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Abstract: The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common
in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs
that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from
different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage
differentiation, their different anatomical origin can affect the capability to differentiate into a specific
tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived
stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different
sources of MSCs that have been individually proposed as promising candidates for tissue engineering
protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of
the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and
chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem
cells attainable from the oral cavity and discuss their possible usage in some of the most compelling
therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
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1. Introduction

In the last decades, the advancement of biotechnologies has held the promise to
disrupt the biomedical field with innovative protocols [1]. These ambitious goals, set in
late 1990 with great enthusiasm, seem to have finally become implementable in the dental
field, which may be on the verge of attaining important results. Here, the authors wish to
recapitulate the most compelling updates dealing with dentistry.

The premise to any kind of tissue engineering approach, adult stem cells are undiffer-
entiated cells, present in almost every tissue [2], that can both renew themselves, keeping
their “stemness”, and differentiate into a variety of histotypes [3,4]. Stem cells were first
found in the bone marrow (BM), which harbors hematopoietic stem cells (HSC) [5–7] and
mesenchymal stem cells (MSCs) [8]. The oral cavity is a large source of MSCs, localized
in specialized well-characterized tissues [9,10] (Figure 1). The first type of dental stem
cells was isolated from the human pulp tissue of a third molar and termed “postnatal
dental pulp stem cells” (DPSCs) [11,12]. Later, other types of dental MSCs have been
described according to the different site of isolation: pulp tissue of exfoliated deciduous
teeth (SHED) [13]; periodontal ligament (PDLSCs) [14]; apical papilla of developing teeth
(APSCs) [15,16]; dental follicle (DFSCs) [17], gingiva (GFSCs) [18], and buccal fat pad
(BFPSCs) [19].

In this review, we reported and discussed the recent literature concerning oral MSCs,
focusing on their potential application to treat two common pathologies associated with
the oral cavity, periodontal disease and destroying caries, which seriously damage teeth
and need the regeneration of the dental-pulp complex.
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Figure 1. Oral cavity and its sources of dental MSCs. The oral (or buccal) cavity is the upper end of
the alimentary canal in higher vertebrates bounded by “the lips anteriorly, the cheeks laterally, the
palate superiorly, the floor of the mouth inferiorly, the oropharynx posteriorly”. The mandible and
maxillae are the bony structures of the oral cavity to which the teeth articulate (gomphosis). Each
tooth consists of two parts: one intraoral (the crown) and the other one endosseous (the root). The
crown is made of enamel, mainly hydroxyapatite, and dentin forming the bulk of the tooth along
with the dental pulp. This soft tissue providing blood supply and innervation is housed within the
dentin from the tip of the root to the crown [20]. A layer of cementum covers the root, anchoring the
tooth to its bony socket through the periodontal ligament. This sophisticated supporting structure
along with the gingiva adjacent to the tooth is called periodontium. In the oral cavity, there are
different sources of MSCs: dental pulp stem cells (DPSCs); pulp tissue of exfoliated deciduous teeth
(SHED); periodontal ligament (PDLSCs); apical papilla of developing teeth (APSCs); dental follicle
(DFSCs) and gingiva (GFSCs); buccal fat pad (BFPSCs).

2. Oral MSCs

MSCs in the oral cavity are responsible for the maintenance and repair of their as-
sociated tissues [21]. Even though dental MSCs show features shared with BM-MSCs as
initially reported by Pittenger et al. [6,22], they differ in neurogenic potential due to their
origin from the neural crest during embryonic development; indeed, the dental mesenchy-
mal tissue is also called “ectomesenchyme” for its interaction with the neural crest [23].
Moreover, dental MSCs are more committed to odontogenic than to osteogenic develop-
ment [24], since MSCs derived from specific tissues retain some “memory” of those tissues
and, thus, exhibit some tissue-specific properties in addition to more generic multipotential,
and these can be defined by their niche environment [24,25]. According to the International
Society for Cellular Therapy, dental MSCs show plastic adherence ability; they are positive
for CD90, CD105, CD73, and CD44 and negative for hematopoietic markers CD34, CD38,
CD45, and CD54. Dental MSCs are able to differentiate into osteoblasts, chondroblasts, and
adipocytes [26].

