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Abstract

Background: Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition
of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron
uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and
T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but
controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular
damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured
cardiomyocytes and ensuing apoptosis.

Methods: Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time
fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was
quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake
was assessed by cell pretreatment with specific blockers of LTCC and TTCC.

Results: Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via
mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the
uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from
iron-induced apoptosis.

Conclusion: Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but
not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological
indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would
seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells.
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Introduction

As an essential element for almost all living organisms, iron

serves as a critical component in different metabolic processes

including oxygen transport and storage, DNA, RNA and protein

synthesis, and electron transport [1]. Tight regulation of iron

concentrations is required for maintenance of cellular function,

while excessive iron leads to generation of oxidative stress by

increasing production of reactive oxygen species [2–4]. Of the

different organs, the heart is particularly vulnerable to iron toxicity

[5].

Iron overload cardiomyopathy (IOC) is well documented in

patients with b-thalassemia major and is an important cause of

morbidity and mortality [6–9]. Clinical manifestations include

systolic and diastolic ventricular dysfunction, cardiac arrhythmias,

and end-stage cardiomyopathy [5,8,10,11]. However, the mech-

anisms of iron-induced subclinical cardiac dysfunction and end-

stage cardiomyopathy remain unclear. Progressive loss of cardio-

myocytes, albeit at a low level, through apoptosis is believed to

contribute to the remodeling process and ventricular dysfunction

in heart failure [12–17]. There is, however, a paucity of data on

the phenomenon of cardiomyocyte apoptosis and the pathway

involved in the setting of iron overload.

Under physiologic condition, iron uptake into cardiomyocytes is

mediated through transferrin-transferrin receptor-mediated endo-

cytosis with negative feedback regulatory mechanisms [18].

However, under iron overloading conditions, transferrin becomes

saturated and excess plasma iron will present as non-transferrin-

bound iron (NTBI), which contributes to the intracellular labile

iron pool and the generation of reactive oxygen species [9].

Reported mechanisms of NTBI entry into cardiomyocytes are

nonetheless controversial [19]. While some studies have proposed

L-type calcium channels (LTCC) to be a major pathway for NTBI

entry [20–22], others suggest that T-type calcium channel (TTCC)

may be the alternative portal of entry [23,24]. However, direct
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evidence for possible protective effects of calcium channel blockers

against iron-induced cardiomyocyte apoptosis is lacking.

Using HL-1 cardiomyocytes, a spontaneously contracting

cardiomyocyte cell line that expresses both LTCC and TTCC

molecularly and functionally [25–27], together with the real-time

technique tracing cellular iron uptake and flow cytometry, we

explored (i) the phenomenon of and mechanisms involved in

cardiomyocyte apoptosis induced by iron overload, (ii) the effects

of LTCC and TTCC blockers on Fe(II) and Fe(III) entry into

cardiomyocytes, and (iii) the potential protective effect on iron-

induced cardiomyocyte apoptosis by calcium channel blockade.

Materials and Methods

Cell culture
HL-1 cardiomyocytes were kindly provided by Prof. W.C.

Claycomb (Louisiana State University Health Science Center,

New Orleans, LA, USA) who created the cell line [25]. HL-1 cells

were established from the AT-1 mouse atrial cardiomyocyte

tumor, and can be serially passaged while maintaining contractile

phenotype. The cells were grown in culture vessels pre-coated with

0.02% gelatin (Difco, Fisher Scientific, Suwanee, GA, USA) -

5 mg/ml fibronectin (Sigma, St Louis, MO, USA) solution at 37uC
in a humidified 5% CO2 incubator, maintained in Claycomb

Medium (SAFC Biosciences, Sigma) supplemented with 10% fetal

bovine serum (Sigma), 0.1 mM norepinephrine (Sigma), 2 mM L-

glutamine (Invitrogen, Life Technologies, Grand Island, NY,

USA) and penicillin/streptomycin (100 U/ml:100 mg/ml) (Invi-

trogen). The medium was changed approximately 5 days per

week.

