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Wallerian degeneration: the innate-immune
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Abstract

Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on
the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain
through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian
degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune
cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that
supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The
characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated
interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce.
Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast,
functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian
degeneration.
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Introduction
Traumatic injury to nerves in the PNS (peripheral ner-
vous system) results in the loss of neural functions.
Repair is achieved through regeneration of severed
axons and reinnervation of target tissues. Successful
functional recovery depends on the ensemble of cellular
and molecular events that develop distal to lesion sites
all the way towards denervated target tissues. Those
represent the PNS response to traumatic nerve injury
and are termed collectively Wallerian degeneration after
Waller [1].
Numerous studies have been carried out since Waller

first documented his findings. They provide essential,
yet incomplete understanding of the mechanisms that
control Wallerian degeneration and how those may be
influenced to provide grounds for best functional recov-
ery. Wallerian degeneration has been reviewed in recent
years; e.g. [2-6] and additional publications that are
cited throughout the text.
This review focuses on the cellular and molecular

events that highlight Wallerian degeneration as the

innate-immune response of the PNS to traumatic nerve
injury (e.g. recruitment of macrophages, phagocytosis of
degenerated myelin, and production of cytokines and
chemokines). Special attention is given to the orchestra-
tion of these events with respect to their timing and
magnitude, and to the identity of the cells that produce
them. Timing differs between species (see below).
Therefore, it is important to consider which animal
model was used when analyzing and integrating data.
Those that will be most discussed here are wild-type
and mutant Wlds mice, which respectively display “nor-
mal Wallerian degeneration” and delayed “slow Waller-
ian degeneration”. Further, the coordination between
cellular and molecular events of Wallerian degeneration
that follow crush injuries may differ from those that fol-
low cut injuries. The connective tissue sheath of periph-
eral nerves does not tear apart after crush but does so
after complete transection. Therefore, it is difficult to
ascertain that all axons are severed by crushing. Addi-
tionally, severed axons regenerate readily after crush but
not after transection. Consequently, the cellular and
molecular events of Wallerian degeneration may be
altered by the regenerating axons (see below). Therefore,
the nature of the injury must also be considered.
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The term Wallerian degeneration has been adopted to
describe events that follow traumatic injury to CNS
(central nervous system) axons (e.g. spinal cord injury).
However, Wallerian degeneration in PNS and CNS dif-
fer with respect to the types of cells involved (e.g.
Schwann cells and macrophages in PNS versus oligo-
dendrocytes and microglia in CNS) and outcome (e.g.
removal of degenerated myelin during PNS Wallerian
degeneration but not during CNS Wallerian degenera-
tion). Therefore, it may be useful to use the terms PNS
Wallerian degeneration and CNS Wallerian degenera-
tion to avoid confusion when both are discussed.
Further, the term Wallerian degeneration is sometimes
used to define events that develop during PNS neuropa-
thies without trauma (e.g. inherited demyelinating dis-
eases). However, those differ from injury-induced
Wallerian degeneration, which may lead to confusion.
The term Wallerian degeneration that is used in this
review refers to injury-induced PNS Wallerian degenera-
tion unless otherwise specified.

Traumatic injury to peripheral nerves, Wallerian
degeneration and functional recovery
Nerve bundles in the PNS are mainly composed of axons,
Schwann cells that enwrap those axons and further form
myelin sheaths around many, fibroblasts that are scattered
between nerve fibers, and vasculature that nourishes the
PNS tissue (Figure 1A and 2A). Traumatic injury to PNS
nerves produces abrupt tissue damage at the lesion site
where physical impact occurred (Figure 1B). Then, nerve
stumps that are located distal to lesion sites undergo the
cellular changes that characterize Wallerian degeneration
though they did not encounter the physical trauma
directly. Amongst others, axons break-down, Schwann
cells reject the myelin portion of their membranes, and
bone-marrow derived macrophages are recruited and
activated along with resident Schwann cells to remove
degenerated axons and myelin (Figures 1C, D & 1E and
Figure 2B).
Lesions may be restricted in length; e.g. less than five

millimeters in length, depending on how trauma is
inflicted. On the other hand, distal nerve segments that
undergo Wallerian degeneration and extend all the way
towards their target tissues may range between several
millimeters to many centimeters depending on species
(e.g. mice versus humans) and site of trauma (e.g. near
versus distant from innervated targets). When trauma
produces complete transection of the PNS nerves, lesion
sites include the gaps that are formed between proximal
and distal nerve stumps.
Functional recovery depends on successful regenera-

tion of the severed axons throughout distal nerve seg-
ments that undergo Wallerian degeneration. The most
important determinant for good functional recovery in

humans is prompt regeneration of the severed axons
[7-10]. Notably, repair is often less successful in humans
than it is in mice and rats. This discrepancy has been
attributed to the delayed onset of axon destruction, the
longer nerve segments that need to be cleared of degen-
erated myelin, and the longer distances that regenerating
axons need to grow to reach their target tissues in
humans. It is thought, therefore, that speeding Wallerian
degeneration may improve functional recovery.

Axon destruction and myelin disintegration
Species, axon diameter and length of the distal segment
determine how fast axons break-down during normal
Wallerian degeneration [11-13]. Fragmentation of axons
is first detected by light microscopy 36 to 44 hours after
nerve transection in mice and rats (Figure 1C), but only
after about one week in baboons. Then, axon destruction
may advance anterogradely at velocities ranging from
about 10 to 24 mm/hour. However, freeze fracture stu-
dies reveal changes in the distribution of intramembra-
nous particles in axons already 24 hours after the injury,
and in Schwann cells that enwrap those axons even ear-
lier - after 12 hours [14]. Disintegration of the myelin
sheath, and Schwann cell proliferation and rearrange-
ment into Bünger bands begin 2 days after injury [15].
The break-down of axons and myelin, along with other
features of PNS Wallerian degeneration (see below), is
delayed dramatically by 2 to 3 weeks in mutant Wlds

mice (formerly named Ola mice) [12,16,17]. Therefore,
Wallerian degeneration in wild-type mice is defined here
“normal” and in Wlds mice “slow”.
The molecular mechanisms that link between nerve

injury at lesion sites and the destruction of axons during
normal Wallerian degeneration have not been fully clari-
fied; discussed in detail in [3,5,18]. The finding of the aber-
rant molecule that is composed of the N-terminal 70
amino acids of multiubiquitination factor Ube4b fused to
NAD+ synthesizing enzyme Nmnat1 in Wlds mice led to
the notion that isoform(s) of Nmnat, which are produced
in neuronal cell bodies and transported anterogradely,
protect axons by inhibiting a self-destructing mechanism
[19-23]. In this context, depletion of Nmnat in axons con-
sequent to cutting off supply from the cell body, as after
nerve injury or knocking-out Nmnat, promotes axon
destruction, and conversely, overexpression provides neu-
roprotection. It is further proposed that Nmnat dysfunc-
tion may underlie neuropathies that are not triggered by
trauma, and that Nmnat-dependent signaling may be
targeted to promote neuroprotection. It is unclear which
product(s) of the Nmnat signaling cascade confer neuro-
protection directly, and what is the nature of the self-
destructing mechanism that Nmnat signaling inhibits.
The molecular mechanisms that link between nerve

injury at lesion sites and myelin disintegration further
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Figure 1 Intact and injured PNS nerves. A schematic representation of some of the cellular characteristics of (A) intact and (B through E)
injured PNS nerves that undergo normal Wallerian degeneration. (A) Intact myelinating Schwann cells enwrap an intact axon and fibroblasts are
scattered between nerve fibers. (B) Traumatic injury produces immediate tissue damage at the lesion site (marked by a circle), a gap (rectangle)
may be formed between the proximal and distal nerve stumps, and Galectin-3/MAC-2+ macrophages accumulate at the lesion site within 24
hours after the injury. (C) Destruction of axons is detected during normal Wallerian degeneration 36 hours after the injury. (D) Recruitment of
Galectin-3/MAC-2+ macrophages, myelin disintegration, and Galectin-3/MAC-2 expression by Schwann cells begin 48 to 72 hours after injury
during normal Wallerian degeneration. (E) Galectin-3/MAC-2+ macrophages and Schwann cells scavenge degenerated myelin during normal
Wallerian degeneration, and Schwann cells further proliferate and form Bünger bands.

Rotshenker Journal of Neuroinflammation 2011, 8:109
http://www.jneuroinflammation.com/content/8/1/109

Page 3 of 14



distal during normal Wallerian degeneration have also
not been entirely elucidated. However, the rapid and
transient activation of the Erb2 receptor in Schwann
cells by axon-derived neuregulin(s), which is detected 1
hour after the injury, may be involved [24]. It is unclear
how injury initiates neuregulin-Erb signaling, how neur-
egulin-Erb signaling propagates anterogradely, and how,
if at all, do Nmnat and neuregulin-Erb signaling cas-
cades relate one to the other. Notably, neuregulin-Erb
interactions may regulate both myelination and demyeli-
nation [25-31]. It has been suggested that BACE1 (b-
amyloid precursor protein cleaving enzyme 1), which
also cleaves neuregulin, regulates myelination and
remyelination [32-34]. Further, BACE1 does not affect
myelin disintegration but impedes clearance of degener-
ated myelin during Wallerian degeneration as BACE1
knock-out mice display faster clearance of myelin
whereas time to onset of myelin and axon disintegration
are not altered from normal [35].

