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Skin cutaneous melanoma (SKCM) is one of the most deadly malignancies. Although im-
munotherapies showed the potential to improve the prognosis for metastatic melanoma
patients, only a small group of patients can benefit from it. Therefore, it is urgent to investi-
gate the tumor microenvironment in melanoma as well as to identify efficient biomarkers in
the diagnosis and treatments of SKCM patients. A comprehensive analysis was performed
based on metastatic melanoma samples from the Cancer Genome Atlas (TCGA) database
and ESTIMATE algorithm, including gene expression, immune and stromal scores, prognos-
tic immune-related genes, infiltrating immune cells analysis and immune subtype identifica-
tion. Then, the differentially expressed genes (DEGs) were obtained based on the immune
and stromal scores, and a list of prognostic immune-related genes was identified. Functional
analysis and the protein–protein interaction network revealed that these genes enriched in
multiple immune-related biological processes. Furthermore, prognostic genes were verified
in the Gene Expression Omnibus (GEO) databases and used to predict immune infiltrat-
ing cells component. Our study revealed seven immune subtypes with different risk val-
ues and identified T cells as the most abundant cells in the immune microenvironment and
closely associated with prognostic outcomes. In conclusion, the present study thoroughly
analyzed the tumor microenvironment and identified prognostic immune-related biomarkers
for metastatic melanoma.

Introduction
Skin cutaneous melanoma (SKCM) is a common skin malignancy with high metastasis and mortality rates
[1]. Once melanoma has spread, this type of cancer rapidly becomes life-threatening. Although significant
progress in the treatments of advanced melanoma has achieved some level of success during the past sev-
eral years, patients with metastatic melanoma still show poor prognosis [2]. Immunotherapy was regarded
as a foundation in melanoma treatment, and is assumed to regulate host immunity against the tumor [3,4].
Immunotherapeutic strategies, including anti-PD1 and anti-CTLA4, have achieved some success and im-
proved patients’ survival; however, still many patients don’t show a long-lasting response and tend to have
poor prognosis [5].

Currently, tumor microenvironment (TME) studies have raised hopes for improved treatment of
melanoma patients, especially for patients with metastatic lesions [6]. There is evidence revealing that
increased density of tumor-infiltrating lymphocytes (TILs) are correlated with better outcomes, as well as
a reduced occurrence of lymph node metastasis and a lengthier disease-free survival (DFS) [7]. Thomas
et al. found that the degree of lymphocyte infiltration was an independent prognosticator of DFS, indi-
cating that a lesser grade was related to a decreased DFS [8]. These researches implied that assessing the
diversity of the TME and transforming the immune microenvironment can be a promising strategy for
melanoma therapy. Due to the complexity and heterogeneity of the genomic landscape among different
types of tumors, it is urgent to investigate the TME in melanoma as well as to identify efficient biomarkers
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Table 1 Clinicopathological characteristics of metastatic SKCM patients

Characteristics TCGA cohort (N=371)

N (%)

Age

y ≤ 60 years 216 (59.7)

>60 years 146 (40.3)

Gender

Male 232 (62.7)

Female 138 (37.3)

Clark level

I 6 (2.4)

II 17 (6.8)

III–IV 193 (77.5)

V 33 (13.3)

Breslow depth (mm)

≤0.75 36 (9.8)

0.76–1.50 170 (46.1)

1.51–4.00 96 (26.0)

>4.00 67 (18.1)

pT stage

T1-T2 115 (43.4)

T3-T4 150 (56.6)

pN stage

N0 178 (62.7)

N1 67 (23.6)

N2 39 (13.7)

pM stage

M0 322 (93.6)

M1 22 (6.4)

Pathologic stage

I-II 150 (47.5)

III-IV 166 (52.5)

in the diagnosis and treatments of SKCM patients. ESTIMATE algorithms have been developed to predict tumor
purity in various cancers based on the specific gene expression signature of immune and stromal cells [9]. In the
present work, we explored the TCGA database and ESTIMATE algorithm to identify immune-related prognostic
biomarkers for metastatic melanoma.