Iron treatment and calcium channel blockade
For calcein green-acetomethoxy (CALG-AM) fluorescent assay,

HL-1 cells were seeded at 66104 cells/well in gelatin-fibronectin

coated 96-well black CulturPlate (PerkinElmer, Waltham, Massa-

chusetts, USA). Cells reached around 90% confluence after 24 hr

culture. L-type calcium channel blockers including amlodipine

(Cipla, India) and verapamil (Abbott, Ludwigshafen, Germany)

and TTCC blocker, efonidipine (Sigma), were loaded at 0.1, 1, 10,

100 mM in assay buffer, which consisted of HEPES-buffered

saline, pH 7.4 (HBS) supplemented with 0.5 mM probenecid

(Sigma), 30 min before iron challenge, and the concentrations

were maintained during the assay. FeCl3 was loaded at 150, 300,

600 mM with and without 1 mM ascorbic acid in assay buffer,

which has been indicated to represent Fe(II) and Fe(III)

respectively [24,28,29]. Controls (with and without ascorbate)

was defined as the conditions without calcium channel blockers

and iron.

For flow cytometric assay, HL-1 cells were seeded at a density of

1.56105 cells/ml in gelatin-fibronectin coated plates. After 24 hr

incubation, culture medium was changed into norepinephrine-free

medium containing 2% fetal bovine serum, 2 mM L-glutamine

and penicillin/streptomycin (100 U/ml:100 mg/ml), and also 150,

300, 600 mM FeCl3 with and without 1 mM ascorbic acid for test

groups. Calcium channel blockers were pre-loaded at 1 mM

60 min before iron challenge without media change before

treatment endpoint. For treatments with iron chelator deferiprone

(Apotex, Toronto, Canada), 10 or 100 mM deferiprone was loaded

20 min after iron loading. Blank controls (with and without

ascorbate) was defined as the conditions without calcium channel

blockers, chelator and iron loading. After 72 hr of incubation, cells

in the control group had confluency at around 90%, while cells in

iron treatment groups had less. Cells were gently detached by

0.05% Trypsin-EDTA (Invitrogen) for flow cytometric assays.

CALG-AM fluorescent assay
To trace iron transport in live HL-1 cells, CALG-AM

fluorescent assay was used [30]. Non-fluorescent CALG-AM is

converted to green-fluorescent calcein once diffuses into live cells,

going through acetoxymethyl ester hydrolysis by intracellular

esterases. Cells were exposed to 0.25 mM CALG-AM (Molecular

Probes, Life Technologies, Grand Island, NY, USA) at 37uC for

30 min in Claycomb Medium containing 10 mM Na-HEPES

(Sigma). Cells were then rinsed with HBS, followed by the

perfusion of assay buffer, HBS supplemented with 0.5 mM

probenecid, which prevented leakage of anionic fluorescent probes

from cells. Calcium channel blockers and ascorbic acid were

added simultaneously under the conditions mentioned. Fluores-

cent intensity was measured using fluorescent plate reader Fusion

(Packard, Perkin Elmer Life Sciences, Boston, MA, USA) at

excitation/emission wavelength 485 nm/520 nm. Local average

reading at 10 min after assay buffer loading was set as initial

fluorescence level. FeCl3 was loaded at 20 min after the first plate

reading (Figure 1A). Calcein was quenched by intracellular labile

iron, and hence, the fluorescence intensity was inversely propor-

tional to the level of labile intracellular iron. Iron entry was

terminated by adding 100 mM impermeant chelator diethylene-

triamine-pentaacetic acid (DTPA) at 115 min after assay buffer

loading. Identification of intracellular labile iron was verified by

100 mM permeant iron chelator deferasirox (Exjade, ICL670) at

136 min after assay buffer loading to reverse the calcein-Fe

quenching. Control was defined as treatments without addition of

calcium channel blockers, iron, DTPA and ICL670. Experiments

were performed in triplicate. Each reading at any given time was

normalized to the local initial fluorescence level.