Degenerated myelin is harmful
Removal of degenerated myelin is critical for repair since
PNS myelin contains molecules that inhibit regeneration
of severed axons (e.g. MAG; myelin associated glycopro-
tein) [36-40]. Indeed, clearance of myelin, axon regenera-
tion, and functional recovery are delayed considerably in
Wlds mice compared to those in wild-type mice [41-43].
Regeneration of severed axons in Wlds mice is improved
after knocking-out MAG even though myelin removal is
still slow [40]. In accord, PNS myelin and MAG inhibit
regeneration in-vitro [37-39]. The in-vitro inhibition of

axon growth may not be detected depending on neuron
identity (e.g. neonate versus adult) and whether adhesion
or growth factors are present. These features may explain
a report that PNS myelin is not inhibitory [44]. Further,
contradictory results on CNS myelin associated inhibitors
(e.g. Nogo, MAG and OMgp; oligodendrocyte myelin
associated glycoprotein) have also been reported and
further been explained through differences in experimen-
tal designs [45,46]. Nonetheless, most evidence indicates
that myelin as whole structure (i.e. specialized membra-
nous extensions of Schwann cells in PNS and oligoden-
drocytes in CNS) inhibits the regeneration of adult PNS
and CNS axons; e.g. [47,48] and recent reviews [49-51].
The rapid clearance of degenerated myelin can also avert

damage from intact axons and myelin after partial injury
to PNS nerves where some but not all axons are axoto-
mized by the impact (Figure 1; imagine that axon A is situ-
ated next to axon E). Here, degenerated myelin may
activate the complement system to produce membrane
attack complexes which, in turn, inflict damage to remain-
ing nearby intact axons and myelin [52-54]. The rapid
clearance of degenerated myelin may impede the produc-
tion of membrane attack complexes and the damage they
cause. Of note, complement activation has also beneficial
effects since it advances macrophage recruitment and pha-
gocytosis of degenerated myelin (see below).

Schwann cells and macrophages are activated to
scavenge degenerated myelin
Resident Schwann cells and recruited macrophages clear
degenerated myelin in wild-type mice during normal

Figure 2 Intact axon, normal Wallerian degeneration, and kinetics of myelin clearance and Galectin-3/MAC-2 expression during
normal Wallerian degeneration. (A) A Schwann cell that is surrounded by basal lamina (arrow heads) forms a myelin sheath around an intact
axon; Bar 1 μm. (B) Axons are not detected 7 days after the injury, and Schwann cells (S) and a macrophage (m), which are situated within basal
lamina sheaths (dark arrow heads), contain myelin fragments and lipid droplets in their cytoplasm (white arrow heads) (after [16]); Bar 2 μm. (C)
Time course of myelin phagocytosis and degradation (Po) and Galectin-3/MAC-2 protein (Gal-3) production. Phagocytosis and degradation of
myelin result in the reduction of tissue content of the myelin specific molecule Po. Nerve segments located 5 millimeters distal to lesion sites
were removed from wild-type mice at the indicated times and used to determine tissue levels of Po and Gal-3 by ELISA. Those are presented as
percentage of their maximal values that are defined 100% (after [60]).
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Wallerian degeneration; [16,55,56] and Figure 2B. In-
vivo experimental manipulations of macrophage deple-
tion [57], which test clearance by Schwann cells without
macrophages, and freeze-damaging nerves [16], which
test clearance by recruited macrophages without
Schwann cells, further indicate that each cell type can
remove myelin in-vivo without the other. Schwann cells
[16,58] and macrophages [59] can each scavenge myelin
in-vitro as well.
The time course of myelin clearance was studied in

detail in wild-type mice during normal Wallerian degen-
eration following a cut injury; [60] and Figure 2C. It
begins 3 to 4 days after the injury and is completed after
12 to 14 days. Myelin destruction and removal are
delayed considerably during slow Wallerian degeneration
in Wlds mice, as are axon destruction and macrophage
recruitment [16,17,42,60].
The time course of myelin removal is determined by the

kinetics of macrophage recruitment and the kinetics of the
activation of macrophages and Schwann cells to scavenge
degenerated myelin. Bone-marrow derived macrophages,
which are scarce in intact PNS nerves of normal and Wlds

mice, accumulate at injury sites within hours after the
trauma through ruptured vasculature and secondary to the
rapid local production of cytokines and chemokines that
attract macrophages to these sites; [61-63] and Figure 1B.
The recruitment of macrophages during normal Wallerian
degeneration is by diapedesis through vasculature that is
structurally intact since it does not encounter physical
trauma directly. It begins 2 to 3 days after a cut injury and
it peaks at about 7 days [16,42,43,64,65]. In contrast,
macrophage recruitment is delayed considerably in Wlds

mice during slow Wallerian degeneration. However, Wlds

macrophages invade freeze-damaged Wlds PNS nerves
promptly [16], suggesting that Wlds macrophages can
respond to chemotactic signals that freeze-damaged nerves
produce, and further, that chemotactic signals are not
upregulated during slow Wallerian degeneration, as indeed
it was later shown [61] (see also below). The exact molecu-
lar mechanisms that link between the physical impact at
lesion sites and macrophage recruitment to distal nerve
segments during normal Wallerian degeneration are not
fully understood. Yet, cytokines and chemokines that
attract macrophages [61-63,66-68], MMPs (matrix metal-
loproteinases) [69-72], and complement [73-75] play roles
(see below).
CR3 (complement receptor-3) and SRA (scavenger

receptor-AI/II) have long been suggested to mediate pha-
gocytosis of degenerated myelin by macrophages in con-
text of trauma [59,73,76-80]. Recently, a role for FcgR
(Fcg receptor) and endogenous anti-myelin Abs has also
been suggested [81]. Further, phagocytosis is augmented
2 folds and more after degenerated myelin activates the
complement system to produce the complement protein

C3bi which opsonizes myelin. Consequently, CR3 may
bind to C3bi-opsonized myelin through C3bi and to
unopsonized myelin directly. CR3 functions, therefore,
both as a C3bi-opsonic and a non-opsonic receptor. SRA
functions as a non-opsonic receptor that binds unopso-
nized myelin directly. However, SRA may also assist in
the phagocytosis of C3bi-opsonized myelin since C3bi-
opsonization does not block SRA binding sites on myelin.
Altogether, CR3 contributes 2 to 3 folds more to myelin
phagocytosis than SRA. Apart from complement, inflam-
matory cytokines TNFa (tumor necrosis factor-a) and IL
(interleukin)-1b, which are produced during normal
Wallerian degeneration, but not during slow Wallerian
degeneration, also upregulate myelin phagocytosis by
macrophages [63]. Of note, CR3 and SRA are similarly
involved in myelin phagocytosis by CNS microglia.
Galectin-3/MAC-2 activates macrophages and Schwann

cells to scavenge degenerated myelin (Appendix 1). There-
fore, the time-course of Galectin-3/MAC-2 expression
may reflect the kinetics of phagocytosis activation during
Wallerian degeneration. Expression was studied in detail
in the same wild-type and Wlds mice in which myelin
clearance and macrophage recruitment were examined;
[16,60] and Figure 2C. Intact wild-type PNS nerves do not
express detectable levels of Galectin-3/MAC-2. Expression
is rapidly and transiently upregulated during normal
Wallerian degeneration following cut injuries. Galectin-3/
MAC-2 is first detected in Schwann cells 48 to 72 hours
after injury, and then also in recruited macrophages. Nota-
bly, the onset of Galectin-3/MAC-2 expression precedes
myelin clearance, expression is highest during the time
period at which most of the degenerated myelin is
removed, and expression is down-regulated after myelin
clearance is completed. Galectin-3/MAC-2 is not
expressed in intact Wlds PNS nerves or during slow Wal-
lerian degeneration, but is expressed in injured Wlds PNS
nerves at lesion sites where macrophages accumulate and
phagocytose degenerated myelin. Thus, the occurrence
and timing of Galectin-3/MAC-2 expression in cells that
scavenge myelin are in accord with those of myelin clear-
ance. The cytokine GM-CSF (granulocyte colony stimulat-
ing factor), which is produced during normal Wallerian
degeneration, but dramatically less during slow Wallerian
degeneration, upregulates the expression of Galectin-3/
MAC-2 in macrophages, Schwann cells and the entire
PNS nerve tissue [60,82].
Galectin-3/MAC-2 expression and the occurrence of

myelin phagocytosis correlate in the CNS as they do in
the PNS. CNS microglia that fail to phagocytose degen-
erated myelin in-vivo during CNS Wallerian degenera-
tion do not express Galectin-3/MAC-2 [83]. In contrast,
microglia that phagocytose degenerated myelin in-vivo
during experimental allergic encephalomyelitis [84] and
in-vitro [85] express Galectin-3/MAC-2.
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The cytokine network of Wallerian degeneration
PNS injury induces immune and non-immune cells to
produce cytokines (Appendix 2) at and distal to lesion
sites. Consequently, a cytokine network is set in motion
in wild-type mice during normal Wallerian degeneration
(Figure 3A and 4A). Cytokine mRNAs expression and
detailed kinetic studies of cytokine protein production
and secretion, along with the identification of the produ-
cing cells, were carried out after complete nerve transec-
tion in the same wild-type and Wlds mice in which
myelin clearance, macrophage recruitment and Galectin-
3/MAC-2 expression were studied; see above and
[60,63,82,86,87]. Findings suggest that timing and magni-
tude of cytokine production depend on the identity and
spatial distribution in the PNS tissue of the non-neuronal
cells that produce cytokines, and the timing of macro-
phage recruitment.
Resident Schwann cells normally express the mRNAs of

the inflammatory cytokines TNFa and IL-1a, and the
TNFa protein. Schwann cells that form close contacts
with axons are the first amongst non-neuronal cells to
respond to axotomy by rapidly upregulating the expression
and production of TNFa and IL-1a mRNAs and proteins;
the secretion of TNFa and IL-1a proteins is detected
within 5 to 6 hours after injury. Schwann cells also express
and produce IL-1b mRNA and protein, the secretion of
which is detected between 5 to 10 hours after injury. This
delayed expression and production of IL-b may be induced

by the Schwann cell-derived TNFa, thus through an auto-
crine effect. Concomitantly, Schwann cell-derived TNFa
and IL-1a induce nearby resident fibroblasts to express
and further produce the mRNAs and proteins of cytokines
IL-6 and GM-CSF, the secretion of which is detected
within 2 to 5 hours after the injury. Of note, the highest
levels of TNFa and IL-1b protein secretion are detected 1
day after the injury, thus before macrophage recruitment
begins. IL-6 protein secretion is biphasic; the first phase
peaks at day 2 just before macrophage recruitment begins,
and the second peaks at day 7.
Inflammatory cytokines and chemokines (see below)