2.1. Dental Pulp Stem Cells (DPSCs)

These cells exhibit the canonical MSCs properties, such as multi-lineage differentiation
capabilities, high proliferation rate, and immunomodulatory activity [12,26]. Moreover,
DPSCs have neurogenic potential due to their origin from the neural crest [27]. As they
reside in a perivascular niche in the postnatal dental pulp tissue [28], likely deriving from
pericytes [29], they can contribute to angiogenesis in vivo [30]. DPSCs’ ability to differen-
tiate into endothelial cells and their angiogenic potential is also due to the production of
vascular endothelial growth factor (VEGF). DPSCs have been used to regenerate a vascu-
larized dentin-pulp-like complex in empty root canal spaces [31]. In a pilot clinical study,
DPSCs pre-treated with G-CSF were implanted in the empty root canal of traumatized
permanent incisors of five patients with irreversible pulpitis, observing a vascularized and
nervous reconstruction of pulp tissue [32]. In 2018, Xuan et al. reported the results of a
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randomized clinical trial in which teeth with necrotic pulps were transplanted with DPSCs’
aggregates in situ. A successful three-dimensional regeneration of the whole dental pulp
tissues occurred, including an odontoblast layer, connective tissues, blood vessels, and
even neuronal markers [33].

DPSCs have the peculiar potential to differentiate into odontoblasts able to repair
dentin [34]. In vivo ectopic transplantation of DPSCs, mixed with hydroxyapatite/tricalcium
phosphate formed a dentin-pulp-like complex associated with vascularized pulp-like tis-
sue [35]. In one study comparing donor matched BMMSCs and DPSCs, alkaline phos-
phatase activity was significantly higher in DPSCs than in BMMSCs after three weeks of
induction in osteogenic medium [36]. DPSCs showed mineralization potential [12,36–38];
indeed, bone formation by human DPSCs has been shown both in vitro and in vivo [39–43].
The potential of DPSCs for periodontal regeneration may be questionable because of their
limited capacity to form cementum [43,44]. A recent revision of the literature reported that
DPSCs on synthetic scaffolds are useful to treat bone defects, showing encouraging results
of early new bone formation in preclinical animal studies [45].

2.2. Stem Cells from Exfoliated Deciduous Teeth (SHED)

Similar to DPSCs, SHED derive from dental pulp. However, due to the developmental
differences between deciduous and permanent teeth, SHED express higher levels of genes
related to stemness (OCT4, SOX2, NANOG, and REX-1) compared to DPSCs, retaining
a higher plasticity through passaging in vitro [45,46]. SHED are highly proliferative and
capable of differentiating into a variety of cell types, such as neural cells, osteoblasts,
chondrocytes, and adipocytes [13].

SHED can differentiate into odontoblasts even though they may show lower reparative
efficacy than the odontoblasts derived from DPSCs [47]; indeed, they form dentin-like
or pulp-like tissue but not the dentin-pulp complex [13]. Only when combined with
collagen I and injected into full-length human root canals do SHED form the dentin-pulp
complex, thus, this can be a strategy to facilitate the completion of root formation in necrotic
immature permanent teeth [48].

SHED may also have perivascular origins with pericyte-like characteristics, they can
differentiate into endothelium [49] promoting vascularization. In vivo studies revealed
that SHED are able to form functional vessel-like structures upon transplantation [50]. We
also reported that SHED, maintained in osteogenic conditions, significantly increase the
pro-angiogenic signature [51]. More recently, Kondo et al. confirmed the pro-angiogenic
effect of SHED, which secrete pro-angiogenic factors for primary endothelial cells [52].

The osteoinductive potential of SHED has been investigated in vivo: SHED repair
critical size calvarial defects with effective bone formation [53]. To improve the osteogenic
potential of SHED, they have been cultured in chitosan scaffolds containing divalent metal
phosphates, showing a significant increase in osteoblastic differentiation compared with
cells cultured without divalent metal phosphates [53,54].

2.3. Periodontal Ligament Stem Cells (PDLSCs)

Human PDL contains a group of stem cells (PDLSCs) that express MSCs’ surface
markers, present self-renewal ability, and have multipotent capacity [55], being able to
differentiate into cementoblasts/osteoblasts, adipocytes, and collagen-forming cells [14].
Thus, PDLSCs are responsible for regenerating and maintaining periodontal tissue home-
ostasis, tooth-bone attachment, and masticatory function. PDLSCs are the most studied and
considered the most suitable source for periodontal regeneration; they are easily accessible
and capable to secrete mineralized structure.

The osteoinductive potential of PDSCs is less prominent than for DPSCs and
SHED [56–58], but they can regenerate PDL tissue [58], because in vivo, they are able
to differentiate into cementoblasts and to form collagen fibers embedded in cementum-like
tissue. The presence of the TGF-β1 signaling basically determines whether hPDLCs are
differentiated into ligament progenitors or cementoblasts. Indeed, the inhibition of TGF-β1
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blocks cementoblastic and promotes fibroblastic differentiation of the ligament progeni-
tors [59]. Indeed, in a rat model, typical PDL-like structures were generated after PDLSCs
transplantation in a periodontal lesion, where PDLSCs generated PDL attachment in vivo
by forming Sharpey’s fiber-like collagen bundles that were connected to cementum-like
structure [14]. Moreover, PDLSCs express scleraxis, a tendon/ligament-specific transcrip-
tion factor, at higher level compared to BMMSCs or DPSCs, suggesting PDLSCs enhanced
ability to regenerate PDL tissue [14].

