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Facial expression recognition (FER) in uncontrolled environment is challenging due

to various un-constrained conditions. Although existing deep learning-based FER

approaches have been quite promising in recognizing frontal faces, they still struggle

to accurately identify the facial expressions on the faces that are partly occluded in

unconstrained scenarios. To mitigate this issue, we propose a transformer-based FER

method (TFE) that is capable of adaptatively focusing on the most important and

unoccluded facial regions. TFE is based on the multi-head self-attention mechanism

that can flexibly attend to a sequence of image patches to encode the critical cues

for FER. Compared with traditional transformer, the novelty of TFE is two-fold: (i) To

effectively select the discriminative facial regions, we integrate all the attention weights

in various transformer layers into an attention map to guide the network to perceive the

important facial regions. (ii) Given an input occluded facial image, we use a decoder

to reconstruct the corresponding non-occluded face. Thus, TFE is capable of inferring

the occluded regions to better recognize the facial expressions. We evaluate the

proposed TFE on the two prevalent in-the-wild facial expression datasets (AffectNet

and RAF-DB) and the their modifications with artificial occlusions. Experimental results

show that TFE improves the recognition accuracy on both the non-occluded faces

and occluded faces. Compared with other state-of-the-art FE methods, TFE obtains

consistent improvements. Visualization results show TFE is capable of automatically

focusing on the discriminative and non-occluded facial regions for robust FER.

Keywords: affective computing, facial expression recognition, occlusion, transformer, deep learning

1. INTRODUCTION

Facial expressions are the most natural way for humans to express emotions. Facial expression
recognition (FER) has received significant interest from psychologists and computer scientists
as it facilitates a number of practical applications, such as human-computer interaction, pain
estimation, and affect analysis. Although current FER systems have obtained promising accuracy
when recognizing facial images captured in controlled scenarios, these FER systems usually suffer
from considerable performance degradation when recognizing expressions in the wild conditions.
To fill the gap between the FER accuracy on the controlled faces and in-the-wild faces, researchers
start to collect large-scale facial expression databases in uncontrolled environment (Li et al., 2017;
Mollahosseini et al., 2017). Despite the usage of face images in the uncontrolled scenario, FER is still
challenging due to the existence of facial occlusions. It is non-trivial to solve the occlusion problem
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because facial occlusions are various and abundant. These facial
occlusions may appear in many forms, such as breathing masks,
hands, drinks, fruits, and other objects that might appear in front
of the human faces in our daily life. The facial occlusions may
block any other part of the face, and the variability of occlusions
would inevitably induce the decreased FER performance.

Previous studies usually handled FER under occlusion with
sub-region-based features (Kotsia et al., 2008; Li et al., 2018a,b;
Wang et al., 2020b), e.g., Kotsia et al. (2008) presented a
detailed analysis on occluded FER and conclude that FER will
suffer from more decreased performance with occluded mouth
than the occluded eyes. With the popularity of the data-driven
convolutional neural network (CNN) techniques, a number
of recent efforts on FER have been made on the collection
of large-scale facial expression databases and exploit CNN to
enhance the performance of FER. Li et al. (2018a) proposed to
decompose facial regions in the convolutional feature maps with
the manually defined facial landmarks and fused the local and
global facial representations via attention mechanism. However,
the recent CNN-based FER methods lack the ability to learn
global interactions and relations between distant facial parts.
These methods are not capable of flexibly attending to distinctive
facial regions for precise FER under occlusions.

Inspired by the observation (Naseer et al., 2021) that
transformers are robust to occlusions, perturbations, and domain
shifts, we propose a Transformer Architecture for Facial
Expression Recognition (TFE) under occlusions. Currently,
vision transformers (Dosovitskiy et al., 2020; Li et al., 2021)
have demonstrated impressive performance across numerous
machine vision tasks. These models are based on multi-head
self-attention mechanisms that can flexibly attend to a sequence
of image patches to encode contextual cues. The self-attention
in the transformers has been shown to effectively learn global
interactions and relations between distant object parts. A number
of following studies on downstream tasks such as object detection
(Carion et al., 2020), segmentation (Jin et al., 2021), and video
processing (Girdhar et al., 2019; Fang et al., 2020) have verified
the feasibility of the transformers. Given the content-dependent
long-range interaction modeling capabilities, transformers can
flexibly adjust their receptive field to cope with occlusions in data
and enhance the discriminability of the representations.