advance the recruitment of blood-borne macrophages.
Recruitment begins 2 to 3 days after the injury and peaks
at about 7 days. The production and secretion of TNFa
and IL1-b proteins is reduced while macrophages increase
in number, suggesting that recruited macrophages pro-
duce little TNFa and IL1-b. Recruited macrophages pro-
duce and secrete IL-6 and IL-10 proteins, but little if any
GM-CSF protein. The second phase of IL-6 production
develops and then peaks at day 7 after the injury concomi-
tant with the timing and magnitude of macrophage
recruitment. The production and secretion of the anti-
inflammatory cytokine IL-10 protein is induced in resident
fibroblasts within 5 hours after injury, but levels are low
and ineffective since nerve-resident fibroblasts are poor
producers of IL-10, and Schwann cells do not produce IL-
10. In contrast, recruited macrophages produce and
secrete IL-10 protein effectively; levels increase and then
peak at day 7 concomitant with the timing and magnitude
of macrophage recruitment. Then, IL-10 gradually down-
regulates the production of cytokines, bringing the cyto-
kine network of normal Wallerian degeneration to conclu-
sion 2 to 3 weeks after injury, which is after degenerated
myelin has already been cleared. Of note, the production
and secretion of GM-CSF protein is attenuated but not
reduced during the second stage of normal Wallerian
degeneration. However, at that time, a GM-CSF binding
molecule that inhibits GM-CSF activity is produced [88].
Cytokines mRNAs expression was studied after crush

injuries that are followed by axonal regeneration 4 to 7
days after the injury. In one study [72], the induction of
TNFa and anti-inflammatory TGF-b1 mRNAs was
biphasic; the first peaked at day 1 and the second at day 7
after crush. In other studies (summarized in [2]), a single
phase of induction that peaked at day 1 after crush was
detected for TNFa, IL-1b, IL-6 and IL-10 mRNAs. Evi-
dently, discrepancies exist between the kinetics of cyto-
kine proteins production and secretion following cut
injuries and the kinetics of cytokine mRNAs expression
following crush injuries. These may be due to the differ-
ent paradigms of injuries used. Crush but not cut injuries
enable regeneration and potential regulation of cytokine
mRNA expression by the growing axons.

Figure 3 The time course of cytokine protein secretion during
normal Wallerian degeneration. Nerve segments located 5
millimeters distal to lesion sites were removed from wild-type mice
at the indicated times and used to condition medium with secreted
cytokine proteins that were detected and quantified by ELISA.
Values are presented as percentage of maximum secretion which is
defined 100% (after [60,86]). The secretion of IL-1a is detected
within 6 hours after the injury; not shown here since the method of
detection was by a bioassay [87].
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It is useful to characterize the profiles of production of
cytokine proteins during the first and second phases of
normal Wallerian degeneration; i.e. before and after
macrophage recruitment. The first phase is characterized
by the production of the inflammatory cytokines TNFa,
IL-1a, IL1-b, GM-CSF and IL-6. The second phase is
characterized by the production of IL-10, IL-6, and a
GM-CSF inhibitor molecule, and furthermore, by the
reduced production of TNFa and IL1-b. Therefore, the
first phase is mostly inflammatory and the second is pre-
dominantly anti-inflammatory. Further, it is very likely
that recruited macrophages are of the M2 phenotype
which is involved in tissue repair (Appendix 3), since
they produce high levels of IL-10 and IL-6, less TNFa
and IL1-b, and little if any GM-CSF. Apolipoprotein-E
[89,90] and Galectin-3/MAC-2 [91] can both direct the

polarization of recruited macrophages towards the M2
phenotype. Apolipoprotein-E is produced and secreted
by resident fibroblasts during normal Wallerian degen-
eration as of day 2 and later on also by macrophages
[92,93] as is Galectin-3/MAC-2 (see above). Of note,
both apolipoprotein-E and Galectin-3/MAC-2 are pro-
duced in Wlds mice at injury sites but not during slow
Wallerian degeneration.
A deficient cytokine network develops during slow

Wallerian degeneration in Wlds mice since the production
of cytokine proteins is dramatically lower during slow
Wallerian degeneration than it is during normal Wallerian
degeneration even though the expression of cytokine
mRNAs is upregulated [60,63,82,86]. In contrast, cytokine
mRNAs are expressed and proteins produced in injured
Wlds PNS nerves at lesion sites concomitant with

Figure 4 The cytokine network of Wallerian degeneration. Injury sets in motion the cytokine network of normal Wallerian degeneration.
Intact myelinating Schwann cells enwrap intact axons and further express normally the inflammatory cytokines TNFa and IL-1a mRNAs and the
TNFa protein. Traumatic injury at a distant site in the far left (not shown) induces the rapid upregulation of TNFa and IL-1a mRNAs expression
and proteins production and secretion by Schwann cells within 5 hours. The nature of the signal(s) that are initiated at the injury site, travel
down the axon, and then cross over to Schwann cells are not known (?). Concomitantly, Schwann cell derived TNFa and IL-1a induce resident
fibroblasts to upregulate the expression of cytokines IL-6 and GM-CSF mRNAs and the production and secretion of their proteins within 2 to 5
hours after the injury. Inflammatory IL-1b mRNA expression and protein production and secretion are induced in Schwann cells with a delay of
several hours. The expression of chemokines MCP-1/CCL2 and MIP-1a/CCL3 are upregulated by TNFa, IL-1b and IL-6 as of day 1 after the injury
in Schwann cells, and possibly also in fibroblasts and endothelial cells. In turn, circulating monocytes begin their transmigration into the nerve
tissue 2 to 3 days after the injury. Fibroblasts begin producing apolipoprotein-E (apo-E) and Schwann cells Galectin-3/MAC-2 (Gal-3) just before
the onset of monocyte recruitment. Apolipoprotein-E and Galectin-3/MAC-2 may drive monocyte differentiation towards M2 phenotype
macrophage which further produces apolipoprotein-E and Galectin-3/MAC-2. Macrophages efficiently produce IL-10 and IL-6 and much less
TNFa, IL-1a, IL-1b. The anti-inflammatory cytokine IL-10, aided by IL-6, down-regulates productions of cytokines. Schwann cells and fibroblasts
produce also LIF. Arrows indicate activation and broken lines down-regulation. Not all possible interactions and molecules produced are shown
(e.g. autocrine interactions and the role of GM-CSF inhibitor); see text for additional information. The break-down of axons and myelin, and their
phagocytosis are not illustrated here; see, however, Figure 1 and Figure 2.
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macrophage accumulation and activation to phagocytose
myelin. The development of an efficient cytokine network
during normal Wallerian degeneration versus a deficient
cytokine network during slow Wallerian degeneration,
along with other aspects of innate-immunity (e.g. macro-
phage recruitment and phagocytosis of degenerated mye-
lin), highlight the inflammatory nature of normal
Wallerian degeneration.
The observation that cytokine proteins are not produced

during slow Wallerian degeneration even though the
expression of their mRNAs is upregulated [63], suggests
that cytokines mRNAs and proteins are differentially regu-
lated during Wallerian degeneration, and furthermore,
that mRNA expression does not necessarily indicate that
the respective protein is produced. Therefore, it is useful
to study both cytokine protein production and secretion
along with cytokine mRNA expression.

Chemokines, recruitment of macrophages and Wallerian
degeneration
Chemokine MCP-1 (chemoattractant protein-1; known
also as CCL2, C-C motif ligand 2) and MIP-1a (macro-
phage inflammatory protein-1a; known also as CCL3)
promote the transmigration of monocytes across the
endothelial cell wall of blood vessels (Figure 4). MCP-1/
CCL2, which Schwann cells produce, is upregulated
within hours after the impact at injury sites, and after 1
day at distal domains during normal Wallerian degen-
eration [6,61,62,66-68,94]. MCP-1/CCL2 production is
induced by TNFa and IL-1b, which Schwann cells
synthesize (see above), partly by signaling through TLRs
(toll-like receptors). In Wlds mice, MCP-1/CCL2 is pro-
duced at injury sites, but not further distal where slow
Wallerian degeneration develops. Therefore, the occur-
rence and timing of MCP-1/CCL2 production are in
accord with those of TNFa and IL-1b that induce them.
These events further correlate with the occurrence and
timing of macrophage recruitment that MCP-1/CCL2
promotes. Studies in non-neuronal tissues suggest the
involvement of IL-6-dependent MCP-1/CCL2 produc-
tion by fibroblasts [95], and TNFa and IL1-b-dependent
production by endothelial cells [96]. Macrophage
recruitment is also promoted by MIP-1a/CCL3 [68].
Studies in Schwann cell tumors and non-neural tissues
suggest that Schwann cells, fibroblasts, endothelial cells
and macrophages may produce MIP-1a/CCL3 upon
activation by TNFa, IL-1a and IL-1b [96-98]. Recruit-
ment is further aided by TNFa-dependent induction of
MMP-9 (matrix metalloproteinase-9) that Schwann cells
produce [69-72] and by complement [73-75].

Immune inhibitory receptors and Wallerian degeneration
Innate-immune functions are regulated by the interplay
and balance between activating and inhibitory signals;

neither acts in an “all or none” fashion. Inhibition may
be produced by a family of immune inhibitory receptors.
SIRPa (signal-regulatory-protein-a; known also as
CD172a and SHPS1) is a member of this family
[99-102]. SIRPa is expressed on myeloid cells (e.g.
macrophages and microglia) and some neurons, and is
activated by its ligand CD47 (known also as IAP - integ-
rin associated protein). CD47 is a cell membrane protein
receptor that various cells express (e.g. red blood cells,
platelets and some neurons). Cells that express CD47
down-regulate their own phagocytosis by macrophages
after CD47 binds to SIRPa on phagocytes. CD47 func-
tions, therefore, as a marker of “self” that protects cells
from activated autologous macrophages by sending a
“do not eat me” signal.
CD47 is expressed on myelin and the myelin-forming

Schwann cells and oligodendrocytes, and furthermore,
myelin down-regulates its own phagocytosis by macro-
phages and microglia through SIRPa-CD47 interactions
[85]. CD47 may function, therefore, as a marker of “self”
that protects intact myelin, Schwann cells and oligoden-
drocytes from activated macrophages in PNS and activated
microglia and macrophages in CNS. This mechanism may
be useful under normal conditions and while combating
invading pathogens since it protects bystander intact mye-
lin and myelin-forming cells from macrophages and
microglia that are activated to scavenge and kill pathogens.
However, the very same mechanism may turn harmful
when faster removal of degenerating myelin is useful; e.g.
as after traumatic axonal injury [7-10] (see above also).
Therefore, normal Wallerian degeneration does not dis-
play the fastest possible rate of in-vivo myelin clearance.

