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Abstract. It has been reported that upregulation of 
wingless‑type protein 5a (Wnt5a) is associated with poor 
prognosis in patients with non‑small cell lung cancer 
(NSCLC). Wnt5a expression is often upregulated in 
radiation‑resistant NSCLC cells. However, the biological 
functions or molecular mechanisms of radiosensitivity in 
NSCLC remain unknown. In the present study, MTT assay 
and flow cytometric analysis were performed to assess 
the effect of overexpression or knockdown of Wnt5a and/
or radiation on the proliferation and apoptosis of NSCLC 
cells. Furthermore, western blot analysis was performed to 
detect canonical Wnt signaling (β‑catenin) in H1650 and 
A549 cells. The results demonstrated that Wnt5a knock‑
down combined with irradiation inhibited proliferation and 
induced apoptosis in NSCLC cells compared with Wnt5a 
knockdown or radiotherapy alone. In addition, the combi‑
nation of Wnt5a knockdown and irradiation decreased 
nuclear and increased cytoplasmic β‑catenin expression in 
H1650 and A549 cells, the effects of which were reversed 
following overexpression of Wnt5a. The combination of 
overexpressing Wnt5a and irradiation resulted in significant 
tumor regression, while β‑catenin knockdown reversed 
Wnt5a overexpression‑induced NSCLC cell proliferation. 
Taken together, these results suggest that Wnt5a may be 
involved in the activation of β‑catenin‑dependent canonical 
Wnt signaling, and thus may influence the effectiveness of 
radiation therapy in NSCLC.

Introduction

Lung cancer is the leading cause of cancer‑associated mortality 
worldwide for 36 cancers (18.0% of the total cancer deaths) 
in 185 countries in year 2020 (1), and non‑small cell lung 
cancer (NSCLC) accounts for up to 80% of total pulmonary 
malignancies (2). Radiotherapy is the most common treatment 
method used for localized lung cancer; it is non‑invasive and 
well‑tolerated (3,4). In patients with NSCLC, radiotherapy 
plays a key role in local treatment by inducing DNA damage, 
triggering cell cycle arrest and apoptosis of tumor cells (5,6). 
However, radioresistance remains an obstacle in achieving 
successful treatment. Thus, novel therapeutic strategies are 
required to improve the effectiveness of radiotherapy for 
patients with NSCLC.

A previous study reported that the wingless‑type (Wnt) 
pathway is associated with radioresistance in NSCLC (7,8). 
It has been reported that Wnt5a expression is upregulated in 
different types of cancer, including gastric, pancreatic and 
prostate cancer (9‑11). A previous study demonstrated that 
silencing Wnt5a expression decreases migration, invasiveness 
and epithelial‑to‑mesenchymal transition (EMT) of NSCLC 
cells; these effects are reversed following overexpression of 
Wnt5a (12). Furthermore, preclinical and clinical studies 
have reported that the combination of gene therapy and 
conventional anticancer therapy can improve the therapeutic 
benefits (13‑16). Although Wnt5a expression is upregulated 
in radioresistant NSCLC cells (17), whether Wnt5a promotes 
radioresistance in NSCLC cells remains unclear.

The present study aimed to investigate the efficacy of 
overexpression or knockdown of Wnt5a combined with 
radiotherapy in NSCLC cells. In addition, it has been reported 
that Wnt5a overexpression promotes the EMT and metastasis 
of pancreatic cancer cells through the β‑catenin‑dependent 
canonical signaling (9). Thus, the study also investigated 
whether the Wnt/β‑catenin pathway was relevant in mediating 
radioresistance in NSCLC cells.

Materials and methods

Cell culture. The human NSCLC cell lines, H1650 
(cat. no. CRL‑5883) and A549 (cat. no. CCL‑185) were 
purchased from the American Type Culture Collection. Cells 
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were maintained in RPMI‑1640 medium (Thermo Fisher 
Scientific, Inc.) supplemented with 10% (w/v) fetal calf serum 
(Gibco; Thermo Fisher Scientific, Inc.) and 1% (w/v) peni‑
cillin/streptomycin in culture dishes, at 37˚C with 5% CO2. 
Cells were seeded into six‑well culture plates at a density of 
5x105 cells/well.