Annexin V/PI assay
Fluorescein isothiocyanate (FITC) Annexin V Apoptosis Detec-

tion Kit (Becton Dickinson, Franklin Lakes, NJ, USA) was used

according to manufacturer’s instructions. Briefly, cells from

cultures were collected and washed with cold PBS and then

resuspended in annexin V binding buffer. After staining with

annexin V-FITC and PI for 15 min at room temperature in the

dark, cells suspended in annexin V binding buffer were tested by

LSR II flow cytometer (Becton Dickinson). For each measure-

ment, at least 10,000 cells were counted. Flow data were analyzed

by FlowJo 8.8.4 (Tree Star). Only single cell events were gated out

for analysis.

Activated caspase-3 assay
FITC Active Caspase-3 Apoptosis Kit (Becton Dickinson) was

used according to manufacturer’s instructions. Briefly, cells from

culture were collected and washed with cold PBS, then fixed and

permeabilized in BD Cytofix/Cytoperm solution for 20 min on

ice. After washing with BD Perm/Wash buffer, cells were stained

with FITC-conjugated anti- active caspase-3 antibody for 30 min

at room temperature. With further wash with Perm/Wash buffer,

cells suspended in Perm/Wash buffer were tested by LSR II flow

cytometer. Flow cytometry was performed as aforementioned.

JC-1 assay
The mitochondrial membrane potential (Dy) of HL-1 cardio-

myocytes was evaluated by Flow Cytometry Mitochondrial

Membrane Potential Detection Kit (Becton Dickinson). JC-1

(5,59,6,69-tetrachloro-1,19,3,39-tetraethylbenzimidazolcarbocya-

nine iodide) is a fluorochrome widely used to evaluate the status

of Dy. Mitochondria with normal Dy increases JC-1 uptake,

which leads to the formation of JC-1 aggregates that emit red
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fluorescence at 590 nm. In depolarized mitochondria, low

concentration of JC-1 inside would stay at monomer form,

emitting green fluorescence maximally at 527 nm. The staining

protocol followed manufacturer’s instructions. Briefly, cells were

collected and incubated in JC-1 solution for 15 min at 37uC in

CO2 incubator. After subsequent washes with Assay Buffer, cells

were resuspended in Assay Buffer for flow cytometry by LSR II

as aforementioned.

Statistical analysis
Data are presented as mean 6 SEM. Statistical analysis was

performed using one-way analysis of variance (ANOVA) with post

test for multiple comparisons, and unpaired t test for comparisons

of two groups by GraphPad Instat 3 (GraphPad Software, Inc.,

San Diego, CA, USA). A p,0.05 was regarded as statistically

significant.

Results

Exogenous iron entered cardiomyocytes in a time- and
dose- dependent manner

To detect intracellular labile iron, iron influx was visualized in

real time by tracking the gradual decrease of fluorescence signals

in the live HL-1 cardiomyocytes. Within the detection period from

10 to 70 min after iron loading (Figure 1A), we observed iron

entering HL-1 cells in a time-dependent manner. With elimination

of extracellular iron by addition of the impermeable chelator

DTPA, the subsequent addition of permeable chelator ICL670

restored the calcein fluorescence quenched by labile iron

significantly, confirming that CALG-AM assay could assess

intracellular iron in HL-1 cardiomyocytes effectively.

Based on the difference of uptake rate at 70 min after iron

challenge with or without ascorbate, Fe(II) was found to be

significantly more permeable than Fe(III) (p,0.001) (Figure 1B).

Fe(III) showed a dose-dependent acquisition at 150, 300, 600 mM

loading. In contrast, Fe(II) achieved a near plateau loading at

150 mM (Figure 1B).