Neurotrophic factors and Wallerian degeneration
Peripheral nerve injury induces the production of neuro-
trophic factors by Schwann cells and fibroblasts during
normal Wallerian degeneration. Neurotrophic factors are
peptides that regulate, amongst others, neuronal survival,
axon growth and synapse formation during normal devel-
opment and during adulthood after traumatic PNS nerve
injury and other neuropathologies. They exert their effects
on axons after binding to their cognate receptors at nerve
endings and/or after being transported retrogradely to
neuronal cell bodies. This review is not aimed at discuss-
ing neurotrophic factors in detail. Nonetheless, nerve
injury induced production of NGF (nerve growth factor),
IL-6 and LIF (leukemia inhibitory factor) will briefly be
reviewed to highlight how the innate-immune properties
of normal Wallerian degeneration may regulate neuro-
trophic functions.
Among families of neurotrophic factors is the neuro-

trophin family. It consists of NGF, BDNF (brain derived
neurotrophic factor), NT (neurotrophin)-3, and NT-4/5;
their functions and mechanisms of action have been
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extensively reviewed elsewhere; e.g. [103-107]. The pro-
duction of NGF, BDNF and NT-4 is upregulated during
normal Wallerian degeneration [108-113]. Among these,
NGF promotes neuronal survival and axon growth of
sympathetic and subsets of sensory dorsal root neurons.
Since these neurons send their axons through PNS
nerves, they can interact with NGF that is produced
during normal Wallerian degeneration as they regener-
ate. NGF mRNA expression is upregulated in two
phases at the injury site and further distal to it; the first
peaks within hours and the second 2 to 3 days after the
injury. IL-1a, IL-1b and TNFa contribute to NGF
mRNA upregulation in fibroblasts but not in Schwann
cells. Of note, NGF mRNA and protein upregulations
correlate only partly since only the second phase of
mRNA expression is coupled with a corresponding
upregulation in NGF protein production [108]. The
upregulation NGF mRNA expression is prolonged after
cut injuries but transient after crush injuries, suggesting
that axons that regenerate after crush down-regulate
NGF expression [110]. Further, the upregulation of NGF
mRNA expression is impeded during slow Wallerian
degeneration in Wlds mice [42] as are IL-1b and TNFa
protein productions [63].
IL-6 is a member of the IL-6 family that includes

amongst others LIF and CNTF (ciliary neurotrophic fac-
tor) [104,114,115]. The production of IL-6 and LIF is
upregulated during normal Wallerian degeneration; IL-6
by resident fibroblasts and recruited macrophages [63,86],
and LIF by resident Schwann cells and fibroblasts
[116,117]. Apart from being modulators of innate-immune
functions, IL-6 [118-120] and LIF [121,122] also display
neurotrophic properties by promoting neuronal survival
and axon growth. Further, LIF may also function as a
Schwann cell growth factor [123].

Neuropathic pain and Wallerian degeneration
The innate-immune response of injury-induced Waller-
ian degeneration may also produce neuropathic pain; i.e.
the development of spontaneous pain and/or painful sen-
sation to innocuous stimuli. This review is not aimed at
discussing neuropathic pain in detail, but to highlight its
relationship to injury-induced Wallerian degeneration. In
general, neuropathic pain develops in association with
various pathologies through diverse mechanisms; recently
reviewed in [124-126]. One class of mechanisms relates
to the innate-immune properties of Wallerian degenera-
tion as revealed by the observations that injury-induced
neuropathic pain is delayed and reduced in Wlds mice
[127] and also in IL-6 deficient mice [128]. Further, neu-
ropathic pain (also referred to as inflammatory pain) can
be evoked by inflammation without injury [129-135].
IL-1b, TNFa, and NGF, which are produced during nor-
mal Wallerian degeneration, have been implicated. IL-1b

and TNFa may sensitize intact axons to produce sponta-
neous activity and/or enhanced activity in response to
mechanical and thermal stimuli. IL-1b and TNFa further
induce the expression of NGF, which, in turn, sensitizes
sensory nerve endings. This is mostly evident after partial
PNS nerve injury where some but not all axons are trau-
matized (Figure 1; imagine that axon A is situated next to
axon E). Therefore, delayed and reduced neuropathic
pain in Wlds mice may be explained, at least in part, by
reduced productions of IL-6, IL-1b, TNFa, and NGF.

Putting it altogether - orchestration is important
Successful functional recovery by regeneration is pro-
moted by the removal of inhibitory degenerated myelin
and production of neurotrophic factors. Innate-immune
mechanisms that develop during normal Wallerian degen-
eration regulate both. Those, in turn, depend on the
orchestrated interplay between Schwann cells, fibroblasts,
macrophages, and endothelial cells and molecules they
produce (Figure 4).
Intact Schwann cells are best suited amongst non-neu-

ronal cells to “sense” and rapidly respond to the axotomy
at remote sites by rapidly upregulating the expression and
production of TNFa and IL-1a first, and IL-1b thereafter.
This is made possible since Schwann cells form intimate
contacts with axons, molecular machineries by which
axons and Schwann cells communicate signals exists (e.g.
neuregulin-Erb interactions), and intact Schwann cells
further normally express TNFa and IL-1a, which enables
their fast upregulation.
Schwann cell-derived TNFa, IL-1a and IL-1b induce

adjacent resident fibroblasts to produce IL-6, GM-CSF
and LIF within few hours after injury. Thereafter, TNFa,
IL-1a, IL-1b and IL-6 induce the production of MCP-1/
CCL2 and MIP1-a/CCL3 in Schwann cells, fibroblasts and
endothelial cells. The two chemokines promote the trans-
migration of bone-marrow monocytes across structurally
intact walls of blood vessels into the PNS nerve tissue.
Consequently, the recruitment of monocytes begins 2 to 3
days after the injury, reaching highest numbers at about 7
days. Apolipoprotein-E and Galectin-3/MAC-2 that are
produced before and during monocyte recruitment may
help drive monocyte differentiation towards the M2 phe-
notype tissue macrophage.
Schwann cells and axons display minor structural

changes 12 and 24 hours after the injury and profound
disintegration 2 to 3 days after the injury. They then
become amenable for scavenging by activated Galectin-3/
MAC-2 expressing macrophages and Schwann cells; the
onset of clearance is 3 to 4 days after the injury and com-
pletion is after 12 to 14 days. Indeed, there is a remarkable
matching between setting-up the machinery for scaven-
ging the degenerated myelin and its actual removal.
Setting-up begins with the recruitment of macrophages
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and the activation of macrophages and Schwann cells to
express Galectin-3/MAC-2 by fibroblast-derived GM-CSF
before the onset of myelin clearance; most of the degener-
ated myelin is removed when activated Galectin-3/MAC-
2+ macrophages and Schwann cells reach highest
numbers; activation (Galectin-3/MAC-2 expression) is
down-regulated after degenerated myelin is removed.
Bringing the innate-immune response to conclusion is

aided by the production of the anti-inflammatory cytokine
IL-10 which TNFa, IL-1a and IL-1b induce in the
recruited M2 phenotype macrophages. Effective IL-10
levels are reached 7 days after the injury when macro-
phage recruitment peaks. Then, IL-10 gradually down-
regulates the production of cytokines; reaching lowest
levels in about 2 to 3 weeks after injury, thus well after
degenerated myelin is cleared. The GM-CSF inhibitor
molecule and IL-6, due to its anti-inflammatory properties,
help to down-regulate the production and activity of
cytokines.
Wallerian degeneration further upregulates neurotrophic

properties. The production of NGF is rapidly induced after
the injury in Schwann cells and fibroblasts; in the latter by
TNFa, IL-1a and IL-1b. Further, IL-6 and LIF function as
neurotrophic factors as well as classical cytokines. There-
fore, the development of some neurotrophic properties is
tightly associated with the development of the innate-
immune properties of normal Wallerian degeneration.
The failure to develop an efficient innate-immune

response in slow Wallerian degeneration supports the
view that innate-immunity plays critical roles in normal
Wallerian degeneration and the restoration of function
that follows. The innate-immune response of normal
Wallerian degeneration depends on upregulating the pro-
duction of TNFa and IL-1a proteins in Schwann cells.
However, the production of these cytokine proteins is not
upregulated during slow Wallerian degeneration even
though the expression of their mRNAs is induced. In
accord with the notion that TNFa and IL-1a proteins
help putting the innate-immune properties of normal
Wallerian degeneration in motion, the failure to upregu-
late their protein production during slow Wallerian degen-
eration impedes dramatically the development of an
efficient innate-immune response, NGF production, and
repair.

Conclusion
Innate-immunity is central to injury-induced PNS
Wallerian degeneration since innate-immune cells,
functions and molecules are involved. Repair depends
on an efficient innate-immune response that helps
turning the PNS tissue into an environment that sup-
ports axon regeneration by removing inhibitory myelin
and by upregulating neurotrophic properties. Recovery
is poor when innate-immune mechanisms fail to

develop. Therefore, the innate-immune mechanisms of
Wallerian degeneration may be targeted to ensure
successful functional recovery from trauma.

