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1  | INTRODUC TION

One of the most fundamental problems underpinning much of mod‐
ern molecular biodiversity research is the issue of determining opti‐
mal levels of sampling effort that are required in order to adequately 
characterize biological sequence variation at the species level. 
Molecular genetic studies of biodiversity that utilize mitochondrial 
DNA (mtDNA) marker variation for the purpose of characterizing 
existing species genetic diversity are particularly sensitive to sample 
sizes. Four fundamental evolutionary forces act to alter the genetic 
composition of species populations: migration/gene flow, mutation, 

natural selection and random genetic drift. The effect of genetic 
drift on species populations is most evident when population sizes 
are small, as in the case of a recent bottleneck or founder event, 
resulting in the rapid loss of genetic diversity. Species differ both 
in their evolutionary histories and in their geographic distributions; 
therefore, the question of accurately determining how many sam‐
ples to include in order to observe a wide range of species genetic 
variation has been an ongoing area of interest and research. This is 
an important question deserving of more attention. Accurate deter‐
mination of within‐species (intraspecific) sample sizes for mtDNA di‐
versity estimation permits detailed analyses to be undertaken at the 
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Abstract
DNA barcoding has greatly accelerated the pace of specimen identification to the 
species level, as well as species delineation. Whereas the application of DNA barcod‐
ing to the matching of unknown specimens to known species is straightforward, its 
use for species delimitation is more controversial, as species discovery hinges criti‐
cally on present levels of haplotype diversity, as well as patterning of standing ge‐
netic variation that exists within and between species. Typical sample sizes for 
molecular biodiversity assessment using DNA barcodes range from 5 to 10 individu‐
als per species. However, required levels that are necessary to fully gauge haplotype 
variation at the species level are presumed to be strongly taxon‐specific. Importantly, 
little attention has been paid to determining appropriate specimen sample sizes that 
are necessary to reveal the majority of intraspecific haplotype variation within any 
one species. In this paper, we present a brief outline of the current literature and 
methods on intraspecific sample size estimation for the assessment of COI DNA bar‐
code haplotype sampling completeness. The importance of adequate sample sizes 
for studies of molecular biodiversity is stressed, with application to a variety of meta‐
zoan taxa, through reviewing foundational statistical and population genetic models, 
with specific application to ray‐finned fishes (Chordata: Actinopterygii). Finally, 
promising avenues for further research in this area are highlighted.
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phylogenetic and phylogeographic levels in order to infer key biolog‐
ical processes such as isolation, dispersal and speciation (Avise et al., 
1987; Dixon, 2006; Funk & Omland, 2003). Aside from addressing 
purely biological questions, the issue of determining optimal sam‐
pling strategies and sample sizes for genetic variation assessment 
at the species level also manifests at applied socioeconomic scales, 
particularly in the detection of food or natural health product fraud 
and in the monitoring of aquatic and terrestrial ecosystems (Hunter 
et al., 2015).

Within the field of biodiversity science, researchers have long 
recognized the importance of sampling design in order to achieve 
a study’s objectives. According to Lindblom (2009), well‐developed 
sampling designs within the field of molecular biodiversity science 
should be formulated around three basic areas: research study ques‐
tions, research study aims and taxonomic focus. In addition to these 
three areas, Costa, Corneleo, and Stefenon (2015) point to further 
considerations: planning the number and geographic distribution of 
specimens to be sampled, the category and number of genetic loci to 
be examined, and the spatial distribution and number of individuals 
to be sampled within each species’ population. While there is a lack of 
clear sampling guidelines currently in place for optimal spatio‐tempo‐
ral assessment of species populations, Pante et al. (2015) argue that 
such schemes should be guided by adequate coverage of both the 
putative geographic/ecologic range of the species under study, and 
potentially closely related species over its entire range. Given that 
much of species spatio‐temporal metadata is not reported alongside 
genetic data, such assessments become problematic unless commu‐
nity standards and practices are improved (Hanner, 2005; Naaum 
et al., 2015; Strohm, Gwiazdowski, & Hanner, 2016). Where this 
becomes particularly important is in the development and design of 
species‐specific real‐time polymerase chain reaction (qPCR) primers 
and probes, for integration within environmental DNA (eDNA) assays 
for instance. This is especially the case if such tools are to be continu‐
ously implemented within regulatory or forensic settings such as the 
Canadian Food Inspection Agency (CFIA) (Shehata, Naaum, Garduno, 
& Hanner, 2018) and the US Food and Drug Administration (USFDA), 
as the success of such methods depends greatly on the extent of 
geographic coverage of species genetic diversity.