Cell transfection. For the knockdown of endogenous Wnt5a 
expression in NSCLC cells, small interfering (si)RNAs were 
used. For transfection, 1x105 A549 and H1650 parental cells 
were seeded into six‑well plates and cultured overnight at 37˚C 
with 5% CO2 until they reached 80% confluence. The Wnt5a 
siRNA expression cassette was subcloned into the pcDNA6 
expression vector (Invitrogen; Thermo Fisher Scientific, Inc.). 
The target sequence was 5'‑GTTTTGGCCACTGACTGA‑3'. 
For overexpression of Wnt5a, sequences were amplified by 
PCR and inserted into pcDNA6.2 vector to generate fusion 
plasmids, namely Wnt5a and pcDNA empty vector as the 
control. The ratio of the plasmid to the transfection reagent was 
1 µg:3 µl. Transfection was performed at room temperature 
using EzWay™ Transfection Reagent according to the manu‑
facturer's instructions (Invitrogen; Thermo Fisher Scientific, 
Inc.). To assess the role of β‑catenin, H1650 and A549 cells 
were transfected for 24 h with si‑β‑catenin (20 nM; Shanghai 
GenePharma Co., Ltd.; forward, 5'‑CAT GUG UTG GUA AGC 
UCU A‑3' and reverse, 5'‑GCA ACA GTT GCA GAG AGG U‑3'). 
A non‑specific scramble siRNA was used as a negative control 
(20 nM; Shanghai GenePharma Co., Ltd.; forward, 5'‑AUG 
CUG ATC AGU GUC GAT U‑3' and reverse, 5'‑CAG AGA GCT 
CGU GAG AGT A‑3'). Transfection efficiency was determined 
via western blotting and reverse transcription‑quantitative 
PCR (RT‑qPCR). Subsequent experiments were performed 
48 h post‑transfection.

Radiation treatment. Cell irradiation was performed using 
a Varian 21EX (Varian Medical Systems) linear accelerator 
with a coverage field of 10x10 cm. H1650 and A549 cells 
were cultured in 12‑well culture plates (1x104 cells/well) and 
were treated for 24 h with 0, 2, 4, 6 or 8 Gy of irradiation at a 
dosage rate of 100 MU/min and a source‑to‑surface distance 
of 100 cm.

Cell proliferation assay. Cell proliferation was assessed 
via MTT assay (Sigma‑Aldrich; Merck KGaA). At 48 h 
post‑transfection, H1650 and A549 cells were irradiated (0, 2, 
4, 6 or 8 Gy in a single fraction), cultured in 96‑well culture 
plates (5x103 cells/well) and incubated for 5 days at 37˚C with 
5% CO2. An aliquot of 10 µl MTT solvent (5 mg/ml in PBS) 
was added to each well. Following incubation for 2 h at 37˚C, 
and then 100 µl isopropanol with 40 mM HCl was added to 
each well to dissolve formazan crystals. Optical density (OD) 
was measured at wavelengths of 560 and 620 nm, using a 
measurement parameter editor (Tecan Group, Ltd.). Cell 
viability was expressed as OD value of the transfected cell/
OD value of background control (untransfected cells).