Appendices
Appendix 1: Galectin-3/MAC-2 activates myelin
phagocytosis by macrophages and further promotes
Schwann cells to scavenge myelin
Galectin-3, formally named MAC-2 [136], is a multifunc-
tional b-galactoside binding protein and a member of the
Galectin family of lectins; reviewed recently in [137-139]. It
is present in the nucleus and cytoplasm of many cells, and
it may also be secreted. Cytosolic Galectin-3/MAC-2 acti-
vates myelin phagocytosis in macrophages and microglia.
Myelin phagocytosis by CR3 and SRA involves signaling
through phosphatidylinositol 3-kinase (PI3K) [140,141].
PI3K is preferentially activated by K-Ras.GTP which Galec-
tin-3/MAC-2 binds and stabilizes [137,142]. As a result,
Galectin-3/MAC-2 enhances K-Ras.GTP-dependent func-
tions. K-Ras.GTP/PI3K-dependent phagocytosis of degen-
erated myelin is similarly activated by Galectin-3/MAC-2
[143,144].
The molecular mechanisms that enable Schwann cells to

scavenge their own degenerated myelin are unclear as
Schwann cells do not express CR3, SRA or FcgR that med-
iate myelin phagocytosis in macrophages and microglia.
However, Galectin-3/MAC-2 may be involved [16]. Intact
myelinating Schwann cells do not express detectable levels
of Galectin-3/MAC-2, but they do so as they internalize
degenerated myelin in-vivo during normal Wallerian
degeneration and in-vitro during in-vitro Wallerian degen-
eration; i.e. when intact nerves are moved to culture and
so degenerate in the absence of recruited macrophages.
Further, galactose and lactose, which inhibit binding to
Galectin-3/MAC-2, impede the disintegration and interna-
lization of myelin by Schwann cells. Therefore, secreted
Galectin-3/MAC-2 is likely involved.

Appendix 2: Cytokines are multi functional proteins
Cytokines are small proteins that regulate innate-immune
functions in immune cells (e.g. phagocytosis and produc-
tion of cytokines by macrophages). However, some cyto-
kines further modulate immune and non-immune
functions in non-immune cells (e.g. production of cyto-
kines and nerve growth factor in fibroblasts), and others
(e.g. IL-6 and LIF) also display neurotrophic properties
(see text). Therefore, many cytokines are indeed multi-
functional. While most cytokines function after being
released from the producing cells, others may also func-
tion membrane-bound (e.g. TNFa). Further, cytokines
may be divided into major classes. Inflammatory cytokines
(e.g. TNFa, IL-1a, and IL-1b; also referred to as pro-
inflammatory) promote the production of inflammatory
mediators, and anti-inflammatory cytokines (e.g. IL-10)
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down-regulate the production of inflammatory mediators.
Nonetheless, some cytokines (e.g. IL-6) display both
inflammatory and anti-inflammatory properties [145]; see
also review [146].

Appendix 3: Tissue macrophages can differentiate into
M1 and M2 phenotypes
M1 and M2 phenotypes are two extremes of a spectrum.
The M1 phenotype is considered inflammatory since,
amongst others, it produces the inflammatory cytokines
TNFa, IL-1a and IL-1b, and is involved in killing patho-
gens. The M2 phenotype is considered anti-inflammatory
since, amongst others, it produces the anti-inflammatory
cytokine IL-10, it does not produce inflammatory cyto-
kines or very little, and is involved in tissue remodeling
and wound-healing. Both M1 and M2 phenotype macro-
phages produce IL-6, which is both inflammatory and
anti-inflammatory in nature, and further function as pha-
gocytes; reviewed in [147-152].

Abbreviations
Apo-E: (apolipoprotein-E); BDNF: (brain derived neurotrophic factor); CCL2:
(C-C motif ligand 2); CNS: (central nervous system); CR3: (complement
receptor-3); FcγR: (Fcγ receptor); GM-CSF: (granulocyte colony stimulating
factor); IL: (interleukin); LIF: (leukemia inhibitory factor); MAG: (myelin
associated glycoprotein); MCP-1: (chemoattractant protein-1); MIP-1α:
(macrophage inflammatory protein-1α); MMP: (matrix metalloproteinase);
NGF: (nerve growth factor); NT: (neurotrophin); OMgp: (oligodendrocyte
myelin associated glycoprotein); PNS: (peripheral nervous system); SIRPα:
(signal-regulatory-protein-α); SRA: (scavenger receptor-AI/II); TNF: (tumor
necrosis factor).

Acknowledgements
Studies by the author have been supported by the Israel Science
Foundation, the US-Israel Binational Science Foundation and the Public
Committee for Allocation of Estate Funds, Ministry of Justice, Israel.

Authors’ contributions
SR wrote the manuscript

Competing interests
The authors declare that they have no competing interests.

Received: 22 June 2011 Accepted: 30 August 2011
Published: 30 August 2011

References
1. Waller A: Experiments on the section of the glossopharyngeal and

hypoglossal nerves of the frog, observations of the alterations produced
thereby in the structure of their primitive fibers. Phil Transact Royal Soc
London 1850, 140:423-429.

2. Stoll G, Jander S, Myers RR: Degeneration and regeneration of the
peripheral nervous system: from Augustus Waller’s observations to
neuroinflammation. J Peripher Nerv Syst 2002, 7:13-27.

3. Vargas ME, Barres BA: Why is Wallerian degeneration in the CNS so slow?
Annu Rev Neurosci 2007, 30:153-179.

4. Camara-Lemarroy CR, Guzman-de la Garza F, Fernandez-Garza NE:
Molecular Inflammatory Mediators in Peripheral Nerve Degeneration
and Regeneration. Neuroimmunomodulation 2010, 17:314-324.

5. Coleman MP, Freeman MR: Wallerian degeneration, wld(s), and nmnat.
Annu Rev Neurosci 2010, 33:245-267.

6. Martini R, Fischer S, Lopez-Vales R, David S: Interactions between Schwann
cells and macrophages in injury and inherited demyelinating disease.
Glia 2008, 56:1566-1577.

7. Hoke A: Mechanisms of Disease: what factors limit the success of
peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2006,
2:448-454.

8. Hoke A, Brushart T: Introduction to special issue: Challenges and
opportunities for regeneration in the peripheral nervous system. Exp
Neurol 2009.

9. Krarup C, Archibald SJ, Madison RD: Factors that influence peripheral
nerve regeneration: An electrophysiological study of the monkey
median nerve. Ann Neurol 2002, 51:69-81.

10. Wood MD, Kemp SW, Weber C, Borschel GH, Gordon T: Outcome
measures of peripheral nerve regeneration. Ann Anat 2011, 193:321-333.

11. Lubinska L: Early course of Wallerian degeneration in myelinated fibres
of the rat phrenic nerve. Brain Res 1977, 130:47-63.

12. Beirowski B, Adalbert R, Wagner D, Grumme D, Addicks K, Ribchester R,
et al: The progressive nature of Wallerian degeneration in wild-type and
slow Wallerian degeneration (WldS) nerves. BMC Neuroscience 2005, 6:6.

13. Gilliatt RW, Hjorth RJ: Nerve conduction during Wallerian degeneration in
the baloon. J Neurol Neurosurg Psychiatry 1972, 35:335-341.

14. Cullen MJ: Freeze-fracture analysis of myelin membrane changes in
Wallerian degeneration. J Neurocytol 1988, 17:105-115.

15. Tetzlaff W: Tight junction contact events and temporary gap junctions in
the sciatic nerve fibres of the chicken during Wallerian degeneration
and subsequent regeneration. J Neurocytol 1982, 11:839-858.

16. Reichert F, Saada A, Rotshenker S: Peripheral nerve injury induces
Schwann cells to express two macrophage phenotypes:
phagocytosis and the galactose-specific lectin MAC-2. J Neurosci 1994,
14:3231-3245.

17. Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S: Absence of Wallerian
Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J
Neurosci 1989, 1:27-33.

18. Yan T, Feng Y, Zhai Q: Axon degeneration: Mechanisms and implications
of a distinct program from cell death. Neurochemistry International 2010,
56:529-534.

19. Gilley J, Coleman MP: Endogenous Nmnat2 is an essential survival factor
for maintenance of healthy axons. PLoS Biol 2010, 8:e1000300.

20. Conforti L, Tarlton A, Mack TGA, Mi W, Buckmaster EA, Wagner D, et al: A
Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow
Wallerian degeneration (WldS) mouse. Proceedings of the National
Academy of Sciences 2000, 97:11377-11382.

21. Sasaki Y, Vohra BPS, Baloh RH, Milbrandt J: Transgenic Mice Expressing the
Nmnat1 Protein Manifest Robust Delay in Axonal Degeneration In Vivo.
The Journal of Neuroscience 2009, 29:6526-6534.

22. Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, et al: NAD+
and axon degeneration revisited: Nmnat1 cannot substitute for WldS to
delay Wallerian degeneration. Cell Death Differ 2006, 14:116-127.

23. Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR: WldS requires
Nmnat1 enzymatic activity and N16-VCP interactions to suppress
Wallerian degeneration. J Cell Biol 2009, 184:501-513.

24. Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA: Microanatomy of
axon/glial signaling during Wallerian degeneration. J Neurosci 2005,
25:3478-3487.

25. Kwon YK, Bhattacharyya A, Alberta JA, Giannobile WV, Cheon K, Stiles CD,
et al: Activation of ErbB2 during Wallerian Degeneration of Sciatic Nerve.
J Neurosci 1997, 17:8293-8299.

26. Zanazzi G, Einheber S, Westreich R, Hannocks MJ, Bedell-Hogan D,
Marchionni MA, et al: Glial Growth Factor/Neuregulin Inhibits Schwann
Cell Myelination and Induces Demyelination. J Cell Biol 2001,
152:1289-1300.

27. Huijbregts RPH, Roth KA, Schmidt RE, Carroll SL: Hypertrophic
Neuropathies and Malignant Peripheral Nerve Sheath Tumors in
Transgenic Mice Overexpressing Glial Growth Factor β3 in Myelinating
Schwann Cells. The Journal of Neuroscience 2003, 23:7269-7280.