Iron loading induced cardiomyocyte apoptosis
Annexin V/Propidium Iodide (PI) flow cytometric assay was

used to quantify the amount of apoptosis. Cells positive for

annexin V but negative for PI represented those undergoing early

apoptosis, while cells stained positive for both annexin V and PI

represented the population undergoing late apoptosis or necrosis

[31,32]. By quantifying the percentage of total annexin V positive

cells (lower and upper right quadrant in the representative flow

cytometry charts as shown in Figure 2A), we found a dose-

dependent increase in apoptotic cell population when HL-1 cells

were treated with FeCl3 with or without ascorbic acid for 72 hr

(Figure 2A) (pH of each condition changed within 7.4–7.8). Such

increase in apoptosis was noted in cells treated with concentrations

of FeCl3 at $300 mM (p,0.001). At the concentration of 600 mM,

Fe(II) induced significantly more apoptosis than Fe(III) (p,0.01).

To further define the underlying apoptotic mechanism of iron

overload on HL-1 cardiomyocytes, caspase-3 activity and mito-

chondrial membrane potential change were also assessed. In line

with the findings of annexin V/PI assay, iron overload induced a

dose-dependent activation of caspase-3 (Figure 2B) and alteration

of mitochondrial membrane potential (Figure 2C), which suggest-

ed an involvement of the intrinsic apoptotic pathway.

High-dose LTCC but not TTCC ameliorated Fe(III) entry
under condition of iron load

The potential roles of LTCC and TTCC for iron entry into HL-

1 cardiomyocytes were evaluated using CALG-AM fluorescent

assay, with treatments with LTCC blockers, amlodipine and

verapamil, and TTCC blocker, efonidipine, at 30 min prior to

iron loading. The blockade effects for Fe(III) (Figure 3A) and Fe(II)

(Figure 3B) treated at 150, 300, 600 mM were assessed at

logarithmic increments of calcium channel blocker concentrations

from 0.1 to 100 mM. The time point of assay was at 70 min after

iron loading, which was approximately 100 min after administra-

tion of different calcium channel blockers. Fluorescent signal

changes were normalized to respective negative controls of each

treatment arm.

Compared with the increase in iron entry into cells under Fe(III)

treatment alone with decreased fluorescent signals, pretreatment

with 10 to 100 mM of amlodipine and verapamil significantly

Figure 1. Exogenous iron entered cardiomyocytes in a time-
and dose- dependent manner. (A) Fe(III) uptake by live HL-1 cells
treated at 3 indicated doses, detected by CALG-AM fluorescent assay.
Fluorescence intensity was carried out by fluorescent plate reader
Fusion. Local average reading at 10 min was set as initial fluorescence
level. Each reading at any given time was normalized to the local initial
fluorescence level. FeCl3 was load at 30 min. Impermeant chelator DTPA
was loaded at 115 min; permeant iron chelator ICL 670 was loaded at
136 min. Control was defined as treatment without addition of iron,
DTPA and ICL670. (B) Fe(III) and Fe(II) uptake at 100 min of the
assessment time point indicated in (A), i.e. 70 min after iron loading.
FeCl3 loaded with ascorbate represented Fe(II) treatment. Both controls
with and without ascorbate were shown. *, {, `, p,0.05; **, {{, ``, p,
0.01; ***, {{{, ```, p,0.001; * versus respective controls. The results
represented as mean 6 SEM of five independent triplicate experiments.
doi:10.1371/journal.pone.0112915.g001
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increased normalized fluorescent signals (Figure 3A). The effect

was more pronounced with 300 mM and 600 mM than 150 mM of

Fe(III) load. These findings suggested blockade of Fe(III) entry by

both LTCC blockers. However, efonidipine did not exert

significant blocking effect on iron entry in Fe(III) overload.