Intuitively, human perceives the facial expressions via several
critical facial regions, e.g., eyes, eyebrows, and corners of the
mouth. If some facial patches are occluded, human may judge
the expression according to the other highly informative regions.
To mimic the way that human recognizes the facial expression,
we propose a region selection unit (RS-Unit) that is capable
of focusing on the important facial regions. To be specific,
RS-Unit selects the discriminative facial regions and removes
the redundant or occluded facial parts. We then combine the
global classification token with the selected part tokens as
the facial expression representation. With the proposed RS-
Unit, TFE is able to adaptively perceive the distinctive and
unobstructed regions in facial images. To further enhance the
discriminability of the representation, we exploit an auxiliary
decoder to reconstruct the corresponding non-occluded face.
Thus, TFE is capable of inferring the occluded facial regions via

the unoccluded parts to better recognize the facial expressions.
Figure 1 illustrates the attention map of TFE on some facial
images. It is clear that TFE is capable of focusing on the critical
and unoccluded facial parts for robust FER.More visual examples
and explanations can be seen in section 4.2.1.

The contributions of this study can be summarized
as follows:

1. We propose a transformer architecture to recognize facial
expressions (TFE) from partially occluded faces. TFE consists
of a region selection unit (RS-Unit) that automatically
perceives and selects the critical facial regions for robust
FER. TFE is deployed to focus on the most important and
unoccluded facial regions.

2. To further enhance the discriminability of the facial
expression representation, TFE contains an auxiliary image
decoder to reconstruct the corresponding non-occluded face.
The image decoder is merely exploited during the training
process and incorporates no extra computation burden at
inference time.

3. Qualitative experimental results show the benefits and the
advantages of the proposed TFE over other state-of-the-art
approaches on two prevalent in-the-wild facial expression
databases. Visualization results additionally show that TFE is
superior in perceiving the informative facial regions.

2. RELATED WORK

We discuss the previous literatures that are related to
our proposed TFE, i.e., FER with occlusions and the
vision transformer.

2.1. Methods for FEE Under Occlusion
For FER tasks, occlusion is one of the inevitable challenges in
real-world scenarios. We just classify previous FER methods
into two classes: handcrafted features-based methods and deep
learning-based approaches.

Early FER under occlusion methods typically encode
handcrafted features from face samples, and then learn classifiers
based on the encoded features (Rudovic et al., 2012; Zhang et al.,
2014). Liu et al. (2013) proposed a novel FER method to mitigate
the partial occlusion issue via fusing Gabor multi-orientation
representations and local Gabor binary pattern histogram
sequence. Cotter (2010) introduced to use sparse representation
for FER. Especially, Kotsia et al. (2008) analyzed how partial
occlusions affect FER performance and found that FER suffers
more from mouth occlusion than the equivalent eyes occlusion.

Over the recent years, Convolution Neural Network (CNN)
has shown exemplary performance on many computer vision
tasks (Schroff et al., 2015; Krizhevsky et al., 2017; Li et al.,
2020). The promising learning ability of deep CNN can be
attributed to the use of hierarchical feature extraction stages
that can adaptively learn the features from the data in an end-
to-end fashion. There are many CNN-based FER works (Levi
and Hassner, 2015; Ding et al., 2017; Meng et al., 2017; Zeng
et al., 2018; Zhang et al., 2018; Li et al., 2019; Jiang et al., 2020).
For FER under occlusion, Li et al. (2018a) proposed a CNN
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FIGURE 1 | Attention maps of several facial images with real (A–D in top row) or synthesized (E–H in bottom row) occlusions. Our proposed TFE is capable of

perceiving the important facial regions for robust FER. A deep red means high attention. Better viewed in color and zoom in.

with attention mechanism (ACNN) to perceive facial expressions
from unoccluded or partially occluded faces. ACNN crops facial
patches from the area of important facial features, e.g., mouth,
eyes, nose, and so on. The selected multiple facial patches are
encoded as a weighed representation via a PG-Unit. The PG-
Unit calculates the weight of each facial patch according to its
obstructed-ness via an attention net. Based on this work, Wang
et al. (2020b) proposed to randomly crop relative large facial
patches instead of small fixed facial parts and refine the attention
weights by a region bias loss function and relation-attention
module. Ding et al. (2020) proposed an occlusion-adaptive deep
network with a landmark-assisted attention branch network to
perceive and drop the corrupted local features. Pan et al. (2019)
introduced to train two CNNs from non-occluded facial images
and occluded faces, respectively. Subsequently, they constrain
the distribution of the encoded facial representations from two
CNNs to be close via adversarial learning.