28. Garratt AN, Voiculescu O, Topilko P, Charnay P, Birchmeier C: A Dual Role
of erbB2 in Myelination and in Expansion of the Schwann Cell Precursor
Pool. J Cell Biol 2000, 148:1035-1046.

29. Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, et al: Neuregulin 1-
erbB Signaling Is Necessary for Normal Myelination and Sensory
Function. J Neurosci 2006, 26:3079-3086.

30. Quintes S, Goebbels S, Saher G, Schwab MH, Nave KA: Neuron-glia
signaling and the protection of axon function by Schwann cells.
J Peripher Nerv Syst 2010, 15:10-16.

Rotshenker Journal of Neuroinflammation 2011, 8:109
http://www.jneuroinflammation.com/content/8/1/109

Page 11 of 14

http://www.ncbi.nlm.nih.gov/pubmed/11939348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11939348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11939348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17506644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20407283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20407283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20345246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16932603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16932603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11782986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11782986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11782986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21640570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21640570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/884520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/884520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15686598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15686598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4624688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4624688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3418354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3418354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7143029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7143029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7143029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8182468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8182468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8182468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12106171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12106171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20117162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20117162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20126265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20126265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19458223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19458223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16645633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16645633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16645633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15800203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15800203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9334404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11257128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11257128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12917360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12917360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12917360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12917360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10704452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10704452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10704452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21199109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21199109?dopt=Abstract


31. Jessen KR, Mirsky R: Negative regulation of myelination: relevance for
development, injury, and demyelinating disease. Glia 2008, 56:1552-1565.

32. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, et al:
Control of Peripheral Nerve Myelination by the β-Secretase BACE1.
Science 2006, 314:664-666.

33. Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, et al: Genetic
deletion of BACE1 in mice affects remyelination of sciatic nerves. The
FASEB Journal 2008, 22:2970-2980.

34. Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al: Bace1
modulates myelination in the central and peripheral nervous system.
Nat Neurosci 2006, 9:1520-1525.

35. Farah MH, Pan BH, Hoffman PN, Ferraris D, Tsukamoto T, Nguyen T, et al:
Reduced BACE1 activity enhances clearance of myelin debris and
regeneration of axons in the injured peripheral nervous system.
J Neurosci 2011, 31:5744-5754.

36. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE:
Identification of myelin-associated glycoprotein as a major myelin-
derived inhibitor of neurite growth. Neuron 1994, 13:805-811.

37. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT: A novel role
for myelin-associated glycoprotein as an inhibitor of axonal
regeneration. Neuron 1994, 13:757-767.

38. Bahr M, Przyrembel C: Myelin from Peripheral and Central Nervous
System Is a Nonpermissive Substrate for Retinal Ganglion Cell Axons.
Experimental Neurology 1995, 134:87-93.

39. Shen YJ, DeBellard ME, Salzer JL, Roder J, Filbin MT: Myelin-associated
glycoprotein in myelin and expressed by Schwann cells inhibits axonal
regeneration and branching. Mol Cell Neurosci 1998, 12:79-91.

40. Schafer M, Fruttiger M, Montag D, Schachner M, Martini R: Disruption of
the gene for the myelin-associated glycoprotein improves axonal
regrowth along myelin in C57BL/Wlds mice. Neuron 1996, 16:1107-1113.

41. Bisby MA, Chen S: Delayed wallerian degeneration in sciatic nerves of
C57BL/Ola mice is associated with impaired regeneration of sensory
axons. Brain Res 1990, 530:117-120.

42. Brown MC, Perry VH, Lunn ER, Gordon S, Heumann R: Macrophage
dependence of peripheral sensory nerve regeneration: possible
involvement of nerve growth factor. Neuron 1991, 6:359-370.

43. Brown MC, Perry VH, Hunt SP, Lapper SR: Further studies on motor and
sensory nerve regeneration in mice with delayed Wallerian
degeneration. Eur J Neurosci 1994, 6:420-428.

44. Caroni P, Schwab ME: Two membrane protein fractions from rat central
myelin with inhibitory properties for neurite growth and fibroblast
spreading. J Cell Biol 1988, 106:1281-1288.

45. Cafferty WBJ, Duffy P, Huebner E, Strittmatter SM: MAG and OMgp
Synergize with Nogo-A to Restrict Axonal Growth and Neurological
Recovery after Spinal Cord Trauma. J Neurosci 2010, 30:6825-6837.

46. Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, et al:
Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and
OMgp-deficient mice. Neuron 2010, 66:663-670.

47. David S, Aguayo AJ: Axonal elongation into peripheral nervous system
“bridges” after central nervous system injury in adult rats. Science 1981,
214:931-933.

48. David S, Aguayo AJ: Axonal regeneration after crush injury of rat central
nervous system fibres innervating peripheral nerve grafts. J Neurocytol
1985, 14:1-12.

49. Yiu G, He Z: Glial inhibition of CNS axon regeneration. Nat Rev Neurosci
2006, 7:617-627.

50. Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS: Receptors for
myelin inhibitors: Structures and therapeutic opportunities. Mol Cell
Neurosci 2010, 43:1-14.

51. Giger RJ, Hollis ER, Tuszynski MH: Guidance molecules in axon
regeneration. Cold Spring Harb Perspect Biol 2010, 2:a001867.

52. Ramaglia V, King RHM, Nourallah M, Wolterman R, de Jonge R, Ramkema M,
et al: The Membrane Attack Complex of the Complement System Is
Essential for Rapid Wallerian Degeneration. J Neurosci 2007, 27:7663-7672.

53. Bruck W, Bruck Y, Diederich U, Piddlesden SJ: The membrane attack
complex of complement mediates peripheral nervous system
demyelination in vitro. Acta Neuropathol (Berl) 1995, 90:601-607.

54. Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP: The membrane
attack complex of complement causes severe demyelination associated
with acute axonal injury. J Immunol 2002, 168:458-465.

55. Stoll G, Griffin JW, Li CY, Trapp BD: Wallerian degeneration in the
peripheral nervous system: participation of both Schwann cells and
macrophages in myelin degradation. J Neurocytol 1989, 18:671-683.

56. George R, Griffin JW: Delayed Macrophage Responses and Myelin
Clearance during Wallerian Degeneration in the Central Nervous System:
The Dorsal Radiculotomy Model. Experimental Neurology 1994,
129:225-236.

57. Perry VH, Tsao JW, Fearn S, Brown MC: Radiation-induced reductions in
macrophage recruitment have only slight effects on myelin
degeneration in sectioned peripheral nerves of mice. Eur J Neurosci 1995,
7:271-280.

58. Fernandez-Valle C, Bunge RP, Bunge MB: Schwann cells degrade myelin
and proliferate in the absence of macrophages: evidence fromin vitro
studies of Wallerian degeneration. Journal of Neurocytology 1995,
24:667-679.

59. Rotshenker S: Microglia and Macrophage Activation and the Regulation
of Complement-Receptor-3 (CR3/MAC-1)-Mediated Myelin Phagocytosis
in Injury and Disease. J Mol Neurosci 2003, 21:65-72.

60. Be’eri H, Reichert F, Saada A, Rotshenker S: The cytokine network of
wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci 1998,
10:2707-2713.

61. Carroll SL, Frohnert PW: Expression of JE (monocyte chemoattractant
protein-1) is induced by sciatic axotomy in wild type rodents but not in
C57BL/Wld(s) mice. J Neuropathol Exp Neurol 1998, 57:915-930.

62. Subang MC, Richardson PM: Influence of injury and cytokines on
synthesis of monocyte chemoattractant protein-1 mRNA in peripheral
nervous tissue. Eur J Neurosci 2001, 13:521-528.

63. Shamash S, Reichert F, Rotshenker S: The Cytokine Network of Wallerian
Degeneration: Tumor Necrosis Factor- α, Interleukin-1α, and Interleukin-
1β. J Neurosci 2002, 22:3052-3060.

64. Perry VH, Brown MC, Gordon S: The macrophage response to central and
peripheral nerve injury. A possible role for macrophages in
regeneration. J Exp Med 1987, 165:1218-1223.

65. Bendszus M, Stoll G: Caught in the act: in vivo mapping of macrophage
infiltration in nerve injury by magnetic resonance imaging. J Neurosci
2003, 23:10892-10896.

66. Ransohoff RM: Chemokines in neurological disease models: correlation
between chemokine expression patterns and inflammatory pathology.
J Leukoc Biol 1997, 62:645-652.

67. Siebert H, Sachse A, Kuziel WA, Maeda N, Bruck W: The chemokine
receptor CCR2 is involved in macrophage recruitment to the injured
peripheral nervous system. Journal of Neuroimmunology 2000, 110:177-185.

68. Perrin FE, Lacroix S, Aviles-Trigueros M, David S: Involvement of monocyte
chemoattractant protein-1, macrophage inflammatory protein-1α and
interleukin-1β in Wallerian degeneration. Brain 2005, 128:854-866.

69. Siebert H, Dippel N, Mäder M, Weber F, Bruck W: Matrix metalloproteinase
expression and inhibition after sciatic nerve axotomy. Journal of
Neuropathology and Experimental Neurology 2001, 60:85-93.

70. Shubayev VI, Angert M, Dolkas J, Campana WM, Palenscar K, Myers RR:
TNFα-induced MMP-9 promotes macrophage recruitment into injured
peripheral nerve. Molecular and Cellular Neuroscience 2006, 31:407-415.

71. Chattopadhyay S, Myers RR, Janes J, Shubayev V: Cytokine regulation of
MMP-9 in peripheral glia: Implications for pathological processes and
pain in injured nerve. Brain, Behavior, and Immunity 2007, 21:561-568.

72. Fleur ML, Underwood JL, Rappolee DA, Werb Z: Basement Membrane and
Repair of Injury to Peripheral Nerve: Defining a Potential Role for
Macrophages, Matrix Metalloproteinases, and Tissue Inhibitor of
Metalloproteinases-1. The Journal of Experimental Medicine 1996,
184:2311-2326.

73. Bruck W, Friede RL: The role of complement in myelin phagocytosis
during PNS wallerian degeneration. Journal of the Neurological Sciences
1991, 103:182-187.