PDLSCs carried by hydroxyapatite/tricalciumphosphate (HA/TCP) have the potential
to form cementum/PDL-like structure in vivo [15]. In the last years, a strong interest
concerns also the secretome of PDLSCs; indeed, transplantation of PDLSC-conditioned
medium (CM) has been investigated for its power to induce new PDL attachment and bone
defect regeneration in rat models of periodontal defects. According to Nagatai et al., more
recently, a compound of concentrated growth factor and PDLSCs-CM resulted effective in
promoting cell proliferation of PDLSCs, proving this product useful for future applications
in periodontal tissue regeneration [60].

2.4. Stem Cells from the Apical Papilla (SCAPs)

Apical papilla is the soft tissue at the apices of developing permanent teeth; it is the
precursor tissue of radicular pulp, enriched of stem cells with highly proliferative potential.
SCAPs are easily obtained from the soft tissue loosely attached to the apices of immature
permanent teeth, such as the third molar [16]. The dental papilla is the tissue responsible
for the formation of the dentin-pulp complex, thus, SCAPs have been studied for their
regenerative potential [61].

SCAPs display a greater potentiality to remodel dentin than DPSCs [15], and they can
differentiate into dentin on the surface of HA/TCP scaffolds [16]. SCAPs are involved in
root development and regeneration. In minipigs, SCAPs and PDLSCs were transplanted,
inducing root and PDL tissue renewing [62]. Reconstruction of complex critical-size
defects (CSD) in the craniofacial region is challenging and exosomes derived from SCAP
(SCAP-Exo) promote tissue regeneration of palatal gingival CSD in vivo by increasing
vascularization. Indeed, the migration of endothelial cells was enhanced by improving
their cytoskeletal reorganization [63].

2.5. Dental Follicle Stem Cells (DFSCs)

DFSCs reside in the connective tissue loosely surrounding the developing tissue;
they are responsible for the formation of alveolar bone and the root-bone interface. Their
retrieval is linked to tooth extraction [64]. Compared to the other dental MSCs, DFSCs
show a higher proliferative potential and osteogenic properties [64–66]. DFSCs are more
immature and express more DSPP than PDLSCs. Indeed, they show a marked odontogenic
potential [67], being able to regenerate dentin and have potential capabilities of periodontal
differentiation and root regeneration. DFSCs can form PDL-like structures in vitro [17].
Upon in vivo transplantation, DFSCs can renew root by producing cementum-like tissue
and PDL collagen fibers [65]. DFSCs express higher levels of osteogenic markers such as
RUNX2 and ALP than DPSCs and SHED [66]. Recently, isolated dental follicle epithelial
stem cells from DFSCs were also found to form salivary gland cells and ductal cells. DFSCs
play also an active role in the treatment of inflammatory diseases and autoimmune diseases
in animal models [68].

2.6. Gingival Mesenchymal Stem Cells (GMSCs)

GMSCs were isolated and characterized by Mitrano et al.; they satisfy the minimal
requirements for MSCs, showing multilineage differentiation abilities, expressing MSCs
markers, and growing in adherence [18]. Different from other dental MSCs, GMSCs show
high accessibility and do not need tooth extraction for their harvesting. Indeed, GMSCs
are easily accessible from healthy or inflamed gingiva and are readily found in discarded
dental tissue samples [69]. GMSCs showed immunomodulatory capacity as the other
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dental MSCs; indeed, they induce an anti-inflammatory macrophage polarization and
inhibit osteoclast, reducing periodontal bone resorption in a mice model [70].

GMSCs osteogenic potential was demonstrated in vitro but not in vivo [68], even
though recently EVs derived from GMSCs expressed a high level of RUNX2 and BMPs
and promote extracellular matrix and mineralized nodules of new bone [71]. Upon trans-
plantation into gingiva lesions of rats, GMSCs regenerated normal tissue [72]. CM from
GMSCs showed a similar ability to the one from PDLSCs to induce periodontal ligament
regeneration in rats [48].

2.7. Buccal Fat Pad Stem Cells (BFPSCs)

Recently, buccal fat pad usually called Bichat’s fat pad, emerged as source of stem
cells (BFPSCs), which resulted successful to repair bone defects of the jaws, alone [73]
or in combination with inorganic bovine bone mineral [74]. BFPSCs were comparable to
DPSCs in terms of osteo-differentiating ability, thus they can be used for bone regeneration
protocols [75].