Colony formation assay. H1650 and A549 cells were irradiated 
(0, 2, 4, 6 or 8 Gy in a single fraction) 48 h post‑transfection 
and subsequently seeded into 6‑well plates at a density of 
1x103 cells/well. The RMPI‑1640 medium (Thermo Fisher 

Scientific, Inc.) was replaced every day and cells were incu‑
bated for 14 days at 37˚C with 5% CO2. After 14 days, cells 
were fixed with 4% paraformaldehyde in PBS for 30 min at 
room temperature and stained with crystal violet (0.4 g/l; 
Sigma‑Aldrich; Merck KGaA) at room temperature for 30 min. 
The number of colonies (determined as containing >50 cells) 
was counted manually under a light microscope (magnifica‑
tion, x10). The surviving fraction (%) was calculated as follows: 
Colony forming efficiency = number of colonies formed 
following irradiation treatment/number of cells seeded x100. 
All experiments were performed in triplicates and repeated 
three times.

Cell apoptosis assay. Cell apoptosis was determined via 
Annexin V‑FITC and PI staining. Following 24 h irradia‑
tion, H1650 and A549 cells were seeded into 24‑well plates 
at a density of 5x104 cells/well and resuspended in 100 µl 
binding buffer (10.0 HEPES, 140.0 NaCl and 2.5 mM 
CaCl2; pH 7.4). The cells were subsequently stained with 
5 µl Annexin V‑FITC and 5 µl PI using a FITC Annexin V 
Detection kit (BD Biosciences) in the dark at room tempera‑
ture for 15 min, according to the manufacturer's protocol. Cell 
apoptosis was analyzed via flow cytometry (BD FACSCanto™; 
BD Biosciences) and expressed as the percentage of cells 
in each population (viable, Annexin V‑/PI‑; early apoptotic, 
Annexin V+/PI‑; late apoptotic, Annexin V+/PI+ and necrotic, 
Annexin V‑/PI+). These data were analyzed by FlowJo v10.0.7 
software (FlowJo LLC).

Western blotting. H1650 and A549 cells were harvested, and 
cytoplasmic and nuclear proteins were isolated using the 
Proteo JET™ Cytoplasmic and Nuclear Protein Extraction 
kit according to the manufacturer's instructions (Fermentas; 
Thermo Fisher Scientific, Inc.). The Bradford assay was 
used for protein quantification. Equal amounts of protein 
(20 µg/lane) were separated via 8% SDS‑PAGE, transferred 
onto polyvinylidene difluoride membranes (Cytiva) and 
blocked with blocking buffer containing 5% skimmed milk 
in TBS‑Tween‑20 (0.1% Tween‑20 in 1X TBS) for 1 h at 
room temperature. The membranes were incubated with 
primary antibodies against β‑catenin (1:1,000; cat. no. 9582s; 
Cell Signaling Technology, Inc.), lamin A (1:2,000; 
cat. no. 86846s; Cell Signaling Technology, Inc.), Wnt5a 
(1:800; cat. no. sc‑365370; Santa Cruz Biotechnology, Inc.) and 
GAPDH (1:2,000; cat. no. sc‑47724; Santa Cruz Biotechnology, 
Inc.) overnight at 4˚C. Following primary incubation, 
membranes were incubated with HRP‑conjugated secondary 
antibodies [anti‑rabbit (1:5,000; cat. no. 211‑035‑109; Jackson 
ImmunoResearch Laboratories Inc.) or mouse IgG (1:5,000; 
cat. no. 315‑035‑048; Jackson ImmunoResearch Laboratories 
Inc.)] for 1 h at room temperature. Protein bands were detected 
using an Enhanced Chemiluminescence System (Pierce: 
Thermo Fisher Scientific, Inc.). Immunoreactive bands 
were quantified with the TINA v2.10G software (Raytest 
Isotopenmegerifte GmbH).