74. Dailey AT, Avellino AM, Benthem L, Silver J, Kliot M: Complement
Depletion Reduces Macrophage Infiltration and Activation during
Wallerian Degeneration and Axonal Regeneration. J Neurosci 1998,
18:6713-6722.

75. Liu L, Lioudyno M, Tao R, Eriksson P, Svensson M, Aldskogius H: Hereditary
absence of complement C5 in adult mice influences wallerian
degeneration, but not retrograde responses, following injury to
peripheral nerve. Journal of the Peripheral Nervous System 1999, 4:123-133.

Rotshenker Journal of Neuroinflammation 2011, 8:109
http://www.jneuroinflammation.com/content/8/1/109

Page 12 of 14

http://www.ncbi.nlm.nih.gov/pubmed/18803323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16990514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18413858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17099708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17099708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21490216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21490216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7524558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7524558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7522484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7522484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7522484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7672041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7672041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9770342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9770342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9770342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8663987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8663987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8663987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2271939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2271939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2271939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1848079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1848079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1848079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8019679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8019679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8019679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3360853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3360853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3360853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20484625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20484625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20484625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20547125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20547125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6171034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6171034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4009210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4009210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16858390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19619659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19619659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20519341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20519341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634361?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634361?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11751993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11751993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11751993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2614485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2614485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2614485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7957737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7957737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7957737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7538855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7538855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7538855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7500122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7500122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7500122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9767400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9767400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9786242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9786242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9786242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11168559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11168559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11168559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11943808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11943808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11943808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3559478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3559478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3559478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9365119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9365119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11024548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11024548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11024548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15689362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15689362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15689362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11202178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11202178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16297636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16297636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8976186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8976186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8976186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8976186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1880536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1880536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9712643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9712643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9712643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10442688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10442688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10442688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10442688?dopt=Abstract


76. van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD:
Macrophage phagocytosis of myelin in vitro determined by flow
cytometry: phagocytosis is mediated by CR3 and induces production of
tumor necrosis factor-α and nitric oxide. J Neuroimmunol 1996,
70:145-152.

77. da Costa CC, van der Laan LJ, Dijkstra CD, Bruck W: The role of the mouse
macrophage scavenger receptor in myelin phagocytosis. Eur J Neurosci
1997, 9:2650-2657.

78. Reichert F, Slobodov U, Makranz C, Rotshenker S: Modulation (inhibition
and augmentation) of complement receptor-3- mediated myelin
phagocytosis. Neurobiol Dis 2001, 8:504-512.

79. Reichert F, Rotshenker S: Complement-receptor-3 and scavenger-
receptor-AI/II mediated myelin phagocytosis in microglia and
macrophages. Neurobiol Dis 2003, 12:65-72.

80. Smith ME: Phagocytic properties of microglia in vitro: implications for a
role in multiple sclerosis and EAE. Microsc Res Tech 2001, 54:81-94.

81. Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA: Endogenous
antibodies promote rapid myelin clearance and effective axon
regeneration after nerve injury. Proc Natl Acad Sci USA 2010,
107:11993-11998.

82. Saada A, Reichert F, Rotshenker S: Granulocyte macrophage colony
stimulating factor produced in lesioned peripheral nerves induces the
up-regulation of cell surface expression of MAC-2 by macrophages and
Schwann cells. J Cell Biol 1996, 133:159-167.

83. Reichert F, Rotshenker S: Deficient activation of microglia during optic
nerve degeneration. J Neuroimmunol 1996, 70:153-161.

84. Reichert F, Rotshenker S: Galectin-3/MAC-2 in experimental allergic
encephalomyelitis. Exp Neurol 1999, 160:508-514.

85. Gitik M, Liraz ZS, Oldenborg PA, Reichert F, Rotshenker S: Myelin down-
regulates myelin phagocytosis by microglia and macrophages through
interactions between CD47 on myelin and SIRPα (signal regulatory
protein-α) on phagocytes. J Neuroinflammation 2011, 8:24.

86. Reichert F, Levitzky R, Rotshenker S: Interleukin 6 in intact and injured
mouse peripheral nerves. Eur J Neurosci 1996, 8:530-535.

87. Rotshenker S, Aamar S, Barak V: Interleukin-1 activity in lesioned
peripheral nerve. J Neuroimmunol 1992, 39:75-80.

88. Mirski R, Reichert F, Klar A, Rotshenker S: Granulocyte macrophage colony
stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding
molecule in Wallerian degeneration following injury to peripheral nerve
axons. Journal of Neuroimmunology 2003, 140:88-96.

89. Baitsch D, Bock HH, Engel T, Telgmann R, Muller-Tidow C, Varga G, et al:
Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages.
Arterioscler Thromb Vasc Biol 2011.

90. Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT,
Clement M, et al: Macrophage plasticity in experimental atherosclerosis.
PLoS One 2010, 5:e8852.

91. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM,
Leffler H, et al: Regulation of Alternative Macrophage Activation by
Galectin-3. J Immunol 2008, 180:2650-2658.

92. Aamar S, Saada A, Rotshenker S: Lesion-induced changes in the
production of newly synthesized and secreted apo-E and other
molecules are independent of the concomitant recruitment of blood-
borne macrophages into injured peripheral nerves. J Neurochem 1992,
59:1287-1292.

93. Saada A, Dunaevsky-Hutt A, Aamar A, Reichert F, Rotshenker S: Fibroblasts
that reside in mouse and frog injured peripheral nerves produce
apolipoproteins. J Neurochem 1995, 64:1996-2003.

94. Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, ivest S, et al: Toll-Like
Receptor Signaling Is Critical for Wallerian Degeneration and Functional
Recovery after Peripheral Nerve Injury. The Journal of Neuroscience 2007,
27:12565-12576.

95. Tieu BC, Lee C, Sun H, Lejeune W, Recinos A, Ju X, et al: An adventitial IL-
6/MCP1 amplification loop accelerates macrophage-mediated vascular
inflammation leading to aortic dissection in mice. J Clin Invest 2009,
119:3637-3651.

96. Chui R, Dorovini-Zis K: Regulation of CCL2 and CCL3 expression in human
brain endothelial cells by cytokines and lipopolysaccharide. J
Neuroinflammation 2010, 7:1.

97. Mori K, Chano T, Yamamoto K, Matsusue Y, Okabe H: Expression of
macrophage inflammatory protein-1α in Schwann cell tumors.
Neuropathology 2004, 24:131-135.

98. Maurer M, von Stebut E: Macrophage inflammatory protein-1. The
International Journal of Biochemistry & Cell Biology 2004, 36:1882-1886.

99. Isenberg JS, Roberts DD, Frazier WA: CD47: a new target in cardiovascular
therapy. Arterioscler Thromb Vasc Biol 2008, 28:615-621.

100. Sarfati M, Fortin G, Raymond M, Susin S: CD47 in the immune response:
role of thrombospondin and SIRP-α reverse signaling. Curr Drug Targets
2008, 9:842-850.

101. Matozaki T, Murata Y, Okazawa H, Ohnishi H: Functions and molecular
mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol 2009,
19:72-80.

102. Barclay AN: Signal regulatory protein alpha (SIRPα)/CD47 interaction and
function. Curr Opin Immunol 2009, 21:47-52.

103. Levi-Montalcini R, Angeletti PU: Nerve growth factor. Physiological Reviews
1968, 48:534-569.

104. Silver JS, Hunter CA: gp130 at the nexus of inflammation, autoimmunity,
and cancer. J Leukoc Biol 2010, 88:1145-1156.

105. Zweifel LS, Kuruvilla R, Ginty DD: Functions and mechanisms of
retrograde neurotrophin signalling. Nat Rev Neurosci 2005, 6:615-625.

106. Huang EJ, Reichardt LF: NEUROTROPHINS: Roles in Neuronal
Development and Function1. Annu Rev Neurosci 2001, 24:677-736.

107. Mok SA, Lund K, Campenot RB: A retrograde apoptotic signal originating
in NGF-deprived distal axons of rat sympathetic neurons in
compartmented cultures. Cell Res 2009, 19:546-560.

108. Heumann R, Korsching S, Bandtlow C, Thoenen H: Changes of nerve
growth factor synthesis in nonneuronal cells in response to sciatic nerve
transection. J Cell Biol 1987, 104:1623-1631.

109. Lindholm D, Heumann R, Meyer M, Thoenen H: Interleukin-1 regulates
synthesis of nerve growth factor in non-neuronal cells of rat sciatic
nerve. Nature 1987, 330:658-659.

110. Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, et al:
Differential regulation of mRNA encoding nerve growth factor and its
receptor in rat sciatic nerve during development, degeneration, and
regeneration: role of macrophages. Proc Natl Acad Sci USA 1987,
84:8735-8739.

111. Matsuoka I, Meyer M, Thoenen H: Cell-type-specific regulation of nerve
growth factor (NGF) synthesis in non-neuronal cells: comparison of
Schwann cells with other cell types. The Journal of Neuroscience 1991,
11:3165-3177.

112. DiStefano PS, Curtis R: Chapter 4 Receptor mediated retrograde axonal
transport of neurotrophic factors is increased after peripheral nerve
injury. In Progress in Brain Research Neural Regeneration. Edited by: Fredrick
JS. Elsevier; 1994:35-42, Volume 103 edition.

113. Hattori A, Iwasaki S, Murase K, Tsujimoto M, Sato M, Hayashi K, et al: Tumor
necrosis factor is markedly synergistic with interleukin 1 and interferon-
γ in stimulating the production of nerve growth factor in fibroblasts.
FEBS Lett 1994, 340:177-180.

114. Bauer S, Kerr BJ, Patterson PH: The neuropoietic cytokine family in
development, plasticity, disease and injury. Nat Rev Neurosci 2007,
8:221-232.

115. Murphy M, Dutton R, Koblar S, Cheema S, Bartlett P: Cytokines which
signal through the LIF receptor and their actions in the nervous system.
Progress in Neurobiology 1997, 52:355-378.