Materials and methods
Gene expression datasets
Gene expression profile for metastatic SKCM patients (n=368) was obtained from the TCGA data portal (https:
//tcga-data.nci.nih.gov/tcga/). Clinical data (n=371), including gender, age, pathological stages, Breslow depth, Clark
level and survival status, were also downloaded from the TCGA data portal [10]. Immune scores and stromal scores
were calculated by applying the ESTIMATE algorithm to the downloaded database [9]. For validation, GSE59334
(n=74) containing expression profiling of melanoma patients with clinical information were obtained from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [11]. The clinicopathological character-
istics of the metastatic SKCM patients from the TCGA database was shown in Table 1.

Identification of differentially expressed genes
All samples were divided into high/low immune-score as well as stromal-score groups based on the ESTIMATE re-
sults. Data analysis was performed using the limma package in R software. |log(Fold change)| > 1.5, P<0.05 and
FDR<0.05 were set as the cutoffs to screen for DEGs. Heatmaps were generated using the pheatmap package.
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Survival curve
The Kaplan–Meier methods were used to illustrate survival differences between the low- and high-stromal/immune
score groups with overall survival (OS) and recurrence-free survival (RFS) and identify the prognostic genes. The
P-value < 0.05 was set as the cut-off value.

Function enrichment analysis
Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs and
prognostic genes were performed by DAVID (The Database for Annotation, Visualization and Integrated Discovery)
[12]. False discovery rate (FDR) < 0.05 and P<0.01 were used as the cut-offs.

PPI network construction and model analysis
The protein–protein interaction (PPI) network was built using STRING and visualized in Cytoscape software [13].
The plug-in MCODE was then used to find clusters based on the topology to locate densely connected regions. Indi-
vidual modules with at least 15 nodes and 100 edges were selected for further analysis.

Estimation of immune cell type fractions
To quantify the proportions of immune cells, 238 prognostic gene expression data were used to measure the abun-
dance of several types of infiltrating immune cells (B cells, T cells, NK cells, monocytes, macrophages, myeloid den-
dritic cells, mast cells, eosinophils and neutrophils) in melanoma patients using CIBERSORT algorithm [14]. And the
number of samples used for clustering analyses was 368 from the TCGA database. Then, we carried out unsupervised
clustering of the infiltrating immune cells, dividing patients into different immune subtypes based on the k-means.
Combining immune-score and survival analysis, high-risk and low-risk immune subtypes were identified. Statistical
analysis and graphical plotting were conducted using R software.

Statistical analysis
One-way analysis of variance was applied to compare the immune and stromal scores in different groups by using
GraphPad Prism 8. Differential analysis of expressed genes, functional analysis as well as unsupervised clustering
analysis were all performed in R software.

Results
Association of immune scores and stromal scores with SKCM prognosis
In general, the immune score and stromal score were significant associated with metastatic melanoma prognosis.
Based on the ESTIMATE algorithm, immune scores ranged from -1853.02 to 3622.19, and stromal scores were dis-
tributed between -1804.83 and 1879.32. The distribution of immune and stromal scores was significantly associ-
ated with Breslow depth (P=0.0034, P=0.00453) (Figure 1A,B). As shown in Figure 1C,D, the distribution of stro-
mal scores did not vary across different Clark levels (P=0.5299), while the distribution of immune scores did differ
(P=0.0124).

To investigate the correlation of OS and RFS with immune scores and stromal scores, we divided the 368 metastatic
SKCM cases into high or low-score groups based on their immune and stromal scores. Kaplan–Meier survival curves
indicated that immune scores were positively related to both OS (P=0.0017) and RFS (P<0.001). Similarly, we found
that stromal scores were also positively associated with both OS (P=0.0188) and RFS (P=0.0123), suggesting that
both are positive factors for the prognosis of patients with metastatic melanoma (Figure 1E–H).

Comparison of gene expression profile and function annotation
Heatmaps in Figure 2A,B showed different gene expression profiles of samples between high and low immune/stromal
scores groups. For comparison based on immune scores, 929 genes were up-regulated and 3 genes down-regulated
in the high score (|logFC| >1.5; P<0.05, Figure 2C). Similarly, 916 up-regulated genes and 10 down-regulated genes
were selected according to the stromal scores (|logFC| >1.5; P<0.05, Figure 2D).