Our proposed TFE differs from previous CNN-basedmethods
in two ways. One, TFE does not rely on facial landmarks for
regional feature extraction. It is because the facial landmarks
may show considerable misalignments under severe occlusions.
Under this condition, the encoded facial parts are not part-
aligned or semanticmeaningful. Two, TFE is a transformer-based
and the self-attention mechanism in the transformer that can
flexibly attend to a sequence of image patches to encode the
contextual cues. TFE consists of a region selection unit (RS-Unit)
that automatically perceives and selects the critical facial regions
for robust FER. TFE is potentially to obtain higher FER accuracy
on both non-occluded and occluded faces. We will verify this in
section 4.

2.2. Vision Transformer
Transformer models have largely facilitated research in machine
translation and natural language processing (NLP) (Waswani
et al., 2017). Transformer models have become the outstanding
standard for NLP tasks. Themain idea of the original transformer
is to calculate the self-attention by comparing a representation to
all other representations in the input sequence. In detail, features
are first encoded to obtain memory [including value (V) and key
(K)] and query (Q) embedding by linear projections. The product

of the query Q with keys K is used as the attention weights for
value V . A position embedding is also exploited and added to
these representations to introduce the positional information in
such a non-convolutional paradigm. Transformers are especially
good at modeling long-range dependencies between elements
of a sequence.

Inspired by the success of the transformer models, many
recent studies try to use transformers in computer vision
applications (Dosovitskiy et al., 2020; Li et al., 2021). Among
them, Dosovitskiy et al. (2020) applied a pure transformer
encoder for image classification. To obtain the input token
representations, they crop the input image into 16 × 16 small
patches and linearly map the patches to the input dimension
of the encoder. Since then, ViTs are gaining rapid interest
in various computer vision tasks because they offer a self-
attention-based noval mechanism that can effectively capture
long-range dependencies. Touvron et al. (2021) showed that
ViT models can achieve competitive accuracy on ImageNet
with stronger data augmentation and more regularization.
Subsequently, transformer models are applied to other popular
tasks such as object detection (Carion et al., 2020), segmentation
(Jin et al., 2021), and video processing (Girdhar et al., 2019; Fang
et al., 2020). In this study, we extend ViT to FER under occlusion
and show its effectiveness.

3. METHOD

Figure 2 illustrates the main idea of the proposed TFE. Given
an input face image, TFE encodes its convolutional feature maps
via a commonly used backbone network such as ResNet-18 (He
et al., 2016). Then, TFE encodes the robust facial expression
representation via the vision transformer and the proposed
RS-Unit. During the training stage, the encoded convolutional
feature maps are decoded to reconstruct the unoccluded facial
image. Below, we present the details of each of them.

3.1. Network Architecture
Following ViT (Dosovitskiy et al., 2020), we first preprocess the
input image into a sequence of flattened image patches. However,
the conventional split approach merely cuts the images into
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FIGURE 2 | Main idea of the proposed Transformer Architecture for facial expression recognition (TFE). TFE perceives the informative facial expression representation

via the vision transformer and the proposed RS-Unit. In the right part, TFE uses an auxiliary decoder to reconstruct the unoccluded faces.

overlapping or non-overlapping patches, which harms the local
neighboring structures and shows substandard optimizability
(Xiao et al., 2021). Inspired by Xiao et al. (2021) that exploits a few
number of stacked 3×3 convolutions for image sequentialization,
we adopt the popular ResNet-based backbone (He et al., 2016) to
encode the input facial image I. A typical ResNet usually has four
stages (Li et al., 2021), and we use the output of the S-th stage as
the encoded feature maps X ∈ R

H×W×C feature maps; thus, we
get a total of N = H × W image tokens, each token Xi with a
feature dimension of C. AsH equalsW, here we use P = H = W
for brevity. In our proposed TFE, the image tokens have the
spatial size 1× 1, the input sequence is obtained by: (i) flattening
the spatial dimensions of the feature map and (ii) projecting the
flattend tokens to the target transformer dimension.