3. MSCs-Based Therapeutic Approaches

The use of MSCs for regenerative purposes and, in particular, for bone regeneration
represents a challenge, thus, many studies have been conducted to investigate the os-
teogenic potential of MSCs derived from different sites. The regenerative capabilities of
MSCs derived from different regions of the oral cavity have been shown in Table 1, whereas
their osteogenic potential has been deeply investigated, and readers interested in this field
are referred to dedicated reviews on the matter [76]. Dentistry may benefit from innovative
protocols entailing MSCs. Among the most relevant diseases, in terms of prevalence or
health burden, one must consider periodontal disease and destroying caries, demanding,
respectively, the regeneration of the periodontal and dental-pulp complex.

Table 1. Source and main activities of oral cavity-derived MSCs.

Name Source Regeneration Role

DPSCs Dental Pulp angiogenic potential [30], formation of dentin-pulp-like complex in empty
root canal spaces [31–33], dentin repair [34], bone formation [39–42]

SHED Exfoliated deciduous teeth
formation of dentin-like or pulp-like tissue [13], differentiation into
endothelial cells [49,50], angiogenic ability [51,52], osteoinductive and
osteogenic potential [53,54]

PDLSCs Periodontal ligament regeneration of PDL tissue [14,15,77], lower osteoinductive potential than
DPSCs and SHED [56–58]

SCAPs Apical papilla remodeling and differentiation into dentin [15,16], root development and
regeneration [62]

DFSCs Dental follicle odontogenic potential: dentin, root regeneration [67], and periodontal
differentiation [17]

GMSCs Gingiva osteogenic potential in vitro [68,71], gingival lesion treatment [72,78],
periodontal ligament regeneration in rats [48]

BFPSCs Buccal fat pad osteogenic potential [73,74]

3.1. Periodontal Diseases

As the sixth most prevalent disease in the world, periodontal diseases (PDs) are chronic
inflammatory conditions affecting the periodontium, triggered by the microbial biofilm
of dental plaque [78], which contains up to 800 different species [79]. Although putative
pathogens include a variety of microorganisms ranging from Gram-negative anaerobic
bacteria to spirochetes, encompassing even viruses, no single pathogen is likely to cause
autonomously the disease; rather it is due to the imbalance of the microbial biofilm [80].
Beginning with the localized inflammation of the gingiva (gingivitis), PD may progress, if
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untreated, to chronic periodontitis, which is characterized by deep periodontal “pockets”,
a hallmark of the disease, due to the destruction of tooth-supporting tissues [79–82]. Ep-
ithelial cells prevent microorganisms from reaching the periodontal ligament through their
sealing junction in a healthy subject, but they are also the sentinels that elicit an immune
response owing to their resident dendritic Langerhans cells. The latter presents the micro-
bial antigenic material to the lymphocytes, thus, triggering the infiltration of neutrophils,
granulocytes, and lymphocytes into the periodontal lesion [83]. The consequent severe
chronic inflammatory response sustained by the osteoclasts is responsible for the formation
of granulation tissue [84]. Upon reaching the site of damage, B cells become plasma cells,
whose antibodies are important in modulating the onset of periodontitis. The role of T cells,
particularly that of CD4+ T helper cells in this pathology, has been deeply investigated,
with some contradictory results, likely because different T-cell subsets predominate at
distinct phases of the disease [85]. More recently, the role of Th17 and its key cytokine IL-17
in the pathogenesis of periodontitis has been investigated, as revised by Bunde et al. [86].

Periodontal therapy is theoretically aimed both at stopping the disease progression
and at regenerating the periodontium. The former task proved easier to be attained than
the latter, which has remained a clinical challenge [82]. Researchers have envisaged the
use of MSCs to treat periodontal defects with two main approaches: (a) exploiting the
immunomodulatory potential of MSCs and (b) renewing the bone–ligament–cementum
complex through tissue engineering protocols.

3.1.1. Exploiting the Immunomodulatory Potential of MSCs

In periodontitis, the rate of inflammation correlates with the severity of the disease [87].
PDLSCs derived from healthy periodontium protect tissue from ROS-mediated damages
by suppressing the production of ROS by neutrophils [86–89]. Oral MSCs interact with the
innate and adaptive immune system; indeed, they escape immune recognition and exert
anti-inflammatory and immune-modulatory effects via the suppression of T-, B-, natural
killer, and dendritic cells, both in vitro and in vivo [90].