Next, we selected the 663 overlap up-regulated genes for further study. Functional enrichment clustering of overlap
genes showed a strong association with immune response. GO analysis indicated that changes in biologic processes
significantly enriched in immune response, inflammatory response, signal transduction, innate immune response
and adaptive immune response (Figure 3A). Changes in cellular components were mainly enriched in the plasma
membrane, integral component of plasma membrane, external side of plasma membrane, integral component of
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Figure 1. Immune scores and stromal scores are associated with metastatic melanoma prognosis

(A and B) The distribution of immune and stromal scores were significantly associated with Breslow depth (P=0.0034, P=0.00453).

(C and D) The distribution of stromal scores did not vary across different Clark levels (P=0.5299), while the distribution of immune

scores did differ (P=0.0124). (E) The analysis of patients’ overall survival (OS) based on immune scores. (F) The analysis of patients’

OS based on stromal scores. (G) The analysis of patients’ recurrence-free survival (RFS) based on immune scores. (H) The analysis

of patients’ RFS based on stromal scores.
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Figure 2. Comparison of gene expression profile with immune and stromal scores of melanoma

(A and B) Heatmaps of gene expression profiles of samples between high and low immune scores/stromal scores groups. (C and

D) Venn diagram analysis of aberrantly expressed genes based on immune and stromal scores.

membrane and T-cell receptor complex (Figure 3B). As for the molecular function, changes were mostly enriched
in receptor activity, carbohydrate binding, chemokine activity, MHC class II receptor activity and transmembrane
signaling receptor activity (Figure 3C). In addition, all the pathways yielded from the KEGG analysis (Figure 3D)
were closely associated with immune response, such as cytokine–cytokine receptor interaction, chemokine signaling
pathway and natural killer cell mediated cytotoxicity.

Overall survival of overlapped genes
Subsequently, we performed survival analysis to examine the overlapped 663 up-regulated genes in order to identify
prognostic genes, and 600 genes (90.5%) were correlated with better overall survival (P<0.05, Figure 4), which were
considered potential prognostic immune-related genes for further study.

Validation in the GEO database
To find out whether the genes identified from the TCGA database also are of prognostic significance in additional
GEO cases, we downloaded and analyzed gene expression data of GSE59334 from GEO database. A total of 239 genes
in TCGA cohort were validated (Figure 5 and Supplementary Table S1) to be significantly linked to a better prognosis,
which might act as potential prognostic biomarkers for melanoma patients.

Protein–protein interactions among prognostic genes
To better understand the interplay among the identified prognostic genes, we obtained protein–protein interaction
(PPI) networks among 239 them, including 211 nodes and 2499 edges. We selected two modules with at least 15 nodes
and 100 edges for further analysis. In module A (Figure 6A), C1QC, MPEG1, IL7R, CD300A, HAVCR2, CD38, TLR8,
and CXCR4 had higher connectivity degree values, indicating they were the core genes in the module. In module B
(Figure 6B), PLEK, LAPTM5, C1QA, HCK, CYBB, and ITGB2 were remarkable for having many connections with
other genes. Moreover, BP analysis indicated that these prognostic genes were mainly involved in immune response
and inflammatory response. CC showed that changes were primarily enriched in plasma membrane, external side
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Figure 3. The functional analysis of immune-related genes

(A–C) GO analysis (BP, CC, MF) of immune-related genes. (D) KEGG analysis of immune-related genes; GO, Gene Ontology; BP,

biological process; MF, molecular function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 4. Kaplan–Meier survival curves for immune-related genes associated with overall survival

of plasma membrane and integral component of plasma membrane. As for MF, changes were mostly in receptor
activity, chemokine activity and MHC class II receptor activity. KEGG analysis showed that these genes participated
in cytokine–cytokine receptor interaction, antigen processing and presentation and cell adhesion molecules (CAMs)
(Figure 6C–F).