RT‑qPCR. Total RNA was isolated from H1650 and A549 
cells using TRIzol® according to the manufacturer's protocol 
(Invitrogen; Thermo Fisher Scientific, Inc.). Total RNA (2 µg) 
was reverse transcribed into complementary DNA (cDNA) 
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using the First‑Strand RT‑PCR kit (Promega Corporation). 
cDNA was subsequently amplified using PCR specific primers 
for the target genes and GAPDH was amplified as the internal 
control. The amplification mixture contained 0.5 U of Taq 
polymerase (Takara Bio, Inc.). The thermocycling conditions 
were as follows: 95˚C for 3 min; 30 cycles at 95˚C for 40 sec, 
58˚C for 40 sec and 72˚C for 90 sec; final elongation at 72˚C for 
10 min. The primer sequences were as follows: Wnt5a forward, 
5'‑CGA AGA CAG GCA TCA AAG AA‑3' and reverse, 5'‑GCA 
AAG CGG TAG CCA TAG TC‑3'; and GAPDH forward, 5'‑ACC 
ACA GTC CAT GCC ATC AC‑3' and reverse, 5'‑TCC ACC ACC 
CTG TTG CTG TA‑3'. RT‑qPCR products were electrophoresed 
via a 1.5% agarose gel with ethidium bromide. Signals were 
quantified by densitometric analysis using Labworks Image 
Acquisition 4.0 software (Analytik Jena US LLC). Statistical 
analysis was subsequently performed to calculate the gel 
intensity using Microsoft Excel software 2010 (Microsoft 
Corporation).

Statistical analysis. Statistical analysis was performed 
using SPSS v21.0 software (IBM Corp.). All experiments 
were performed in triplicates and data are presented as the 
mean ± SD. Statistical differences were analyzed using 
one‑way ANOVA followed by Tukey's post hoc test. P<0.05 
was considered to indicate a statistically significant difference.

Results

Wnt5a knockdown enhances irradiation‑induced inhibition of 
NSCLC cell proliferation and colony formation. To determine 
the effects of Wnt5a knockdown on antitumor radiotherapy in 
H1650 and A549 cells, MTT assay was performed to assess 
cell proliferation following radiation alone or combined with 
transfection with si‑Wnt5a or empty vector control. Western 
blotting and RT‑qPCR were performed to detect Wnt5a 
expression levels (Fig. 1A). Treatment with ionizing radiation 
(2‑8 Gy) inhibited proliferation of H1650 and A549 cells in 

Figure 1. Wnt5a knockdown sensitizes H1650 and A549 cells to irradiation. (A) Silencing of Wnt5a expression in transfected H1650 and A549 cells was 
verified by reverse‑transcription quantitative PCR and immunoblotting, with GAPDH as a loading control. Proliferation of (B) H1650 and (C) A549 cells 
was determined by MTT assay following irradiation. Surviving fractions of (D and E) H1650 and (F and G) A549 cells treated with a single dose of radiation 
(0‑8 Gy) following transfection with si‑Wnt5a or empty vector control (magnification, x10). Data are presented as the mean ± SD of three independent repeats. 
*P<0.05, **P<0.01 and ***P<0.001 vs. empty vector. Wnt5a, wingless‑type protein 5a; si, small interfering.
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a dose‑dependent manner. Furthermore, Wnt5a knockdown 
decreased the proliferation of H1650 (Fig. 1B) and A549 
(Fig. 1C) cells compared with the control (empty vector). 
The present study investigated whether Wnt5a affects colony 
formation of H1650 and A549 cells following radiotherapy. 
The results demonstrated that cell colony formation was 
significantly inhibited by radiotherapy and Wnt5a knockdown 
significantly enhanced this inhibitory effect (Fig. 1D‑G). 
Taken together, these results suggest that combined Wnt5a 
knockdown and irradiation may improve the inhibitory effect 
on NSCLC cell proliferation.