Trend of LTCC and TTCC blockade of Fe(II) entry
With regard to Fe(II) loading condition, increased trends of

fluorescent signals were observed with increased LTCC and

TTCC blockade (Figure 3B). However, statistical significance was

only found with pretreatment using 100 mM amlodipine.

Calcium channel blockers could not salvage
cardiomyocytes from iron-induced apoptosis

To further explore whether calcium channel blockade could

reduce HL-1 cardiomyocyte apoptosis induced by iron overload,

annexin V/PI assay was performed on HL-1 cells loaded with

Fe(III) and Fe(II) at different concentrations, with pretreatment of

LTCC and TTCC blockers at a concentration of 1 mM. There

was no significant decrease in apoptotic cell population, whether

loaded with Fe(III) (Figure 4A) or Fe(II) (Figure 4B).

The findings suggested that calcium channel blockers at this

concentration had no protective effects on HL-1 cells against iron-

induced apoptosis. However, at the doses of 10 mM or 100 mM,

amlodipine or verapamil, which showed significant iron blockade

effect on HL-1 cells (Figure 3), appeared to have high cellular

toxicity (Figure 5A). Pretreatment of TTCC blockers in iron

treated HL-1 cells led to similar or even worse effects.

By contrast, the commonly-used iron chelator deferiprone

induced less toxic effect under non-iron overloaded condition

(Figure 5A) and further showed protective effect on iron-induced

apoptosis of cardiomyocytes (Figure 5B).

Discussion

The present study shows that i) iron induces apoptosis of HL-1

cardiomyocytes via the mitochondria-mediated caspase-3 depen-

dent pathway, ii) blockade of LTCC but not TTCC prevented

Fe(III) but not Fe(II) entry under iron overload condition and (iii)

blockade of neither LTCC nor TTCC could salvage the cultured

cardiomyocytes from iron overload induced apoptosis.

Iron-induced cardiomyocyte apoptosis
The levels of plasma NTBI in thalassemia patients under iron

overload are variable, with an estimation suggested to be 0-25 mM

[33]. For the proof of principle, comparable iron concentrations as

previously reported were used in the current in vitro study [24,34].

The apoptotic effect of iron overload on HL-1 cells and its

involvement of mitochondria-dependent pathway were suggested

Figure 2. Iron overload induced cardiomyocyte apoptosis. HL-1 cells were treated with Fe(III) and Fe(II) for 72 hr, followed by (A) annexin V/PI
flow cytometry assay, (B) active caspse-3 flow cytometry assay, and (C) JC-1 flow cytometry assay. *, {, p,0.05; **, {{, p,0.01; ***p,0.001; * versus
respective controls. The results represented as mean 6 SEM of five to six independent experiments.
doi:10.1371/journal.pone.0112915.g002

Fe Induced Cardiomyocyte Apoptosis and Ca Channel
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by the findings of increase in phosphatidylserine exposure,

increased caspase-3 activity, and a dose-dependent drop on

mitochondrial membrane potential in iron-overloaded HL-1 cells.

Our results are in agreement with the in vivo studies suggesting the

cardiac apoptotic effect of iron overload on mice [20] and gerbils

[35] as revealed by increased nucleic DNA fragmentation and

caspase activity. Although other study suggesting the necrotic

effect of iron overload on cardiomyocytes [36], more evidences

will be of interest to the further mechanism behind, including the

postulated cross link between apoptosis and necrosis in series or

parallel [37], as well as the differences among experimental

models.

Fe(II) and Fe(III) entry into cardiomyocytes
As both redox states of iron have been shown to form cardiac

iron deposit [28], our study explored both ferric and ferrous irons.

The results agree with those reported previously regarding the

more permeative nature of ferrous iron, which is maintained with

ascorbate as a reducing agent [24], as evaluated by kinetic

parameters [28,38]. Previous studies have implicated either the

LTCC or TTCC as the main candidate for NTBI entry into

cardiomyocytes. The controversies have in part been related to

different models and methods used.