Immune components estimation and subtype analysis
The expression data of prognostic genes were used to predict immune cell profiling in metastatic melanoma. The
cell proportions of each cluster are shown in Figure 7A. We undertook unsupervised clustering with the k-means
algorithm of all samples based on the immune-cell proportions. The optimal number of clusters was 7 (Figure 7B),
thus seven immune subtypes were identified. T cells were the most abundant cells in the immune microenvironment.
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Figure 5. Validation of the TCGA results in other cohorts from the GEO database

Kaplan–Meier survival curves for the verified genes associated with overall survival.

Moreover, clusters were associated with distinct patterns of survival (P=0.0354, Figure 7C), indicating that though T
cells were the most abundant cells in the microenvironment, other immune cells had a stronger influence in patients’
prognosis. Cluster 4, defined by high levels of T cells and a few macrophages, and cluster 6, defined by a high level of
T cells with a few B cells, were both associated with better prognosis. In contrast, cluster 5 and cluster 7 (both defined
by high levels of T cells, mast cells, and neutrophils) were associated with a poor prognosis than other clusters.

Discussion
SKCM is one of the deadly human malignancies, and its metastasis and mortality is high [1]. Nowadays, there is still
a lack of effective prognostic biomarkers that could serve to guide cancer therapy. It is widely acknowledged that
the immunological features of the TME play important role in the evaluation of tumor prognosis [15]. Therefore,
the present study aims to identify immune-related prognostic genes that could better patients’ overall survival by
exploring the TME.

ESTIMATE algorithm was developed to calculate the tumor purity by immune and stromal scores. It was soon
applied in glioblastoma, breast cancer and colon cancer, showing the effectiveness of such big-data based algorithms
[16–18]. In our study, both of immune, stromal scores were found differently distribute in Breslow depth and Clark
level, which were important prognostic indicators for SKCM patients. In addition, high levels of immune/stromal
scores were related to better OS as well as RFS. Next, all of the samples were divided into high and low immune/stromal
groups and 663 immune-related genes were identified. Top GO terms in the biological process included immune
response, inflammatory response, signal transduction, innate immune response and adaptive immune response In
addition, all the pathways that were yielded from KEGG analysis were associated with immune response. Consis-
tent with previous studies, our findings verified that immune cells and extracellular matrix play significant roles
in building the melanoma microenvironment [19–21]. Furthermore, we performed the overall survival analysis of
663 immune-related genes and identified that 600 genes (90.5%) were associated with better outcomes in metastatic
melanoma patients. PPI network and two significant models were constructed among them and highly connected
nodes in the models, including IL7R, CD38 and CXCR4 were closely associated with immune response, especially
participating in regulating CD4+ and CD8+ T cells [22–24].

For validation, GEO dataset was download and 239 immune-related prognostic genes were identified with better
survival outcomes. We plotted the survival curves of 10 genes that have not been studied previously in melanoma.
Among them, we particularly interested in C1QC and MPEG1, the most highly interconnected genes in the PPI
network. A previous study showed that C1q plays a fundamental role in the pathogenesis of gliomas and closely
associated with the prognosis in a diverse grade of gliomas [25]. C1QC encodes the C-chain polypeptide of Com-
plement C1q, widely expressed in the TME among various types of human malignancies [26], suggesting that C1QC
could also be a significant factor in melanoma. MPEG1 (macrophage-expressed gene 1) is observed to be overex-
pressed in multiple human cancer tissues, including breast, liver, pancreas, lung and thyroid [27]. The depletion of
MPEG1 could impact cell mitosis, disturb centrosome duplication, as well as induce chromosome misalignment and
mis-segregation in hepatocellular carcinoma [28,29]. ATP8B4, a participant in ATP biosynthesis and phospholipid
transport via a variety of potential mechanisms, was found to be a risk factor for systemic sclerosis and pulmonary
vascular complications [30]. BTK, located in the downstream of signal transduction of B-cell antigen receptor, might
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Figure 6. The functional analysis of prognostic immune-related genes