For instance, DPSCs and GMSCs can interfere with the maturation and activation
of dendritic cells, reducing their antigen-presenting cell ability. They also promote the
anti-inflammatory phenotype of macrophages, increasing prostaglandin-E2 (PGE2), IL-6,
and IL-10 [91]. DPSCs inhibit proinflammatory macrophages modulating the TNF-α/IDO
axis [92]. A dysregulation of T cells associated with inflammatory conditions concerns
the balance between Th17 and T reg; DPSCs, SHED, PDLSCs, and GMSCs suppress Th17
cells and promote Treg, reducing the inflammation [86,93]. Moreover, oral MSCs inhibit
peripheral blood mononuclear cell proliferation through secretion of indoleamine 2,3-
dioxygenase (IDO), transforming growth factor-b (TGF-β), and hepatocyte growth factor
(HGF) [69,92,93]. DPSCs and GMSCs abolish the proliferation of NK cells and Th1 by
activating the Fas/Fasl pathway [94]. PDLSC and DPSCs also show an inhibitory effect on
B cell proliferation, differentiation, and antibody production [95].

The ability to isolate and expand MSCs in vitro without losing their phenotype or
multilineage potential allows their use for tissue repair [96]. The administration of MSCs
results in several effects, such as differentiation, secretion of numerous cytokines and
growth factors, immune-modulation, and angiogenesis, which are all thought to con-
tribute to the regeneration of damaged human tissues. It is increasingly evident that
MSCs transplantation results in a low engraftment rate. MSCs’ survival after injection
in inflamed tissue is short, with a half-life of 24 h [97]. For instance, SHED injected in a
periodontitis-induced defect diffused a little during 3 days after injection, then rapidly
decreased [98]. This is consistent with the observation that BMMSCs injected in an injured
cornea almost disappeared after 3 days, while inflammation and partial healing effects were
detectable [99]. These results proved that a high number of injected MSCs is not causally
linked to the observed effect [100], because MSC therapeutic effects seem to be related to
the paracrine secretion of soluble mediators; secretomes, including cytokines; peptides;
proteins; microRNA; metabolites; and extracellular vesicles, such as exosomes, which
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exert their activity by modulating the immune response. Indeed, the immune-modulatory
properties of MSCs (Figure 2) depend on both direct cell-to-cell contact as well as by the
release of different factors, such as IDO, nitric oxide (NO), TGF-β1, IL-1, IL-6, IL-10, and
PGE2 [88,99]. MSCs can be considered both sensors and regulators of inflammation in a
specific tissue; indeed, their action on the surrounding environment is strictly linked to the
rate of inflammation [100,101]. The regulation of the immune system exerted by MSCs is
relevant since silencing the immune response during tissue repair is necessary to induce
tissue regeneration. Right after an injury, MSCs promote inflammation through soluble
factors and cytokines release, which promotes the recruitment of immune cells to the local
area, but when inflammatory cytokines exceed a certain threshold, MSCs can activate an
anti-inflammatory response to allow tissue repair. MSCs inhibit effector T cells under high
concentrations of IFNγ and TNFα, while with a low concentration, MSCs promote T cell
proliferation [102–104].
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Figure 2. The influence of MSCs on immune system cells. MSCs regulate local inflammation by
interacting with innate and adaptive immune system cells. The antigen-presenting cell activity
mediated by dendritic cells (DCs) is downregulated by MSCs through the inhibitory effect due to IL-
10, IL-6, and PGE-2. This last also increases the release of IL-23, which stimulates Th17. MSCs inhibit
the pro-inflammatory M1 macrophages through the activation of the indoleamine 2,3-dioxygenase
(IDO) pathway and promote M2 macrophages, increasing the release of PGE-2, IL-6, IL-10, and GM-
CSF. M2 also activates T-regs through the TGF-β pathway. T and natural killer (NK) cell proliferation
is inhibited by MSCs’ release of IL-10, IDO, and activation of the Fas/Fas Ligand pathway, resulting
in reduced production of IFNγ and IL-17 by T helper 1 (Th1), whereas Th2 enhance their production
of IL-4. The release of TGF-β1 hinders B cell proliferation. MSCs inhibit mast cells’ release of TNF-α
through the activation of the PGE-2 axis. This regulation of the immune system exerted by MSCs is
fundamental, since silencing the immune response during tissue repair is necessary to its remodeling.