The effect of LTCC blockade on iron entry
Calcium channels play an important role in myocardial

contractility and remain open for long duration (.400 ms) in

each contraction cycle [39]. Except for the primary transport of

Ca2+, LTCC also facilitate transport for many other divalent

cations including Fe2+, Co2+ and Zn2+ [22,40,41]. Previous studies

suggest that LTCC is the major portal for iron uptake into

cardiomyocytes in IOC [20–22]. For a further mechanism, we

assessed the role of LTCC in iron-overloaded cardiomyocytes by

the real-time approach.

Our results showed significant reduction of ferric iron ingress by

both LTCC blockers at higher doses of iron treatment, 300 mM

and 600 mM, but not at lower dose of iron at 150 mM. This

phenomenon implicated the classic concept of iron delivery

through transferrin at lower dose of iron treatment [9], while

confirming the blockade effect from LTCC blockers toward

excessive iron, Fe(III) from this result, uptake into cardiomyocytes

[20–22]. It is worth noting, however, that LTCC blockers

displayed their iron blockade effect only at concentrations of 10

and 100 mM, higher than the therapeutic serum levels of 0.1 to

1 mM [42,43]. Hence, the clinical translation of the use of LTCC

blockers to prevent iron-induced cardiotoxicity remains uncertain.

Figure 3. Iron blockade effects of LTCC and TTCC blockers on iron-overloaded cardiomyocytes. In this CALG-AM fluorescent assay, HL-1
cells were pretreated with LTCC blockers, amlodipine (AML) and verapamil (VER), and TTCC blocker, efonidipine (EFO), at logarithmic scale from 0.1 to
100 mM. 3 indicated doses of Fe(III) (A) and Fe(II) (B) were loaded 30 min after blocker treatment. Fluorescence readings were at 70 min after iron
loading. Fluorescence signal changes were normalized to respective negative controls of each treatment arm. *p,0.05; **p,0.01; ***p,0.001. The
results represented as mean 6 SEM of four independent triplicate experiments.
doi:10.1371/journal.pone.0112915.g003
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It is widely recognized that the promiscuous property of LTCC

for the transport of other metals is limited to divalent, but not

trivalent cations [22,40,41,44]. Interestingly, our data indicated a

significant reduction of Fe(III) uptake, but only a trend to reduce

Fe(II) uptake, at the presence of LTCC blockers. Together with

evidence that a reduction of Fe(III) is required for NTBI uptake

into cardiomyocytes [22,28], it raised the possibility that LTCC

blockers achieve the effect on NTBI blockade not by stopping

Fe(II) entry directly but through alternative mechanism. Recent

studies provide an alternative explanation on the role of LTCC in

NTBI entry. LTCC has been shown to contribute to the activation

of endocytotic machinery in neuronal cells [45]. Interestingly,

endocytosis has also been demonstrated to be a possible pathway

for macromolecule-associated NTBI uptake into various cell types

including cardiomyocytes [38,46]. As LTCC blockade interferes

calcium-induced endocytosis, a subsequent interruption of Fe(III)

uptake via such pathway can be a possible speculation.

The effect of TTCC blockade on iron entry
With abundant expression in embryonic cardiomyocytes, and

subsequent suppression shortly after birth [47], TTCC has been

shown to reappear in murine hearts with pathological abnormal-

ities including hypertrophy [48], myocardial infarction [49] and

also thalassemia [23,24]. Using efonidipine, the TTCC blocker,

Kumfu et al. shows effective blockade of iron uptake both in vitro

and in vivo using the thalassemic mice model, together with the

protection effects as assessed in vivo, while LTCC blockers

appeared inferior [23,24]. However, in our present experimental

model, with pretreatment of efonidipine, uptake of neither Fe(II)

nor Fe(III) was significantly decreased in iron-overloaded HL-1

cardiomyocytes, implicating an insignificant role of TTCC in HL-

1 cells for excessive iron uptake.