(A and B) Top two modules in the PPI networks. (C–E) GO analysis of prognostic immune-related genes. (F) KEGG analysis of

prognostic immune-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

be a useful biomarker to predict the prognosis of lung cancer patients [31]. FCGR1B was overexpressed in renal cell
carcinoma, predicting poor patient prognosis [32]. GPR84, a protein-coding gene of the metabolic G protein-coupled
receptor family, can be regarded as a potential signature for the prognostic prediction of hepatocellular carcinoma
[33]. IGSF6 was considered to be closely related to the susceptibility of inflammatory bowel disease [34]. In ovar-
ian cancer, MS4A6A was associated with pathological grade and might act as a surface marker for M2 macrophages
[35]. The down-regulated RNASE6 might be a prognostic biomarker for esophageal squamous cell carcinoma [36].
VAMP5 was observed to be correlated in tumor microenvironment of brain lower grade glioma [37]. Taken together,

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. The immune landscape of metastatic melanoma microenvironment

(A) Unsupervised clustering of all samples based on immune-cell proportions. Stacked bar charts of samples ordered by cluster

assignment. (B) Optimal numbers of clusters. (C) Survival analysis of patients within different subtypes.

all the 10 selected prognostic genes, shown in Figure 5, are confirmed to be closely associated with immune diseases
and human malignancies, suggesting it might act as an important role in melanoma as well.

Finally, we used expression data of the prognostic genes to assess immune cell profiling in metastatic melanoma
by CIBERSORT algorithm. A previous study suggested that the imbalance of immune cell component was strongly
associated with worse outcomes [38]. In the present study, seven immune subtypes were identified by unsupervised
clustering based on the abundance of immune cells, and the subtypes underwent survival analysis. Among them, we
found that T cells were the most abundant. CD8+ T cells mainly recognize MHC-I antigens and produce granzymes
and perforin to kill tumor cells [39]. Taggart et al. found the important role of CD8+T cells in enhancing the efficacy of
anti-PD-1/anti-CTLA4 in melanoma brain metastases [40]. Increasing evidence revealed that an elevated proportion
of CD8+ T cells may improve the melanoma prognosis as well as reducing the risk values [41]. However, the role of
CD4+T cells (MHC class II) in the TME is always been neglected and the immune response of single CD8+T cells
is not enough to eliminate tumor cells In actual immunotherapy [42]. Recent studies have found that CD4+T cell
responses are required for optimal priming of MHC-I restricted CD8+T cells and their maturation into cytotoxic T
lymphocytes [43]. Moreover, CD4+T cells play an important role in the TME by secreting IFN-γ, increasing CD8+T
cells number and enhancing their lethality [44,45]. Therefore, we predicted CD4+T cells, CD8+T cells and exploration
of their proportion will be of great value to improve objective response rate for metastatic melanoma treatment.
However, further experiments, as well as validated cohorts, were required to clarify the absoluteness of these findings.

Conclusion
Our study explored the TME based on TCGA and GEO cohorts in order to better understand potential immune ef-
fects and the mechanism in metastatic melanoma. A comprehensive analysis was performed including immune and
stromal scores, gene expression, prognostic immune-related genes, infiltrating immune cells analysis and immune
subtype identification. Our results provide insight into metastatic melanoma microenvironment and identified the
immune-related prognostic genes. Importantly, the evaluation of immune subtypes and infiltrating cells might help
us better explore the melanoma mechanism and immunotherapies. However, further studies are needed to unravel
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the functional mechanism behind these immune-related prognostic genes in the metastatic melanoma microenvi-
ronment.
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17 Alonso, M.H., Aussó, S., Lopez-Doriga, A. et al. (2017) Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view
of stromal component. Brit. J. Cancer 117, 421–431, https://doi.org/10.1038/bjc.2017.208

18 Priedigkeit, N., Watters, R.J., Lucas, P.C. et al. (2017) Exome-capture RNA sequencing of decade-old breast cancers and matched decalcified bone
metastases. JCI Insight 2, https://doi.org/10.1172/jci.insight.95703

19 Gartrell-Corrado, R.D., Chen, A.X., Rizk, E.M. et al. (2020) Linking Transcriptomic and Imaging Data Defines Features of a Favorable Tumor Immune
Microenvironment and Identifies a Combination Biomarker for Primary Melanoma. Cancer Res. 80, 1078–1087,
https://doi.org/10.1158/0008-5472.CAN-19-2039

