patients recovered from deficit in one factor while wors-

ened in another making labelling such cases appropriately

a challenge from the point of view of interpretation.

In this classification, EC at the 2-week time-point not

only predicted patient classes at the same time-point with

significantly higher accuracy than chance as well as FC,

it did so at the 1-year time-point as well. Moreover, as

the confusion matrices in Fig. 6 demonstrate, at the 1-

year time-point, classes that included recovered patients—

namely patients without deficit and with deficit in a sin-

gle factor, were better predicted. Therefore, the temporal

correlation structure found in an early stage RS-fMRI

that is captured by the EC is an important contributor to

predicting recovery and prognosis of patients.

The objective of this study, apart from comparing clas-

sification accuracies of two neurophysiological data-

driven measures, was also to identify specific links as bio-

markers. Most important FC-based signature of patients

at all three time-points included IH links within several

RSNs—namely visual, somato-motor, cingulo opercular,

dorsal attention and default mode—and intra-hemispheric

links between the dorsal attention, fronto-parietal and de-

fault mode networks. These observations are in line with

the previous research of markers of stroke at the acute/

sub-acute stage.4,6 EC biomarkers for the classification at

2-week time-point included within-RSN IH links similar

to the FC but links to a RSN were not necessarily equal-

ly important as links from that RSN. This distinction can

be assessed in the case of EC due to its asymmetry.

Thus, at 2-week time-point, while links in both directions

were important for IH links from/to somato-motor, effer-

ent links from DMN were more relevant than afferent

ones. Afferent links from somato-motor network were

more important at later time-points along with efferent

links from cingulo-opercular networks (Supplementary

Fig. 6).

Since they predicted the number of behavioural deficits

in patients at 2-weeks and 1-year time-points accurately,

we extracted biomarker networks for this classification

using only the 2-week EC links. IH links from and to

visual, somato-motor, efferent links from DAN and

VAN, and afferent links to DMN were found to be most

important for predicting patients’ deficit severity at 2-

weeks post onset of stroke. At 1-year post onset, when a

significant proportion of patients with initial deficit had

recovered thus making the no-deficit class the largest, IH

links from and to somato-motor along with afferent links

to visual network and efferent links from the DAN were

most predictive (Supplementary Fig. 11). In case of WH

links, bidirectional links in DAN were most predictive of

patients’ deficit severity at 2-week time-point while at the

1-year time-point, afferent links to DAN, VAN and AUD

while efferent links from somato-motor, FPN and DMN

were the two most predictive sets.

In conclusion, impact of focal stroke and recovery from

it can be characterized in terms of low dimensional con-

structs consisting of patterns of FC as well as clinical

concomitants. Going beyond the statistical associations

measured by FC, EC captures directed and causal influen-

ces and has been found to be superior to FC in neuro-

psychiatric setting.35 Our results confirm this finding and

show that whole-brain model based EC inferred from se-

cond-order statistics of the resting state fMRI data in

patients of stroke outperforms FC in extracting informa-

tion relevant for clinical prognosis from early stages of

the neurological condition.
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Supplementary material is available at Brain

Communications online.
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