Differences in study models
The mechanisms and portal of iron entry into cardiomyocytes

under iron overload condition have been controversial, in part

being related to differences in experiment approaches, types of

iron load models, and the nature of cardiomyocytes explored. In

the present study, immortalized HL-1 atrial myocytes were used,

which have the advantages of being the only cardiomyocyte cell

line currently available that continuously divides and spontane-

ously contracts while retaining a differentiated adult cardiac

phenotype [25,26]. Apart from the superior cardiac properties and

cell purity compared with isolated primary cardiomyocytes, HL-1

cells express, from molecular and functional regards, both LTCC

and TTCC in vitro [27]. In addition, atrial myocytes may provide

a model for the study of cardiac iron toxicity, given that atrial

dilation and dysfunction have been reported to be earlier markers

Figure 4. Calcium channel blockers could not salvage HL-1 cells
from iron overload induced apoptosis. HL-1 cells were pretreated
with LTCC blockers AML or VER, and TTCC blocker EFO for 1 hr,
followed by Fe(III) (A) and Fe(II) (B) loading for 72 hr. Controls were
defined as treatments without blockers. Apoptosis was determined by
annexin V/PI flow cytometry assay. Total annexin V positive cell portion
was counted. The results represented as mean 6 SEM of three
independent experiments.
doi:10.1371/journal.pone.0112915.g004

Figure 5. Cellular toxicity of LTCC blockers and the comparison
with deferiprone. (A) Apoptotic effects of 10 or 100 mM AML, VER and
deferiprone on HL-1 cells for 72 hr were assessed by annexin V/PI flow
cytometry assay. (B) HL-1 cells were challenged with 300 mM Fe(III) or
Fe(II), followed by treatments of 10 or 100 mM deferiprone 20 min after
iron loading. Apoptosis was determined after 72 hr incubation by
annexin V/PI assay. Data were shown as total annexin V positive cell
portion with normalization to respective negative controls. * p,0.05; **
p,0.01. The results represented as mean 6 SEM of three independent
experiments, except 100 mM AML and VER (n = 1).
doi:10.1371/journal.pone.0112915.g005

Fe Induced Cardiomyocyte Apoptosis and Ca Channel
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than depressed ventricular function of cardiac iron toxicity in

patients with thalassemia major [50].

LTCC blockade and cardiomyocyte apoptosis
For the therapy of IOC, protection of iron overload induced

cardiac apoptosis is apparently crucial beyond the maintenance of

regular iron metabolism. Such protection effect was presented in

our in vitro study by deferiprone, the effective iron chelator

commonly used in current clinical practice [51]. However, in our

assessment, none of the calcium channel blockers showed

significant protection effect on iron overload induced apoptosis,

though LTCC blockers, in particular amlodipine, presented slight

protection at 600 mM of ferric or ferrous iron challenge. This

result is to a certain extent contrary to the previous finding that

amlodipine and verapamil attenuate cardiac apoptosis in iron-

overloaded mice evaluated by TUNEL assay [20]. One possible

explanation is that NTBI initiates apoptosis of cardiomyocyte prior

to its entry through cell membrane; and for the in vivo model,

apart from the effect on NTBI blockade, it cannot rule out the

possible contribution from the impacts of LTCC blockers on other

physiological conditions which subsequently reduce such iron

induced apoptosis. Furthermore, the different susceptibility to iron

overload between atrial and ventricular cardiomyocytes should

also be taken into consideration [52]. Despite the demonstrable

ability of LTCC blockers to inhibit iron ingress into the cytosol of

cardiomycytes, their apparent failure to protect them from

apoptosis might be due to various properties associated with iron

traffic within cells, particularly between cytosol and into

mitochondria. As shown earlier [38,53,54], a major fraction of

exogenously added iron can access mitochondria, by mechanism

that seemingly by-pass the labile iron pool, which is sensed by the

calcein probe, and it can even be refractory to some intracellular

chelators [38]. While those features would imply that LTCC might

provide a path for NTBI entry into cardiomyocytes, they also

indicate that such paths might not be relevant for trafficking iron

across cytosol to mitochondria, particularly in the pathophysio-

logical context. Consequently, although the prevention of iron

ingress into cardiomyocytes was observed in treatment with LTCC

blockers at higher doses, due to their toxicity, at least shown in
vitro, further studies would be of importance for their protective