Another approach of MSC-based cell therapy takes advantage of MSCs’ release of
exosomes that exert biological effects on the local microenvironment or at distant sites.
Growing evidence suggests that exosomes act as an important regulator in oral diseases,
thus, the application of oral MSCs-derived exosomes might assume a crucial role as a
therapeutic approach for tissue regeneration in different oral pathologies, such as ONJ,
periodontal disease, and oral oncotherapy [103–105].
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In periodontal disease, PDLSC-exosomes make a fundamental contribution to the
maintenance of periodontal immune/inflammatory homeostasis. For instance, PDLSC-
exosomes are responsible for the unbalance of Th17/Treg in periodontal tissue of patients
with periodontitis. Compared with exosomes extracted from normal PDLSCs, exosomes
derived from LPS-stimulated PDLSCs contain a higher amount of miR-155, which re-
duces Th17 but increases Treg, decreasing inflammation through the Th17/Treg/miR-155
regulatory network [106]. Moreover, PDLSC-exosomes are involved in the regulation
of bone remodeling during periodontal inflammation [107]. A recent work reported an
anti-inflammatory action of PDLSC-exosomes during the interaction between PDLSCs and
macrophages [108].

Exosomes derived from SHED resulted more effectively in stimulating the osteogenic
potential of PDLSCs since they activate Wnt/β-catenin and BMP signaling pathways [109].
SHED-exosomes regulated the anti-inflammatory immune response in a mouse model of
acute lung injury [110].

EVs derived from GMSCs have anti-inflammatory potential through the production
of a significant amount of interleukin 1 receptor antagonist, which acts as an antagonist
against the proinflammatory cytokine IL-1 and downregulates TNFα to mediate inflamma-
tion [111]. GMSC-exosomes reduce oxidative-stress-induced cellular senescence, which is
a condition able to stimulate inflammation and induce different pathologies, such as peri-
odontitis [112]. GMSC-exosomes promote wound healing in diabetic mice by stimulating
collagen remodeling, angiogenesis, and re-epithelialization [113].

There is a growing interest in the role played by the inflammatory/immune response
in the pathogenesis of periodontitis [114]. Du et al. have proposed the direct injection of
allogeneic bone-marrow-derived MSCs into the periodontal defect of rats, suggesting how
powerful the anti-inflammatory and immunomodulatory function may be in the periodon-
tal repair [115]. However valuable, in vivo models only give proof-of-concept preparatory
evidence that is to be construed as preliminary to human randomized clinical trials and
systematic reviews. No such level of evidence has been achieved so far, unfortunately, in
this field.

3.1.2. Regenerating the Periodontium

Among the currently available procedures, guided bone regeneration entails the place-
ment of a membrane barrier under the soft tissue (to reduce the risk of infection) as a
scaffold or as a holding device for bone or bone substitute grafts [116]. Membranes deliver-
ing antimicrobial or growth-stimulating agents are also available [117]. From an anecdotal
point of view, the case report of a bone defect treated with a 3D-printed polycaprolactone-
based scaffold, enriched with platelet-derived growth factors, which was still in place at
one-year follow-up, is noteworthy [118]. However, skepticism remains considering that,
often, implanting bone substitute materials into the periodontal defects resulted in the
long junctional epithelium, rather than in well-organized fibers connecting the adjacent
cementum and bone [119].

For an ideal PDL regeneration to occur, highly organized collagen fibers should be
properly re-inserted perpendicularly to bone and cementum. The importance of using
MSCs for regenerating the periodontium was demonstrated with a dog model [120], which
could highlight the active role of these cells in outperforming the natural repair. Several
pre-clinical studies have described the formation of new PDL-like tissues via the delivery
of PDLSCs [121] BMMSCs [115], ASCs [122], and even induced pluripotent stem cells
(iPSCs) [123].

To date, according to Bartold et al., “the large number of animal studies carried out
have clearly shown that PDLSCs have the potential to form bone, cementum, periodontal
ligament-like structures and enhance overall periodontal regeneration” [117]. In compari-
son to other MSCs, PDLSCs seem more suitable for periodontal tissue engineering [122,123].
The consideration that very few cells attach to the recipient surfaces (alveolar bone and
cementum) has prompted the implementation of cell sheet technology.
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First described in 1993 [124], this technique is based on the use of poly-N-isopropyl
acrylamide (PIPA Am), as a cell culturing substrate. PIPA Am can support the growth of cell
monolayers at 37 ◦C and, owing to a temperature-sensitive unique feature, release them at
temperatures below 20 ◦C, avoiding the usual enzymatic degradation of integrins through
trypsin-EDTA. This is essential to maintain the integrin–fibronectin complex, whereby,
possibly enhancing the adhesion of the cell sheet to the denuded root surface [125]. Several
in vivo studies support this therapeutic approach [124–127] and made it conceivable to run
a human trial [117].