20 Mitra, S., Lauss, M., Cabrita, R. et al. (2020) Analysis of DNA methylation patterns in the tumor immune microenvironment of metastatic melanoma.
Mol. Oncol. 14, 933–950, https://doi.org/10.1002/1878-0261.12663

21 Bruno, T.C. (2020) New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nat. Commun. 577, 474–476,
https://doi.org/10.1038/d41586-019-03943-0

22 Al-Mossawi, H., Yager, N., Taylor, C.A. et al. (2019) Context-specific regulation of surface and soluble IL7R expression by an autoimmune risk allele.
Nat. Commun. 10, 4575, https://doi.org/10.1038/s41467-019-12393-1

23 Leung, G.A., Cool, T., Valencia, C.H. et al. (2019) The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage
development. Development 146, https://doi.org/10.1242/dev.176180

24 Chen, L., Diao, L., Yang, Y. et al. (2018) CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer
Discov. 8, 1156–1175, https://doi.org/10.1158/2159-8290.CD-17-1033

25 Mangogna, A., Belmonte, B., Agostinis, C. et al. (2019) Prognostic Implications of the Complement Protein C1q in Gliomas. Front. Immunol. 10, 2366,
https://doi.org/10.3389/fimmu.2019.02366

26 Bulla, R., Tripodo, C., Rami, D. et al. (2016) C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement
activation. Nat. Commun. 7, 10346, https://doi.org/10.1038/ncomms10346

27 McCormack, R.M., Szymanski, E.P., Hsu, A.P. et al. (2017) MPEG1/perforin-2 mutations in human pulmonary nontuberculous mycobacterial infections.
JCI Insight 2, e89635, https://doi.org/10.1172/jci.insight.89635

28 Choi, M., Min, Y.H., Pyo, J. et al. (2017) TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the
accumulation of chromosomal instability. Br. J. Pharmacol. 174, 1810–1825, https://doi.org/10.1111/bph.13782

29 Zhu, G.Q., Yang, Y., Chen, E.B. et al. (2019) Development and validation of a new tumor-based gene signature predicting prognosis of
HBV/HCV-included resected hepatocellular carcinoma patients. J. Transl. Med. 17, 203, https://doi.org/10.1186/s12967-019-1946-8

30 Gao, L., Emond, M.J., Louie, T. et al. (2016) Identification of Rare Variants in ATP8B4 as a Risk Factor for Systemic Sclerosis by Whole-Exome
Sequencing. Arthritis Rheumatol. 68, 191–200, https://doi.org/10.1002/art.39449

31 Bi, K.W., Wei, X.G., Qin, X.X. and Li, B. (2020) BTK Has Potential to Be a Prognostic Factor for Lung Adenocarcinoma and an Indicator for Tumor
Microenvironment Remodeling: A Study Based on TCGA Data Mining. Front. Oncol. 10, 424, https://doi.org/10.3389/fonc.2020.00424

32 Yamada, Y., Sugawara, S., Arai, T. et al. (2018) Molecular pathogenesis of renal cell carcinoma: Impact of the anti-tumor miR-29 family on gene
regulation. Int. J. Urol. 25, 953–965, https://doi.org/10.1111/iju.13783

33 Deng, Z., Wang, J., Xu, B. et al. (2019) Mining TCGA Database for Tumor Microenvironment-Related Genes of Prognostic Value in Hepatocellular
Carcinoma. Biomed. Res. Int. 2019, 2408348, https://doi.org/10.1155/2019/2408348

34 King, K., Moody, A., Fisher, S.A. et al. (2003) Genetic variation in the IGSF6 gene and lack of association with inflammatory bowel disease. Eur. J.
Immunogenet. 30, 187–190, https://doi.org/10.1046/j.1365-2370.2003.00387.x

35 Pan, X., Chen, Y. and Gao, S. (2020) Four genes relevant to pathological grade and prognosis in ovarian cancer. Cancer Biomark. 11, 1–10,
https://doi.org/10.3233/CBM-191162