roles in iron-overloaded cardiomyocytes, and also for a better

understanding of the etiology of IOC.

Clinical implications
Apoptosis is rare in normal human heart. In all reported cases,

including those in failing hearts, apoptosis levels are substantially

lower than 1% as revealed by TUNEL assay [55]. Due to the poor

regenerative capacity of cardiomyocytes, a constant, albeit low,

level of apoptosis can have serious consequence. Apart from

limited studies showing the potential anti-apoptotic effect of

deferasirox [35] and taurine [4] in myocardium of iron-overloaded

murine model, little is known about the anti-apoptotic approach

for iron overload. Further studies on the mechanism of iron

induced apoptosis would provide novel targets for advanced

therapy against IOC.

Limitations
Several limitations to this study warrant discussion. Firstly, the

findings of the present in vitro study may reflect perhaps a

relatively acute effect of iron load on cardiomyocytes. Ideally, the

experimental protocols should be extended to longer duration with

lower iron levels. However, given the technical constraints

including the confounding influence of cell proliferation with

prolonged culture on fluorescent assay of iron entry and the need

for medium change with alteration in iron concentrations, we have

elected to adopt the current methodology. With regard to animal

studies, previous works have been done on mouse [20,24] and

gerbil [35], which mimic the effect of chronic iron overload better,

although results remained controversial. Secondly, we have not

assessed the effects of calcium channel blockade on cellular beating

in the present study. Calcium channel blockade may reduce

beating rate or cause cessation of cardiomyocyte contraction in
vitro [56,57]. Nonetheless, LTCC and TTCC have been shown to

remain functional in HL-1 cells without apparent contraction

[27,58]. The effect of cardiomyocytes beating rate on iron uptake,

however, requires further studies for its clarification. Thirdly,

although HL-1 cells are the only cardiomyocyte cell line that

retains contractile phenotype with differentiated cardiac charac-

teristics [25,26], they are established from AT-1 mouse atrial

cardiomyocyte tumor lineage. The different electrical properties,

including calcium kinetics, between atrial and ventricular myo-

cytes [52] may potentially lead to differences in response to iron

overload between HL-1 cells and ventricular cardiomyocytes merit

further studies. With advances in the induced pluripotent stem cell

technology, the use of human ventricular cardiomyocytes may be a

better model to study the effects of iron cardiotoxicity. Finally, we

have not assessed the detailed pro-apoptotic signaling pathways in

the present study. In mesenchymal stem cells [59,60], hepatocytes

[61], neuroblastoma cells [62] and gerbil [63], p38 and JNK are

activated under iron overload conditions. This would undoubtedly

be important when designing future studies.

Conclusions

In summary, our current study illustrated the patterns of iron

entry in HL-1 atrial myocytes under ferric or ferrous iron overload

condition. The blockade of LTCC but not TTCC was identified to

prevent labile ferric iron entry. The uptake of ferrous iron

probably involves other mechanism. As expected, iron overload

was shown to induce cardiac apoptosis via mitochondria-mediated

caspase-3 dependent pathways. However, LTCC blockers have

very limited protective effect toward iron induced apoptosis. Our

study provided a better understanding to the role of LTCC and

TTCC on NTBI uptake into cardiomyocytes, contributing to the

conceptual framework in the development of advanced therapeu-

tic strategy for IOC in combination with the current chelation

therapy.
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