We map the flattend image token Xi into a latent D-
dimensional feature space via a learnable fully connected neural

layer. With the sliced image token Xi ∈ R
P2×D, 1 ≤ i ≤ N, a

trainable position embedding is plused to the token embeddings
to retain positional information as follows:

Z0 = [Xclass;X1E;X2E;XNE]+ Epos, (1)

Zl
′ = MSA(LN(Zl−1))+ Zl−1, l ∈ 1, 2, · · · , L (2)

Zl = MLP(LN(Zl
′))+ Z

′

l , l ∈ 1, 2, · · · , L, (3)

where N means the number of the image tokens, E is the
token embedding projection, and Epos means the position

embedding. Lmeans the number of layers of the multi-head self-
attention (MSA) and the multi-layer perceptron (MLP) blocks.
The transformer encoder includes alternating layers of multi-
head self-attention (MSA) and multilayer perceptron (MLP)
blocks. We also add a layernorm (LN) layer before every block
and residual connections after every block. Besides, the MLP
consists of two fully connected neural layers with a GELU
non-linearity. Xclass is a classification token that consists of an
embedding attached to the sequence of embedded patches. After
L transformer layers, a classification head is attached to Z0

L. We
implemented the classification with a MLP that consists of one
hidden layer at the training and testing phase.

3.2. Vision Transformer With RS-Unit
One of the most important problems in FER under occlusion
is to precisely perceive the discriminative facial regions that
represent subtle facial deformations caused by facial expressions.
To this end, we proposed a RS-Unit to automatically select the
critical facial parts for robust FER under occlusions. Different
with previous methods that use facial landmarks for facial region
decomposition (Li et al., 2018a; Ding et al., 2020; Wang et al.,
2020b), RS-Unit does not need auxiliary annotation and merely
adopts the pre-computed multi-head attention information.

Suppose the model consists of M self-attention heads and the
hidden features, outputs of the last transformer layer are denoted
as ZL = [Z0

L,Z
1
L,Z

2
L, · · · ,Z

N
L ]. To better utilize the attention
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FIGURE 3 | Examples of the synthesized occluded images. The occluders are various in shape, color, and facial positions. (A) Anger, (B) neutral, (C) happy, and (D)

sad.

information, the input to the final classification layer is changed.
In detail, the raw attention weights are obtained via recursive
matrix multiplication in all the layers:

atotal =

L∑

l=0

al. (4)

As atotal spots how information propagates from the preceding
transformer layer to the features in the later transformer layers,
atotal should be a promising choice to capture the important local
facial regions for FER (He et al., 2021). Thus, we can choose the
positions of the maximum values with regard to the M different
attention heads in atotal. We then choose the indexes of the
maximum values A1,A2, · · · ,AM w.r.t the M different attention
heads in atotal. These indexes are exploited as positions for RS-
Unit to select the corresponding tokens inZL. At last, we combine
the classification token with the selected tokens along as the
final representation:

Zselect = Concat[Z0
L,Z

A1
L ,ZA2

L , · · · ,ZAM
L ]. (5)

By utilizing the entire input sequence with tokens tightly related
to discriminative facial regions and combine the classification
token as input to the classification layer, our proposed TFE is
capable of utilizing the global facial information but also the
local facial regions that contain critical subtle facial deformations
induced by facial expressions. Thus, our proposed TFE is
expected to perceive the discriminative facial regions for robust
FER under occlusions.

3.3. Image Reconstruction
Since the facial expression is a subtle deformation of faces that
can be inferred from multiple facial regions, it is beneficial to
explicitly infer the occluded facial parts from the unoccluded
regions. In the image inpainting process, the model is tasked to
precisely perceive the fine-grained facial action units to infer their
co-occurrence (Li et al., 2018a).

Inspired by this, we propose to reconstruct the facial image
with an auxiliary decoder. To this end, we synthesize the
occluded face images by manually collecting abundant masks
for generating the occluders. We show some randomly selected
occluded images in Figure 3. With the occluded faces Iocc
and the corresponding original images Iori, we are capable of
reconstructing the images as follows,

Lrec = ‖Iori − Dec(Enc(Iocc))‖1, (6)

where Enc means the convolutional feature extraction operation
shown in Figure 2, Dec denotes the image decoding process.

3.4. Overall Objective
Transformer-based FER method is trained in an end-to-end
fashion by minimizing the integration of the FER loss and the
image reconstruction loss in Equation (6). We integrate the two
goals and obtain the full objective function:

Ltotal = Lcls + λLrec, (7)

where hyper-parameter λ controls the importance of the image
reconstruction term.