Overexpression of Wnt5a reverses irradiation‑induced 
inhibition of NSCLC cell proliferation and colony forma‑
tion. The effect of overexpressing Wnt5a and irradiation 
on proliferation of H1650 and A549 cells was investigated. 
Equal amounts of H1650 and A549 cells transfected with 
Wnt5a or empty vector control were analyzed via western 
blotting and RT‑qPCR (Fig. 2A). The results demonstrated 

that overexpression of Wnt5a increased cell proliferation 
following irradiation at 2 or 4 Gy compared with the empty 
vector control (Fig. 2B and C). However, no significant differ‑
ences were observed between the Wnt5a overexpression and 
empty vector control groups following irradiation at 6 or 
8 Gy, suggesting that 6 and 8 Gy doses may be lethal. H1650 
(Fig. 2D and E) and A549 (Fig. 2F and G) cells overexpressing 
Wnt5a were treated with radiotherapy; radiation significantly 
inhibited colony formation, while overexpression of Wnt5a 
significantly decreased this inhibitory effect. Collectively, 
these results suggest that overexpression of Wnt5a attenuated 
the radiotherapeutic effect on NSCLC cells.

Wnt5a knockdown increases irradiation‑induced apoptosis 
in NSCLC cells. To determine whether Wnt5a knockdown 
sensitizes H1650 and A549 cells to irradiation‑induced apop‑
tosis, cells were transfected with si‑Wnt5a and subsequently 
irradiated with either 0 or 4 Gy. After 24 h, the percentage 
of apoptotic cells was determined via Annexin V/PI staining 

Figure 2. Wnt5a overexpression blocks the inhibitory effect of irradiation on H1650 and A549 cell proliferation. (A) Overexpression of Wnt5a in transfected 
H1650 and A549 cells was confirmed by reverse‑transcription quantitative PCR and immunoblotting, with GAPDH as a loading control. Proliferation of 
(B) H1650 and (C) A549 cells was determined by MTT assay following irradiation. Surviving fractions of (D and E) H1650 and (F and G) A549 cells were 
treated with a single dose of radiation (0‑8 Gy) following transfection with Wnt5a or empty vector control (magnification, x10). Data are presented as the 
mean ± SD of three independent repeats. *P<0.05, **P<0.01 and ***P<0.001 vs. empty vector. Wnt5a, wingless‑type protein 5a; si, small interfering.
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(Fig. 3). The apoptosis of H1650 and A549 cells following 
Wnt5a knockdown or irradiation alone significantly increased 
compared with control cells. In addition, combination of 
Wnt5a knockdown and irradiation further increased apoptosis. 
Taken together, these results suggest that Wnt5a knockdown 
sensitized NSCLC cells to irradiation‑induced apoptosis.

Overexpression of Wnt5a decreases irradiation‑induced 
apoptosis in NSCLC cells. To determine whether overexpres‑
sion of Wnt5a affects irradiation‑induced apoptosis, H1650 
and A549 cells were transfected with Wnt5a or empty vector 
control following irradiation at 0 or 4 Gy (Fig. 4). The results 

demonstrated that overexpression of Wnt5a significantly 
decreased the apoptosis of H1650 and A549 cells compared 
with the control group. In addition, irradiation (4 Gy) increased 
the apoptosis of both H1650 and A549 cells; this effect was 
reversed following overexpression of Wnt5a. Collectively, 
these results suggest that overexpression of Wnt5a attenuated 
irradiation‑induced apoptosis in NSCLC cells.

β‑catenin expression following Wnt5a knockdown and/or 
irradiation in NSCLC cells. To determine whether Wnt5a 
knockdown and irradiation inhibit proliferation and induce 
apoptosis of NSCLC cells via the β‑catenin pathways, the 

Figure 3. Wnt5a knockdown sensitizes H1650 and A549 cells to IR‑induced apoptosis. Apoptosis was detected using Annexin V staining in (A) H1650 and 
(B) A549 non‑small cell lung cancer cells. The proportion of early and late apoptotic cells is shown in the histogram. Apoptosis was significantly higher in the 
combined Wnt5a suppression and IR group compared with other groups. Data are presented as the mean ± SD of three independent repeats. *P<0.05, **P<0.01 
and ***P<0.001 vs. control; +P<0.05 vs. si‑Wnt5a; #P<0.05 vs. IR. Wnt5a, wingless‑type protein 5a; si, small interfering; IR, irradiation.