The overall goal of sampling is to make inferences concerning a 
population of interest based only on information contained within 
finite samples drawn from the larger population. This is done though 
estimating population parameters such as the population mean (μ) 
using the sample mean (x̄). One example, relevant to molecular pop‐
ulation genetics, is the calculation of average pairwise distances 
based on Nei’s estimator of nucleotide diversity (π) (Nei & Li, 1979). 
Under the Frequentist statistical paradigm, the minimum sample size 
that is required to estimate a population mean, from a Normal distri‐
bution, is given by Adcock (1997)

where z�∕2 is the appropriate critical value to estimate μ with a 
level of significance of 1−α, �2 is the population variance and d is 

the desired margin of error. From the above equation, the required 
minimum sample size is controlled by the experimenter through the 
margin of error. A smaller margin of error results in a larger value 
of n. Similarly, predicting n with a higher level of accuracy can be 
achieved through narrowing d. Sample sizes that are computed from 
the above equation serve as a baseline requirement prior to con‐
ducting any quantitative study of interest. Depending on the sam‐
pling scheme, for instance stratified sampling, other formulas exist 
for the appropriate calculation of necessary sample sizes.

In determining the most appropriate sample size required for a 
particular study, a crude rule of thumb that is often used in statistics 
and other scientific disciplines pertains to the use of a sample size 
of at least n = 30 when making comparisons among study groups 
or when deciding to use probabilities derived from the Standard 
Normal distribution (Cohen, 1990). Unfortunately, adequate sam‐
ple sizes, while widely viewed as being central to a given biodiver‐
sity research study, are often neglected in practice (Lenth, 2001). In 
such cases, this may be due to, for example, costs associated with 
or resources required for adequate specimen collection (Cameron, 
Rubinoff, & Will, 2006; Hortal & Lobo, 2005; Muirhead et al., 2008).

Statistical power analysis can be employed to help shed light on 
sample sizes required in order to detect a given effect prior to carry‐
ing out a scientific study. Power, which is defined as the complement 
of the type II error rate (β), depends on four factors: effect size (ES), 
significance level/type I error rate (α), sample size (n) and popula‐
tion standard deviation (σ) through the proportionality (Di Stefano, 
2003)

Effect size is the difference between an observed quantity and 
one hypothesized under a null distribution. Larger deviations lead 
to greater power to detect real effects. It is easily seen from the 
above proportionality that larger values of effect size, significance 
level and sample size all generate higher levels of statistical power, 
whereas increasing population standard deviation results in loss of 
power. Together with the sample size equation discussed previously 
(Equation 1), many factors are at play in determining the most appro‐
priate sample size needed for a given study.

Any sampling scheme that is carried out will be subject to sys‐
tematic error. Sampling (ascertainment) bias is an important factor 
to consider in this regard because it can lead to under‐ or overesti‐
mation of population parameters. Ascertainment bias describes the 
tendency of certain individuals to be less likely sampled than others 
(Parr, Guralnick, Cellinese, & Page, 2012) and is common in molec‐
ular biodiversity studies (Hanner, Becker, Ivanova, & Steinke, 2011; 
Muirhead et al., 2008; Mutanen et al., 2016; Wilkinson et al., 2017). 
This can occur, for example, when sampling is restricted to certain 
geographic regions (Muirhead et al., 2008) or to particular species 
(e.g., those known to be of conservation importance) (Hanner et al., 
2011). Sampling bias can be minimized through increasing the geo‐
graphic breadth of a study, in addition to targeting representative 
taxa with large specimen sample sizes.
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The present review briefly examines current approaches for spe‐
cies genetic variation assessment as it relates to the estimation of 
intraspecific sample sizes for DNA barcoding. Specifically, the focus 
will be on COI DNA barcode haplotype sampling completeness. Few 
studies have focused on DNA barcode sample size prediction for 
wide‐ranging taxa in this regard. Here, methods of haplotype varia‐
tion assessment are first covered. This is then followed by an exam‐
ination of existing studies, with particular consideration of important 
findings to date within the literature. Finally, promising new avenues 
for further research are explored.