116. Banner LR, Patterson PH: Major changes in the expression of the mRNAs
for cholinergic differentiation factor/leukemia inhibitory factor and its
receptor after injury to adult peripheral nerves and ganglia. Proc Natl
Acad Sci USA 1994, 91:7109-7113.

117. Curtis R, Scherer SS, Somogyi R, Adryan KM, Ip NY, Zhu Y, et al: Retrograde
axonal transport of LIF is increased by peripheral nerve injury:
correlation with increased LIF expression in distal nerve. Neuron 1994,
12:191-204.

118. Hirota H, Kiyama H, Kishimoto T, Taga T: Accelerated Nerve
Regeneration in Mice by upregulated expression of interleukin (IL) 6
and IL-6 receptor after trauma. The Journal of Experimental Medicine
1996, 183:2627-2634.

119. Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R: Sensory Impairments
and Delayed Regeneration of Sensory Axons in Interleukin-6-Deficient
Mice. The Journal of Neuroscience 1999, 19:4305-4313.

120. Murphy PG, Borthwick LA, Altares M, Gauldie J, Kaplan D, Richardson PM:
Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor
on rat and mouse primary sensory neurons. European Journal of
Neuroscience 2000, 12:1891-1899.

Rotshenker Journal of Neuroinflammation 2011, 8:109
http://www.jneuroinflammation.com/content/8/1/109

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/8898723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8898723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8898723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9517470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9517470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11442357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11442357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11442357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12609490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12609490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12609490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11455615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11455615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20547838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20547838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20547838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8601605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8601605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8601605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8601605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8898724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8898724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10619568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10619568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21401967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21401967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21401967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21401967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8963444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8963444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1619040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1619040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12864975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12864975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12864975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12864975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20111605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1402881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1402881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1402881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1402881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7722485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7722485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7722485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19920349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19920349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19920349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20047691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20047691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15139590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15139590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20833257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18187671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18187671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18855618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18855618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19144521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19144521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19223164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19223164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4875350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20610800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20610800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16062170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16062170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11520916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11520916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3034917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3034917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3034917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3317065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3317065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3317065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2825206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2825206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2825206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1658245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1658245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1658245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8131840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8131840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8131840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17311007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17311007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9304697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9304697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8041754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8041754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8041754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7507340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7507340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7507340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8676083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8676083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8676083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10341234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10341234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10341234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10886330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10886330?dopt=Abstract


121. Cheema SS, Richards L, Murphy M, Bartlett PF: Leukemia inhibitory factor
prevents the death of axotomised sensory neurons in the dorsal root
ganglia of the neonatal rat. J Neurosci Res 1994, 37:213-218.

122. Cafferty WBJ, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, et al:
Leukemia Inhibitory Factor Determines the Growth Status of Injured
Adult Sensory Neurons. The Journal of Neuroscience 2001, 21:7161-7170.

123. Dowsing BJ, Morrison WA, Nicola NA, Starkey GP, Bucci T, Kilpatrick TJ:
Leukemia inhibitory factor is an autocrine survival factor for Schwann
cells. J Neurochem 1999, 73:96-104.

124. Costigan M, Scholz J, Woolf CJ: Neuropathic pain: a maladaptive response
of the nervous system to damage. Annu Rev Neurosci 2009, 32:1-32.

125. Woolf CJ: What is this thing called pain? J Clin Invest 2010, 120:3742-3744.
126. Zimmermann M: Pathobiology of neuropathic pain. Eur J Pharmacol 2001,

429:23-37.
127. Myers RR, Heckman HM, Rodriguez M: Reduced hyperalgesia in nerve-

injured WLD mice: relationship to nerve fiber phagocytosis, axonal
degeneration, and regeneration in normal mice. Exp Neurol 1996,
141:94-101.

128. Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA:
Endogenous interleukin-6 contributes to hypersensitivity to cutaneous
stimuli and changes in neuropeptides associated with chronic nerve
constriction in mice. Eur J Neurosci 1999, 11:2243-2253.

129. Wu G, Ringkamp M, Murinson BB, Pogatzki EM, Hartke TV, Weerahandi HM,
et al: Degeneration of myelinated efferent fibers induces spontaneous
activity in uninjured C-fiber afferents. J Neurosci 2002, 22:7746-7753.

130. Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ: Contribution
of interleukin-1β to the inflammation-induced increase in nerve growth
factor levels and inflammatory hyperalgesia. Br J Pharmacol 1995,
115:1265-1275.

131. Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S: Cytokines, nerve
growth factor and inflammatory hyperalgesia: the contribution of
tumour necrosis factor alpha. Br J Pharmacol 1997, 121:417-424.

132. Wagner R, Myers RR: Endoneurial injection of TNF-α produces
neuropathic pain behaviors. Neuroreport 1996, 7:2897-2901.

133. Sorkin LS, Doom CM: Epineurial application of TNF elicits an acute
mechanical hyperalgesia in the awake rat. Journal of the Peripheral
Nervous System 2000, 5:96-100.

134. Zelenka M, Schafers M, Sommer C: Intraneural injection of interleukin-1β
and tumor necrosis factor-α into rat sciatic nerve at physiological doses
induces signs of neuropathic pain. Pain 2005, 116:257-263.

135. Leung L, Cahill C: TNF-α and neuropathic pain - a review. Journal of
Neuroinflammation 2010, 7:27.

136. Ho MK, Springer TA: Mac-2, a novel 32,000 Mr mouse macrophage
subpopulation-specific antigen defined by monoclonal antibodies.
J Immunol 1982, 128:1221-1228.

137. Ashery U, Yizhar O, Rotblat B, Elad-Sfadia G, Barkan B, Haklai R, et al:
Spatiotemporal Organization of Ras Signaling: Rasosomes and the
Galectin Switch. Cell Mol Neurobiol 2006, 26:471-495.

138. Yang RY, Rabinovich GA, Liu FT: Galectins: structure, function and
therapeutic potential. Expert Rev Mol Med 2008, 10:e17.

139. Sato S, St-Pierre C, Bhaumik P, Nieminen J: Galectins in innate immunity:
dual functions of host soluble β-galactoside-binding lectins as damage-
associated molecular patterns (DAMPs) and as receptors for pathogen-
associated molecular patterns (PAMPs). Immunological Reviews 2009,
230:172-187.

140. Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F,
Rotshenker S: Phosphatidylinositol 3-kinase, phosphoinositide-specific
phospholipase-Cγ and protein kinase-C signal myelin phagocytosis
mediated by complement receptor-3 alone and combined with
scavenger receptor-AI/II in macrophages. Neurobiol Dis 2004, 15:279-286.

141. Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S: Non-PKC
DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC
inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC,
PI3K, and PLCγ activate myelin phagocytosis by both. Glia 2006,
53:538-550.

142. Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF,
et al: K-Ras Nanoclustering Is Subverted by Overexpression of the
Scaffold Protein Galectin-3. Cancer Res 2008, 68:6608-6616.

143. Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-
3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger

receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008,
56:1607-1613.

144. Rotshenker S: The Role of Galectin-3/MAC-2 in the Activation of the
Innate-Immune Function of Phagocytosis in Microglia in Injury and
Disease. J Mol Neurosci 2009, 39:99-103.

145. Aderka D, Le JM, Vilcek J: IL-6 inhibits lipopolysaccharide-induced tumor
necrosis factor production in cultured human monocytes, U937 cells,
and in mice. J Immunol 1989, 143:3517-3523.

146. Dinarello CA: Historical insights into cytokines. Eur J Immunol 2007,
37(Suppl 1):S34-S45.

147. Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003,
3:23-35.

148. Mosser DM: The many faces of macrophage activation. J Leukoc Biol 2003,
73:209-212.

149. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The
chemokine system in diverse forms of macrophage activation and
polarization. Trends Immunol 2004, 25:677-686.

150. Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development,
heterogeneity, and relationship with dendritic cells. Annu Rev Immunol
2009, 27:669-692.

151. Benoit M, Desnues B, Mege JL: Macrophage Polarization in Bacterial
Infections. J Immunol 2008, 181:3733-3739.

152. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ: Unravelling
mononuclear phagocyte heterogeneity. Nat Rev Immunol 2010,
10:453-460.

doi:10.1186/1742-2094-8-109
Cite this article as: Rotshenker: Wallerian degeneration: the innate-
immune response to traumatic nerve injury. Journal of
Neuroinflammation 2011 8:109.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Rotshenker Journal of Neuroinflammation 2011, 8:109
http://www.jneuroinflammation.com/content/8/1/109

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/8151729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8151729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8151729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11549727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11549727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10386959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10386959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19400724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19400724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21041955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11698024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8797671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8797671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8797671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10383613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10383613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10383613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12196598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12196598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7582555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7582555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7582555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9179382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9179382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9179382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9116205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9116205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10905468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10905468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15964142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15964142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15964142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20398373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6173426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6173426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16691442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16691442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18549522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18549522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15006698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16374778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16374778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16374778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16374778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18701484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18701484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18615637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18615637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18615637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19253007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19253007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19253007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2584704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2584704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2584704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17972343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12511873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12554797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15530839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15530839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15530839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19132917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19132917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18768823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18768823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20467425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20467425?dopt=Abstract

	Abstract
	Introduction
	Traumatic injury to peripheral nerves, Wallerian degeneration and functional recovery
	Axon destruction and myelin disintegration
	Degenerated myelin is harmful
	Schwann cells and macrophages are activated to scavenge degenerated myelin
	The cytokine network of Wallerian degeneration
	Chemokines, recruitment of macrophages and Wallerian degeneration
	Immune inhibitory receptors and Wallerian degeneration
	Neurotrophic factors and Wallerian degeneration
	Neuropathic pain and Wallerian degeneration
	Putting it altogether - orchestration is important

	Conclusion
	Appendices
	Appendix 1: Galectin-3/MAC-2 activates myelin phagocytosis by macrophages and further promotes Schwann cells to scavenge myelin
	Appendix 2: Cytokines are multi functional proteins
	Appendix 3: Tissue macrophages can differentiate into M1 and M2 phenotypes

	Acknowledgements
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