36 Yu, D., Ruan, X., Huang, J. et al. (2019) Comprehensive Analysis of Competitive Endogenous RNAs Network, Being Associated With Esophageal
Squamous Cell Carcinoma and Its Emerging Role in Head and Neck Squamous Cell Carcinoma. Front. Oncol. 9, 1474,
https://doi.org/10.3389/fonc.2019.01474

37 Xiong, Z., Xiong, Y., Liu, H. et al. (2020) Identification of purity and prognosis-related gene signature by network analysis and survival analysis in brain
lower grade glioma. J. Cell. Mol. Med., https://doi.org/10.1111/jcmm.15805

38 Qiao, F., Pan, P., Yan, J. et al. (2019) Role of tumor-derived extracellular vesicles in cancer progression and their clinical applications (Review). Int. J.
Oncol. 54, 1525–1533

39 Tsukumo, S.I. and Yasutomo, K. (2018) Regulation of CD8 T Cells and Antitumor Immunity by Notch Signaling. Front. Immunol. 9, 101,
https://doi.org/10.3389/fimmu.2018.00101

40 Taggart, D., Andreou, T., Scott, K.J. et al. (2018) Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and
augmentation of CD8 T cell trafficking. Proc. Natl. Acad. Sci. U. S. A. 115, E1540–E1549, https://doi.org/10.1073/pnas.1714089115

41 Chen, H.Y., Xu, L., Li, L.F. et al. (2018) Inhibiting the CD8 T cell infiltration in the tumor microenvironment after radiotherapy is an important mechanism
of radioresistance. Sci. Rep. 8, 11934, https://doi.org/10.1038/s41598-018-30417-6

42 Gellrich, F.F., Schmitz, M., Beissert, S. et al. (2020) Anti-PD-1 and Novel Combinations in the Treatment of Melanoma-An Update. J. Clin. Med. 9,
https://doi.org/10.3390/jcm9010223

43 Alspach, E., Lussier, D.M., Miceli, A.P. et al. (2019) MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nat. Commun. 574,
696–701, https://doi.org/10.1038/s41586-019-1671-8

44 Borst, J., Ahrends, T., Ba̧bala, N. et al. (2018) CD4 T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647,
https://doi.org/10.1038/s41577-018-0044-0

45 Zhu, Z., Cuss, S.M., Singh, V. et al. (2015) CD4+ T Cell Help Selectively Enhances High-Avidity Tumor Antigen-Specific CD8+ T Cells. J. Immunol. 195,
3482–3489, https://doi.org/10.4049/jimmunol.1401571

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

11

https://doi.org/10.1038/bjc.2017.208
https://doi.org/10.1172/jci.insight.95703
https://doi.org/10.1158/0008-5472.CAN-19-2039
https://doi.org/10.1002/1878-0261.12663
https://doi.org/10.1038/d41586-019-03943-0
https://doi.org/10.1038/s41467-019-12393-1
https://doi.org/10.1242/dev.176180
https://doi.org/10.1158/2159-8290.CD-17-1033
https://doi.org/10.3389/fimmu.2019.02366
https://doi.org/10.1038/ncomms10346
https://doi.org/10.1172/jci.insight.89635
https://doi.org/10.1111/bph.13782
https://doi.org/10.1186/s12967-019-1946-8
https://doi.org/10.1002/art.39449
https://doi.org/10.3389/fonc.2020.00424
https://doi.org/10.1111/iju.13783
https://doi.org/10.1155/2019/2408348
https://doi.org/10.1046/j.1365-2370.2003.00387.x
https://doi.org/10.3233/CBM-191162
https://doi.org/10.3389/fonc.2019.01474
https://doi.org/10.1111/jcmm.15805
https://doi.org/10.3389/fimmu.2018.00101
https://doi.org/10.1073/pnas.1714089115
https://doi.org/10.1038/s41598-018-30417-6
https://doi.org/10.3390/jcm9010223
https://doi.org/10.1038/s41586-019-1671-8
https://doi.org/10.1038/s41577-018-0044-0
https://doi.org/10.4049/jimmunol.1401571