2  | CURRENT METHODS

2.1 | Methods to assess haplotype variation

2.1.1 | Haplotype diversity

Genetic diversity is manifested within species in several ways. One 
way is through haplotype variation. While there are many different 
definitions of what constitutes a haplotype, in the broadest sense, a 
haplotype is a unique DNA sequence that differs from others at one 
or more basepair positions within and between species. Nei’s (1987) 
haplotype diversity (h), which is a widely used approach to measuring 
genetic variation within species populations, is given by the equation

where pi is the frequency of the ith haplotype in the sample. Two 
interpretations of h are that it expresses the probability of observ‐
ing a previously unseen haplotype upon sampling a new individual 
(Wares & Pappalardo, 2015) or that it represents the probability that 
two haplotypes, selected at random from a sample of n DNA se‐
quences, are distinct (Goodall‐Copestake, Tarling, & Murphy, 2012). 
Haplotype diversity can also be quantified using the absolute num‐
ber of haplotypes (H). Both h and H are greatly affected by levels of 
sampling intensity within species. In particular, undersampling can 
cause these measures to become under‐ or overestimated (Goodall‐
Copestake et al., 2012). Several other approaches are in wide use 
to aid researchers in assessing levels of standing genetic variation 
existing within species populations. Two of these are haplotype net‐
works and haplotype accumulation curves.

2.1.2 | Haplotype networks

A widely used approach to assessing levels of genetic variation 
within and between species is through the construction of haplo‐
type networks (Templeton, Crandall, & Sing, 1992). Haplotype net‐
works accurately represent differences existing among sampled 
haplotypes through grouping identical DNA sequences within the 
same vertex. The size of a given vertex is proportional to the number 
of DNA sequences it contains. Divergent haplotypes are connected 
via edges that display the number of mutational differences separat‐
ing adjacent vertices.

Haplotype networks are appealing because they can be used to 
infer potential cryptic diversity within a taxon or interspecific hy‐
bridization between allopatric (i.e., reproductively isolated) species, 
but interpretation can sometimes become difficult when multiple 
species cluster together into one or multiple nodes or subnetworks 
(Hanner, Floyd, Bernard, Collette, & Shivji, 2011; Hart & Sunday, 
2007; Wong, Shivji, & Hanner, 2009) or when ambiguous/missing 
nucleotide data are present within DNA sequences (e.g., Ns or gaps 
(–)) (Joly, Stevens, & van Vuuren, 2007). While haplotype networks, 
such as the one shown in Figure 1, cannot give a direct indication of 
the level of sampling completeness for a given species, the presence 
of numerous rare haplotypes suggests gross undersampling of in‐
traspecific genetic variation (or alternatively PCR/sequencing error).