4. EXPERIMENT

4.1. Implementation Details
We adopted ResNet-18 (He et al., 2016) as the backbone network
for TFE due to its elegant structure and excellent performance in
image classification. We used the output of the third stage as the
convolutional feature maps: X ∈ R

14×14×1024. Thus, the token
size is N = 14 × 14. We set L = 4, D = 768, and M = 12. We
initialized the backbone of TFE with the pre-trained model based
on ImageNet dataset. We mixed all the facial expression datasets
with their modifications with artificial facial occlusions with the
ratio of 1:1. TFE was optimized via a batch-based stochastic
gradient descent manner. We actually set the batch size as 128
and the base learning rate as 0.001. The weight decay was set as
0.0005 and the momentum was set as 0.9. The optimal setting for
the loss weight between the FER and image reconstruction term
was set as 1 : 1 by grid search.

4.1.1. Datasets
We evaluated the methods on two facial expression datasets
[RAF-DB (Li et al., 2017) and AffectNet (Mollahosseini et al.,
2017)]. We additionally evaluate our proposed TFE on FED-
RO dataset (Li et al., 2018a). RAF-DB consists of about 30,000
facial images annotated with compound or basic expressions by
40 trained human. We merely used the images with seven basic
expressions. We obtained totally 12,271 images for training data
and 3,068 images for evaluation.AffectNet is currently the largest
dataset with annotated facial expressions. AffectNet consists of
approximately 400,000 images manually annotated. We merely
utilized the images with six basic and neutral expressions, We
obtained about 280,000 images for training and 3,500 images
for evaluation. FED-RO (Li et al., 2018a) is a facial expression
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TABLE 1 | Test set accuracy on RAF-DB dataset.

Method Neutral Anger Disgust Fear Happy Sad Surprise ACC (Overall/Ave)

AlexNet (Li et al., 2017) 60.15 58.64 21.87 39.19 86.16 60.88 62.31 −/55.60

VGG16 (Li et al., 2017) 59.88 68.52 27.50 35.13 85.32 64.85 66.32 80.96/58.22

DLP-CNN (Li et al., 2017) 80.29 71.60 52.15 62.16 92.83 80.13 81.16 80.89/74.20

gACNN (Li et al., 2018a) 84.30 78.42 53.11 55.39 93.17 82.88 86.27 85.07/76.22

TAE (Li et al., 2020) 62.80 58.01 45.03 58.12 76.03 45.85 64.44 81.68/58.61

TFE (Ours) 86.76 79.01 64.38 66.22 95.61 87.03 90.27 88.49/81.33

TABLE 2 | Validation set accuracy on AffectNet dataset.

Method Neutral Anger Disgust Fear Happy Sad Surprise ACC (Overall/Ave)

AlexNet (Mollahosseini et al., 2017)* − − − − − − − 47.00/47.00

RAN-ResNet18 (Wang et al., 2020b)* − − − − − − − 52.90/52.90

VGG16 (Simonyan and Zisserman, 2014) 89.61 53.42 20.61 32.03 90.03 35.01 37.22 51.13/51.13

FAB-Net (Wiles et al., 2018) 38.64 30.62 48.42 32.14 82.25 35.61 51.42 45.59/45.59

TAE (Li et al., 2020) 44.42 38.63 46.84 40.39 78.01 40.81 54.41 49.07/49.07

gACNN (Li et al., 2018a) 73.42 66.18 32.59 46.22 93.81 55.82 43.43 58.78/58.78

OADN (Ding et al., 2020) − − − − − − − 61.90/61.90

SCN (Wang et al., 2020a) − − − − − − − 60.23/60.23

TFE (Ours) 76.03 68.09 46.83 47.03 94.12 57.32 53.90 63.33/63.33

The bold values denotes the best results. *Means the values are reported in the original papers.

database with real-world occlusions. Each face has real occlusions
in uncontrolled environment. There are totally 400 images in
FED-RO dataset annotated with seven expressions. We train the
proposed TFE on the joint training data of AffectNet and RAF
dataset, following the protocol suggested in Li et al. (2018a).