Despite the abundance of preclinical studies [128], the clinical effectiveness of peri-
odontal tissue engineering based on PDLSCs seems far from achieved. Stem cell therapies
are clinically in their infancy and may be hindered by safety and regulatory issues. The
long-term success of innovative procedures needs to be assessed in well-designed RCTs
before becoming standard of care. According to Novello et al. [129], up to 2019, only
two small RCTs using, respectively, PDLSCs [130] and DPSCs [131] could be included in
a meta-analysis with inconclusive evidence, suggesting a limited impact of MSC-based
therapy on periodontal regeneration. High-quality RCTs are needed to determine the
efficacy and safety potential of MSCs in this context.

3.2. Dental Pulp Restoring

Enamel and dentin are dissolved by acid-forming microorganisms during caries forma-
tion [132]. In proximity to the pulp, dentin contains odontoblast processes that are capable
of perceiving external stimuli [131,132]. Intratubular deposition of minerals is the first
response to pathologic stimuli, followed by the formation of reactionary dentin [133,134].
Rapidly progressing caries, however, may imbalance this mechanism by disrupting the
odontoblast layer, thereby, recruiting and activating MSCs to form reparative dentin (ter-
tiary dentin) to the site of action [20]. Moreover, as soon as microorganisms reach dentin, an
infection-related immune response is elicited within the pulp [135], spanning from an ini-
tially reversible, local inflammation to irreversible pulpitis [136]. Odontoblasts, supported
by dendritic cells, trigger the innate immune response through antigen presentation [137].
Upon activation of toll-like receptors (TLRs), a type of pattern recognition receptors (PRRs),
proinflammatory cytokines are produced, recruiting circulating immune cells [138]. As
the caries lesion deepens, the immune response intensifies, leading to the accumulation of
lymphocytes, neutrophilic granulocytes, and macrophages [136]. In addition, small blood
vessels start sprouting in the injured area of the pulp, while dendritic cells interact with
nerve fibers [139].

Therefore, to prevent pulp degeneration, it is mandatory to limit the inflammatory
and immune reaction, which can only be achieved if the microbiological insult is timely
kept under control through the removal of caries and cavity sealing. An intact odontoblast
layer enables proper healing, while loss of the odontoblast layer, owing to pathologic noxae
or pulp exposure, entails their replacement by odontoblast-like cells. These cuboidal cells
secrete reparative dentin, subverting the normal histology of the dentin–pulp interface.
Provided that the pulp has not undergone irreversible inflammation, it is possible to apply
bioactive materials to the exposed pulp (direct pulp capping) to facilitate the deposition of
reparative dentin, the so-called bridging [140]. To improve this option, clever attempts have
been made to design advanced materials such as biodegradable collagen sponges imbued
with low doses of small molecule glycogen synthase kinase (GSK-3) antagonists. In their
study on mice, Neves et al. [141] reported scaffold colonization by pulp cells resulting in
almost complete mineralization and closure of the lesion. The same model was applied to
rats, suggesting that this enhancement of natural reparative dentinogenesis holds potential
for future clinical applications [142]. Although this approach has proven unable to attain
tubular dentin, it paves the way toward sophisticated repair strategies.

As the inflammatory process of the dental pulp is localized, affected areas may be
selectively amputated (partial or total pulpotomy) in the course of treatment [134,142,143],
possibly promoting healing of the remaining tissue [144]. If the microbiological load is so
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strong as to induce an uncontrolled thorough inflammation, the pulp undergoes necrosis,
and root canal therapy is required, which implies disinfection and filling of the root canals
with a synthetic material. This may hinder the long-term survival of teeth whose root devel-
opment has not been completed [145]. Pulp regeneration could enable root development,
ensuring better outcomes [146]. This goal was first attempted in the early 2000s [146,147]
by inducing canal bleeding and adding bioactive cement. Although histologically differ-
ent from the pulp, a vascularized and innervated tissue was obtained [148,149], capable
of maintaining thermal sensitivity and ensuring root completion [150–152]. This proce-
dure, known as “guided endodontic repair” [153], is currently performed following the
guidelines and indications issued by professional societies [154].

Researchers have, nevertheless, focused their attempts on more ambitious strategies,
possibly resulting in regeneration rather than repair. Several concepts have been proposed
and assessed in terms of clinical feasibility over the past decade [155]. Stem cell therapy
with autologous CD105+ cells was proposed successfully in dogs [156]. Briefly, after
pulpectomy in fully formed teeth, ex vivo expanded progenitor cells were loaded on
carriers with stromal cell-derived factor-1 (SDF-1) and transplanted into root canals. By
day 14, a complete restitution ad integrum occurred, including nerves and blood vessels,
which is consistent with the expression of angiogenic/neurotrophic factors described in
CD105+ cells [157]. This approach was also proven in human patients who had autologous
mobilized DPSCs reinserted into pulpectomized teeth through atelocollagen scaffolds with
granulocyte colony-stimulating factor (G-CSF) [31]. Similarly, promising results could
be attained in injured immature permanent teeth by using SHED in a controlled clinical
trial [33].