2.1.3 | Haplotype accumulation curves

Assessing the completeness of intraspecific haplotype sampling 
can be carried out through generating haplotype accumulation 
curves. Such curves are analogous to rarefaction curves used in 
studies of species richness (Gotelli & Colwell, 2001) and depict the 
degree of asymptotic behavior as a function of both the number 
of specimens sampled and the cumulative mean number of hap‐
lotypes accumulated. Initially, accumulation curves will increase 
very rapidly since many new haplotypes will be captured for a 
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F I G U R E  1   Longfin damselfish (Stegastes diencaeus) TCS 
(Templeton et al., 1992) haplotype network depicting an overall 
skewed distribution of observed haplotypes. Sizes of circles reflect 
the number of DNA sequences contained within each vertex. Tick 
marks indicate the number of mutational differences separating 
sampled haplotypes. DNA barcode sequence data used in the 
generation of the network were taken from supplemental material 
accompanying Phillips et al. (2015). The software PopArt (Leigh & 
Bryant, 2015) was used to create the haplotype network
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given species with minimal sampling effort, but haplotype recov‐
ery slows drastically as sampling depth is increased because many 
haplotypes that are found will have already been observed previ‐
ously. Thus, species curves showing rapid saturation strongly sug‐
gest that the majority of haplotype diversity has been uncovered, 
whereas those curves displaying little to no evidence of reaching 
an asymptote indicate that further sampling is required (Zhang, 
He, Crozier, Muster, & Zhu, 2010). Deciding whether a species 
should be further sampled can be deduced from the magnitude of 
the slopes calculated using a fixed number of points occurring on 
the end of the curve (e.g., 10 in the case of Phillips, Gwiazdowski, 
Ashlock, & Hanner, 2015; Young, Behan‐Pelletier, & Hebert, 
2012). Slopes near or below a predefined threshold, for example, 
0.01 (i.e., equivalent to observing one new haplotype for every 
100 DNA sequences), suggest that additional sampling is unlikely 
to reveal any new haplotypes, whereas those species curves with 
slopes above 0.1 (i.e., observing one new haplotype for every 10 
DNA sequences), strongly indicate that further sampling is neces‐
sary (Hortal & Lobo, 2005).

One obvious problem that arises in the use of haplotype ac‐
cumulation curves to gauge species genetic diversity and levels of 
sampling effort, however, is the fact that the functional form of such 
curves is not known and can differ widely across taxa (Phillips et al., 
2015). Furthermore, deciding on appropriate curve slope thresh‐
olds necessary for adequate sampling coverage is largely arbitrary 
(Hortal & Lobo, 2005). While various parametric model curve‐fit‐
ting approaches, such as the power, negative exponential, and 
Michaelis–Menten functions, have been heavily employed and de‐
bated in the literature to model species–area relationships (Dengler, 
2009; Tjørve, 2003) or species richness, no single approach yet ex‐
ists that can be readily applied to determine sample sizes that are 
likely required for intraspecific genetic variation assessment.

A second, lesser‐investigated issue, relates to the fact that 
haplotype accumulation curves are not spatially explicit. Thus, it 
becomes difficult to account for correlations that may exist at the 
subpopulation or higher taxonomic levels. This has been noted in 
past studies of species richness employing species accumulation and 
rarefaction curves (Bevilacqua, Ugland, Plicanti, Scuderi, & Terlizzi, 
2017; Chiarucci, Bacaro, Ricotta, Palmer, & Scheiner, 2009; Terlizzi, 
Anderson, Bevilacqua, & Ugland, 2014).

2.2 | Sampling models for genetic 
diversity prediction

In addition to qualitative approaches to assessing standing genetic 
variation within species, a number of quantitative models to esti‐
mate required sample sizes for overall genetic diversity assessment 
have been proposed. These include Frequentist, Bayesian, and coa‐
lescent models.

Holt, Stoneberg Holt, and Bureš (2007) reviewed several 
Frequentist and Bayesian statistical methods of sample size determi‐
nation for intraspecific haplotype diversity assessment that are most 
informative over large geographic ranges. The authors note that a 

lower bound on the probability of sampling a dominant haplotype in 
a sample of size n with significance level α is given by the inequality