LI et al:  Wnt5a SUPPRESSION ENHANCES RADIOSENSITIVITY OF NSCLC6

cytoplasm and nucleus were separated and β‑catenin expression 
was detected via western blotting (Figs. 5 and S1). Cytoplasmic 
β‑catenin expression was higher following Wnt5a knockdown 
or irradiation in H1650 and A549 cells compared with the 
control cells. Combined Wnt5a knockdown and irradiation 
was further enhanced the expression of β‑catenin. Conversely, 
nuclear β‑catenin expression was reduced by the combination 
of Wnt5a knockdown and irradiation in H1650 and A549 cells.

β‑catenin expression following overexpression of Wnt5a and/or 
irradiation in NSCLC cells. The effects of overexpressing 
Wnt5a and irradiation on cytoplasmic and nuclear expres‑
sion of β‑catenin in NSCLC cells were investigated (Figs. 6 
and S2). Western blot analysis revealed that overexpression of 

Wnt5a decreased cytoplasmic but increased nuclear β‑catenin 
expression in H1650 and A549 cells. In addition, irradia‑
tion treatment increased cytoplasmic and decreased nuclear 
β‑catenin expression in both H1650 and A549 cells. Notably, 
overexpression of Wnt5a reversed the irradiation‑induced 
alterations in cytoplasmic and nuclear β‑catenin expression in 
H1650 and A549 cells. Taken together, these results suggested 
that overexpression of Wnt5a may cause translocation of 
β‑catenin from the cytoplasm to the nucleus in NSCLC cells.

si‑β‑catenin reverses activation of NSCLC cell proliferation 
caused by overexpression of Wnt5a. To determine the role of 
the β‑catenin pathway in NSCLC cell proliferation induced 
by overexpression of Wnt5a and irradiation, H1650 and 

Figure 4. Wnt5a overexpression decreases IR‑induced H1650 and A549 cell apoptosis. Apoptosis was detected by Annexin V staining in (A) H1650 and 
(B) A549 non‑small cell lung cancer cells. The proportion of early and late apoptotic cells is shown in the histogram. Data are presented as the mean ± SD of 
three independent repeats. **P<0.01, and ***P<0.001 vs. control; +P<0.05 vs. Wnt5a; #P<0.05 vs. IR. Wnt5a, wingless‑type protein 5a; IR, irradiation.
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A549 cells were treated with siRNA for β‑catenin knockdown. 
Knockdown of β‑catenin was confirmed by western blotting 
and RT‑qPCR (Fig. S3). Overexpression of Wnt5a blocked 
the irradiation‑induced decrease in NSCLC cell proliferation 
(Figs. 7 and S4). In addition, si‑β‑catenin reversed the promo‑
tion of NSCLC cell proliferation due to combined Wnt5a 
overexpression and irradiation. Collectively, these results 
suggest that the β‑catenin pathway may be a mediator of 
Wnt5a overexpression‑ and irradiation‑induced increases in 
proliferation and decreases in apoptosis of NSCLC cells.

Discussion

Wnt5a expression is upregulated in NSCLC cells (18) and 
regulates several biological events associated with tumor 
growth, EMT and metastasis of NSCLC cells (9). It has also 
been reported that overexpression of Wnt5a increases colony 

formation, migration and invasion (12,19). Thus, to assess 
whether alterations of Wnt5a expression affected the response 
of NSCLC cell lines to radiotherapy, the present study knocked 
down or overexpressed Wnt5a in H1650 and A549 cells. The 
results demonstrated that Wnt5a knockdown combined with 
irradiation decreased proliferation and induced apoptosis of 
NSCLC cells more than irradiation or Wnt5a knockdown 
alone. Conversely, overexpression of Wnt5a blocked irradi‑
ation‑induced apoptosis. These findings suggest that Wnt5a 
expression served a valuable role in the radiotherapeutic treat‑
ment of NSCLC.