Following (Li et al., 2018a), we manually collected
approximately 4 k images as masks for generating the occluders.
These occluders were discovered and saved from search engine
via more than 50 keywords, such as hair, hat, book, beer, apple,
cabinet, computer, orange, etc. The height H and widthW of the
occluders S satisfy H ∈ [96, 128] and W ∈ [96, 128]. Figure 3
shows some occluded faces. It is evident that the artificial
occluded facial images are diverse in occlusion patterns.

4.1.2. Evaluation Metric
We report FER performance on both the occluded and non-
occluded images of all the datasets. We used the overall and the
overall and average accuracy on seven facial expression categories
(i.e., six prototypical plus neutral categories) as a performance
metric. Besides, we also report some confusion matrixes on RAF-
DB dataset to show the discrepancies between the expressions.

4.2. FER Experimental Results
We compare the proposed TFE with the state-of-the-art FER
methods, including DLP-CNN (Li et al., 2017), gACNN (Li et al.,
2018a), FAB-Net (Wiles et al., 2018), TAE (Li et al., 2020),
OADN (Ding et al., 2020), and SCN (Wang et al., 2020a). The
comparison results are shown in Tables 1–3.

Table 1 shows the FER results of our method and previous
studies on RAF-DB dataset. Our TFE achieves 81.33% in

TABLE 3 | Test set accuracy on FED-RO dataset.

Method ResNet18 RAN DLP-CNN gACNN OADN TFE

ACC (AVE) 64.25 67.98 60.31 66.50 68.11 70.60

The bold values denotes the best results.

the average accuracy on seven facial expression categories.
Compared with DLP-CNN (Li et al., 2017), TFE obtains 7.13%
improvements in the average accuracy. Compared with the
strongest competing method in the same setting gACNN (Li
et al., 2018a), TFE surpasses it by 5.61%. The benefits of TFE over
other methods can be explained in two-fold. First, TFE explicitly
utilizes transformer layers in the network structure. The self-
attention in the transformers has been shown to effectively learn
local to global interactions and relations between distant facial
parts. Besides, the RS-Unit on top of the transformer layers in
our proposed TFE helps perceive the critical facial regions. Thus,
TFE is capable of spotting the local subtle facial deformations
induced by facial expressions. Second, TFE explicitly reconstructs
the unoccluded facial images with an auxiliary decoder, which
facilitates the backbone CNN in TFE to learn to infer the
occluded facial parts via the important facial regions.

Table 2 shows the comparisons of our TFE and other state-of-
the-art FER methods on AffectNet dataset. TFE achieves 63.33%
in the average accuracy on seven facial expression categories.
Compared with RAN-ResNet-18 (Wang et al., 2020b) that use
multiple crops of facial images as input and learns adaptive
weights for each input image, TFE obtains 10.43% improvements
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TABLE 4 | Ablation study on RAF-DB dataset.

Method Neutral Anger Disgust Fear Happy Sad Surprise ACC (Overall/Ave)

Original test set of RAF-DB dataset

TFE (w/o D, w/o T ) 83.97 79.01 60.63 60.81 94.51 85.56 86.32 85.91 /79.69

TFE (w/ D, w/o T ) 85.15 83.33 65.63 64.86 95.78 87.03 84.80 86.20/80.94

TFE 86.76 79.01 64.38 66.22 95.61 87.03 90.27 88.64/81.33

Synthesized occluded test set of RAF-DB dataset

TFE (w/o D, w/o T ) 79.41 76.54 53.12 54.05 91.90 81.80 80.85 83.68/73.95

TFE (w/ D, w/o T ) 81.47 75.93 55.62 59.46 93.42 84.73 80.55 84.00/75.88

TFE 83.53 72.84 60.00 67.57 93.50 82.85 85.41 85.12/77.96

The bold values denotes the best results.

FIGURE 4 | Confusion matrixes of TFE. (A) Denotes the confusion matrix for the original test set of RAF-DB. (B) Is the confusion matrix for the synthesized occluded

test set of RAF-DB. It is clear that TFE shows decreased performance on most of the facial expression categories with the manually occluders in the facial images.

in the average accuracy. Compared with the self-supervised
methods FAB-Net (Wiles et al., 2018) and TAE (Li et al., 2020),
TFE shows its success in almost each facial expression category.
Among the state-of-the-art FER methods, gACNN (Li et al.,
2018a) and OADN (Ding et al., 2020) both exploit the 24 facial
landmarks for facial region decomposition and learn the path-
specific representation to better capture the local details of the
input facial image. However, their FER performance still lags
behind our proposed TFE, as illustrated in Table 2. This is
because the transformer layers in TFE naturally encode the patch-
specific face representation by tokenizing the input convolutional
feature maps. TFE does not rely on facial landmarks to extract
the local representations and avoids the negative influence
induced by the misalignments of the facial landmarks. We
additionally show the FER performance comparison on FED-RO
dataset in Table 3. FED-RO dataset is the first facial expression
dataset with real occlusions. TFE achieves 70.60% in the average
accuracy and outperforms other compared methods with no
exception. In summary, the experimental results in Tables 1–
3 verify the superiority of the proposed TFE for robust facial
expression recognition.