Albeit fascinating, the procedure described above seems hardly transferrable to ev-
eryday clinical practice. To harvest cells, one needs at least either a healthy tooth to be
discarded or previous storage in a cell bank [158]. Moreover, cell isolation and expansion
are time-consuming, expensive, and usually not performed by clinics.

Therefore, over the last years, in situ tissue engineering has gained increased interest.
It aims to exploit endogenous stem cell sources [159] to bypass ex vivo cell manipulation.
To harness inherent bodily regeneration, it is paramount to prepare a suitable milieu that
enhances the homing of local cells [160]. After cell colonization, capillaries and nerve
fibers may grow within the scaffold, eventually mimicking the original pulp. A key factor
is the selection of the best signaling cues endowed with chemotactic and proliferative
activity, namely, growth factors, and a variety of proteins [158,160,161]. Furthermore, many
studies have been focused on assessing the optimal material features to develop customized
scaffolds for pulp tissue engineering [162–166]. Should part of the dental pulp be intact
and vital, cells could be conveniently mobilized from it into a scaffold material [167].

MSC-derived exosomes can be useful also for dental pulp regeneration, leading to
the increased expression of specific proteins, promoting vascularization, modulating the
interaction between epithelial and mesenchymal cells. Exosomes derived from DPSCs
cultured under odontogenic differentiation conditions triggered dental pulp-like tissue
regeneration in a tooth root-slice model, such as increased expression of DMP1, DPP,
and active blood vessels [168]. Dental pulp is highly vascularized, and DPSC-exosomes
contribute to the vascularization by activating the Notch signaling pathway, promoting
pro-angiogenic factor expression, and tube formation of human umbilical vein endothelial
cells [168].

DPSCs exosomes have been studied in a limited number of papers [167–174]. They
showed a proangiogenic action [169,171], they can stimulate BMSCs migration and pro-
liferation [175], and show strong immunomodulatory potential, affecting CD4+ T cells
differentiation toward a T reg, despite a T helper 17 phenotype.

Exosomes derived from SCAP have been recently studied and promote BMMSCs-
induced dentinogenesis with dentin-pulp complex regeneration, after subcutaneous im-
plantation into SCID mice [176]. They showed anti-apoptotic activity on odontoblasts,
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also in inflammatory conditions, suggesting their protective role during inflammatory
conditions [177].

Despite in vivo evidence and promising case reports, the translation of in situ tissue
engineering into humans seems still unattained. Similarly, the regeneration of the dentin
pulp complex as a whole owing to the interconnection of its components [178], albeit
theoretically feasible [179], is hardly implementable at a clinical level to date.

4. Conclusions

The homeostasis of the oral cavity depends on the balance among the oral microbiome,
the rate of inflammation, and the adaptive bone remodeling of the alveolar bone. Once
inflammation takes over, irreversible conditions can occur, causing, for instance, periodon-
tal disease and loss of alveolar bone. The anti-inflammatory and multi-differentiating
abilities of MSCs allow their use in regenerative medicine. Adult MSCs can be harvested
from different tissues and show a broad differentiation potential. Nonetheless, since MSCs
maintain a memory of their origin, we believe that to treat diseases of the oral cavity, the
usage of mouth-derived MSCs is advisable. These cells are present in different sites of
the oral cavity and a relevant issue is also the possibility to treat patients with autologous
MSCs, which further reduces the risk of adverse immune responses. Extracellular vesicles,
which contain the curative potential of MSCs, are surely intriguing and open a wide variety
of therapeutic perspectives. Future challenges are represented by the development of
clinical protocols based on a standard preparation of biological products derived from each
patient. To this end, the reduction of the cost/benefit ratio will play a major role in making
the clinical procedures affordable. Similarly, accumulating clinical evidence on the safety
and efficacy of the innovative protocols will support a paradigm shift from current to novel
treatments. In most cases, therapy based on oral-cavity-derived MSCs seems to be quite
efficient; however, due to relatively poor data available in literature, safety concerns may
be raised, demanding that any potential risk be further investigated, above all in terms
of long-lasting observations. One of the few and most recent works reporting results on
MSCs’ safety investigated the pulp regenerative potential and transplantation safety of
DPSCs in pulpectomized teeth in dogs, showing neither toxicity nor adverse events after
their transplantation [180]. Based on these premises, furthermore, in vivo studies regarding
potential adverse effects of these MSCs are mandatory.
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