Grewe et al. (1993) employed an equivalent approach to Holt 
et al.’s (2007) study through utilizing a binomial sampling model to 
determine the minimum sample size required to assess mtDNA vari‐
ation in Lake Ontario lake trout (Salvelinus namaycush) stocks accord‐
ing to the equation

where p is the frequency of a given haplotype, and β is the desired 
confidence level. The authors found that n = 60 individuals are likely 
needed to be randomly sampled in order to observe a single haplo‐
type having a frequency of at least p = 5% with β = 95% confidence. 
It is worth noting that this figure increases to c. 460 individuals for 
a haplotype occurring at frequency of 1% with 99% confidence 
(Grewe et al., 1993). This marked increase in sample size is not sur‐
prising given that one would need to sample many more individuals 
in order to be certain that the majority of rare haplotypes have been 
uncovered. It is important to note, however, that Grewe et al. (1993) 
sampled individuals from six different but highly divergent trout 
strains, each displaying high degrees of population substructure. 
Population subdivision likely will have an effect on the estimation 
of required sample sizes needed to gauge levels of standing genetic 
variation at the species level.

Similar magnitudes of sample sizes were found by Austerlitz et al. 
(2009), who employed coalescent theory (Kingman, 1982), in order 
to determine the probability of adequately sampling all genetic vari‐
ation of a species with sample size n. Coalescent theory attempts 
to trace the lineage of an ancestral allele (termed the Most Recent 
Common Ancestor, MRCA) backwards in time within a gene geneal‐
ogy. Under a geometric distribution, this probability is given by the 
equation (Austerlitz et al., 2009)

From the above equation, only n = 39 individuals are required 
to be sampled at random in order to observe p = 95% of all genetic 
diversity for a species. It should be noted however that even with 
increasing sample sizes, one’s confidence in having sampled all of 
a species’ genetic diversity approaches closely, but never actually 
reaches, 100% (Austerlitz et al., 2009). This is illustrated by the find‐
ing that the required sample size increases to n = 1999 individuals 
necessary to observe p = 99.9% of the total genetic diversity that 
exists for a given species using Equation 6. This can be explained 
by the fact that individual haplotypes for a given species become 
much more difficult to recover as the intensity of specimen sam‐
pling is increased because intraspecific genetic variation is expected 
to increase as a result. The coalescent, as a large‐scale sampling 
model, has found wide application in DNA‐based approaches to 
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species identification and delimitation, most notably DNA barcoding 
(Hubert & Hanner, 2015).

2.3 | DNA barcoding

Since its conception in 2003, DNA barcoding (Hebert, Cywinska, 
Ball, & de Waard, 2003) has risen to become the largest taxonomi‐
cally driven biodiversity initiative to date aimed at identifying and 
cataloging all assemblages of multicellular life on the planet. DNA 
barcoding is a genomic technique that relies on DNA sequence varia‐
tion within short, standardized gene regions in order to rapidly iden‐
tify specimens to the level of species and to discover new species. 
The ideal DNA barcode is one that is found in all organisms, read‐
ily distinguishes between taxa, and is easily amplified, sequenced, 
and aligned. In animals, the agreed‐upon marker of choice for taxon 
assignment is a c. 650 basepair (bp) fragment from the 5′ end of 
the mitochondrially encoded cytochrome c oxidase subunit I (COI) 
gene. Mitochondrial loci like COI are particularly suitable as genetic 
markers for DNA barcoding because they are fast evolving, highly 
conserved across taxa, present in high copy number, haploid, mater‐
nally inherited, lack introns, display few insertion—deletion (indel) 
mutations, and experience little to no gene recombination (Hebert, 
Ratnasingham, & de Waard, 2003; Hebert et al., 2003).

The primary goal of DNA barcoding has been to develop a publicly 
accessible species reference sequence library to aid in the identifica‐
tion of unknown specimens and accelerate the discovery of poten‐
tially undescribed taxa. Obtaining adequate sample sizes for building 
accurate and reliable specimen reference libraries has culminated in 
the development of the Barcode of Life Data Systems (BOLD; http://
www.boldsystems.org) (Ratnasingham & Hebert, 2007) as the larg‐
est collection of user‐curated species sequence data specifically for 
DNA barcoding currently available on the World Wide Web. At pres‐
ent (as of 1 May 2018), BOLD holds over six million DNA barcode 
records from over 250,000 named species. Certain taxa are well rep‐
resented in BOLD with upwards of hundreds of barcode sequences 
for some species. Despite this, barcode reference libraries within 
BOLD remain largely incomplete, even for the most well‐sampled 
taxa such as fishes and insects. As such, comprehensive coverage 
of species genetic diversity is still decades away (Wilkinson et al., 
2017). Wilkinson et al. (2017) points to strong ascertainment bias as 
the most likely explanation for this. In the early days of BOLD, DNA 
barcode sequence acquisition was high, due to the fact that over 
75% of taxon records were mined from already well‐established se‐
quence databases such as GenBank (Wilkinson et al., 2017).