Wnt5a signaling comprises non‑canonical (β‑catenin‑ 
independent) and canonical (β‑catenin‑dependent) path‑
ways (20). β‑catenin signaling serves an important role in 
regulating the transcription of several oncogenes, such as 
cyclin D1 and c‑Myc (21,22); thus, different types of cancer 
exhibit aberrant activation of this signaling pathway (23,24). 

Figure 5. Effect of Wnt5a knockdown and/or IR on expression of β‑catenin in H1650 and A549 NSCLC cells. The expression levels of (A and B) cytoplasmic 
and (C and D) nuclear β‑catenin were determined by western blot analysis. GAPDH was used as a cytoplasmic control; lamin A was used as a nuclear internal 
control. Data are presented as the mean ± SD of three independent repeats. *P<0.05, **P<0.01 and ***P<0.001 vs. control; +P<0.05 vs. si‑Wnt5a; #P<0.05 vs. IR. 
Wnt5a, wingless‑type protein 5a; si, small interfering; IR, irradiation; OD, optical density.
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Activated Wnt/β‑catenin signaling pathway has been shown 
to induce translocation of β‑catenin from the cytoplasm to 
the nucleus (25,26), thus promoting the initiation of EMT, 
tumor invasion, and metastasis (14,27‑29). The present study 
demonstrated that the combination of Wnt5a knockdown 
and irradiation decreased nuclear but increased cytoplasmic 
β‑catenin expression in NSCLC cells. These findings support 
the hypothesis that the combination of Wnt5a knockdown and 
irradiation decreases translocation of β‑catenin from the cyto‑
plasm to the nucleus, thus inhibiting NSCLC cell proliferation 
and enhancing apoptosis.

A previous study reported that Wnt5a plays a key role in 
regulating NSCLC cell migration and invasion by activating 
β‑catenin‑dependent canonical Wnt signaling (12). Consistent 
with this finding, the results of the present study demonstrated 

that Wnt5a knockdown increased NSCLC cell apoptosis. In 
addition, overexpression of Wnt5a attenuated the killing effect of 
radiation therapy on NSCLC cells, whereas si‑β‑catenin antago‑
nized Wnt5a overexpression‑induced proliferation of NSCLC 
cells. Increasing evidence suggest that the Wnt/β‑catenin 
pathway is associated with radioresistance of cancer cells (7,30). 
The enhanced nuclear translocation of β‑catenin was more 
evident in radioresistance cells (31‑33). Consistent with these 
findings, the present study demonstrated that Wnt5a knockdown 
decreased nuclear β‑catenin expression, whereas overexpres‑
sion of Wnt5a enhanced nuclear β‑catenin expression. Taken 
together, these results suggest that the Wnt5a/β‑catenin pathway 
may exert a radiosensitizing effect in NSCLC.

In conclusion, the present study demonstrated that 
Wnt5a knockdown in combination with irradiation inhibited 

Figure 6. Effect of Wnt5a overexpression and/or IR on expression of β‑catenin in H1650 and A549 NSCLC cells. The expression levels of (A and B) cytoplasmic 
and (C and D) nuclear β‑catenin were determined using western blot analysis. GAPDH was used as a cytoplasmic control; lamin A was used as a nuclear 
internal control. Data are presented as the mean ± SD of three independent repeats. *P<0.05 and **P<0.01 vs. control; +P<0.05 vs. si‑Wnt5a; #P<0.05 vs. IR. 
Wnt5a, wingless‑type protein 5a; IR, irradiation; OD, optical density; si, small interfering.
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proliferation and induced apoptosis of NSCLC cells; these 
effects were reversed following overexpression of Wnt5a. In 
addition, Wnt5a influenced the susceptibility of NSCLC cells 
to radiotherapy via activation of β‑catenin‑dependent canon‑
ical Wnt signaling. Thus, Wnt5a gene therapy may enhance 
the therapeutic effect of radiation for the treatment of NSCLC.
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