4.2.1. Ablation Study
Both the transformer layers and auxiliary decoder help TFE
obtain improvements on FER. We performed a quantitative
study of these two parts in order to better understand the benefits
of TFE.

We show the FER performance of TFE without auxiliary
image reconstruction decoder and without the transformer layers
(as well as RS-Unit) [TFE (w/o D, w/o T)], and TFE with the
auxiliary image reconstruction decoder but without transformer
layers and RS-Unit [TFE (w/ D, w/o T)] in Table 4. It is clear
that TFE (w/o D, w/o T) shows decreased FER performance
on both the original and synthesized occluded face images.
With the auxiliary image reconstruction decoder, TFE (w/ D,
w/o T) illustrates improved FER performance in many facial
expression categories. The comparisons between TFE (w/o T, w/o
D) and TFE (w/ T, w/o D) demonstrate the effectiveness of the
auxiliary image reconstruction decoder. With the transformer
layers and the auxiliary image decoder, TFE obtains the best FER
performance. As illustrated in Table 4, TFE shows its benefits
in Neutral, Fear, Surprise and obtains comparable accuracy in
Disgust, Happy, Sad.
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FIGURE 5 | Attention maps of several facial images with occlusions. For each input face image, the first, second, and third column, respectively, show the attention

map of TFE (w/o D, w/o T ), TFE (w/ D, w/o T ), and TFE. Our proposed TFE is capable of perceiving the important facial regions for robust FER. A deep red denotes

low attention. A deep red means high attention. Better viewed in color and zoom in.

We additionally show the confusion matrixes of our
proposed TFE on both the original and synthesized occluded
test set of RAF-DB dataset in Figure 4. It is clear that
TFE shows degraded performance on most of the facial
expression categories when the facial images are occluded
in Figure 4B. Besides, TFE shows the lowest FER accuracy
on Disgust category and highest accuracy on Happpy
category. Easily confused expression categories are disgust
and sad, fear and surprise, and fear and sad. Our above
observations are consistent with the conclusions in Li et al.
(2018a).

We show the attention maps of the TFE and its variants
in Figure 5. For each input face, the first, second, and third
column, respectively, show the attention map of TFE (w/o
D, w/o T), TFE (w/ D, w/o T), and our proposed TFE. It
is evident that TFE is capable of shifting attention from the
occluded facial patches to other unobstructed regions. As a
comparison, TFE (w/o T, w/o D) and TFE (w/ D, w/o T)
are not capable of precisely focusing on the important and
unobstructed facial parts. Taking facial images labeled with
Happy in the fourth row for example, TFE perceives the eyes
and the corner or the mouth precisely, irrespective of the facial

occlusions. The visualization results show the benefits of the
proposed RS-Unit and the auxiliary decoder for robust FER
under occlusions.

5. CONCLUSIONS

In this study, we propose a transformer-based FER method
(TFE) that is capable of adaptatively focusing on the most
important and unoccluded facial regions. Considering that
facial expression is represented by several specific facial
parts, we propose a RS-Unit to automatically perceive the
critical facial parts so as to explicitly perceive the important
facial regions for robust FER. To better perceive the fine-
grained facial deformations and infer the co-occurrence of
different facial action units, TFE consists of an auxiliary
decoder to reconstruct the facial image. Quantitative and
qualitative experiments have verified the feasibility of our
proposed TFE. TFE also outperforms other state-of-the-art
FER approaches. Ablation and visualization analyses show
TFE is capable of shifting attention from the occluded facial
regions to other important ones. Currently, TFE exploits
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the fixed patch size as the input to the transformer layer
while larger facial patch size might be a better choice for
the heavily occluded facial images. We will explore this
in the future work. Besides, we will also explore how to
reduce the computation overhead and make TFE suit for
mobile deployment.
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