2.4 | The importance of sampling to DNA barcoding

DNA barcoding works in practice because interspecific (between 
species) variation is usually much greater than intraspecific (within‐
species) divergence (Meyer & Paulay, 2005; Stoeckle & Thaler, 
2014). While this observed “barcoding gap” (Meyer & Paulay, 2005) 
is a necessary criterion for successful taxonomic resolution using 
distance‐based methods, it may not be a sufficient one for other 

molecular approaches (e.g., those employing tree‐ or character‐
based techniques). Cases are well documented where considera‐
ble overlap/separation between (maximum) intraspecific variation 
and (minimum) interspecific divergence exists (Hebert, Stoeckle, 
Zemlak, & Francis, 2004; Hubert & Hanner, 2015). Undersampling 
can greatly exaggerate the existence of the barcode gap. The in‐
clusion of small sample sizes over large geographic ranges has the 
effect of obscuring existing mitochondrial sequence diversity at 
the species level since the finding of divergent haplotypes may 
be the result of poorly sampled panmictic (i.e., randomly mat‐
ing) intraspecific variation (Clare, Lim, Fenton, & Hebert, 2011). 
Compared to regional scales, with increasing sampling effort 
across wider spatial scales, intraspecific variation is expected to 
increase, whereas interspecific divergence will decrease in ef‐
fect since more closely related species will tend to be found due 
to allopatric speciation being a dominant mode of diversification 
(Bergsten et al., 2012; Pentinsaari, Hebert, & Mutanen, 2014).

How much variation is actually needed to separate species is 
not known with certainty because intraspecific sampling has gener‐
ally been limited to narrow geographic locales. Hebert et al. (2003) 
proposed that barcode sequences exhibiting at least 2% nucleotide 
divergence should be designated as being from distinct species. 
Intraspecific distances larger than 2% suggest the presence of cryp‐
tic species, whereas those smaller than 2% is evidence for evolution‐
arily young species with a recent origin (i.e., retention of ancestral 
polymorphisms due to incomplete lineage sorting), hybridization/in‐
trogression or inadequate taxonomy (e.g., cryptic species or species 
synonymy) (Hubert & Hanner, 2015). In BOLD, query sequences are 
matched to reference barcodes based on a genetic distance heuristic 
of 1% (Ratnasingham & Hebert, 2007). The use of such threshold 
estimates for species separation is arbitrary and is often applied to 
a wide variety of taxa, regardless of species life histories. A later 
estimate of ten times the mean intraspecific distance (the so‐called 
“10× rule”) was given by Hebert et al. (2004). Unlike the previously 
suggested estimate of 2% sequence divergence, the 10× rule makes 
use of all available taxon sequences within a dataset in order to cal‐
culate an appropriate limit for species separation. Despite this, the 
10× rule has been met with criticism: Collins and Cruickshank (2013) 
suggest consideration of the maximum intraspecific distance and the 
minimum interspecific divergence (i.e., nearest neighbor distance) 
for each species under investigation. The use of lower thresholds 
for species discovery may falsely inflate existing genetic diversity, 
whereas the adoption of higher cutoffs would likely be too con‐
servative for reliable detection of cryptic species (April, Mayden, 
Hanner, & Bernatchez, 2011). It is well understood however that the 
most appropriate cutoff necessary to accurately diagnose species on 
the basis of sequence variation is strongly taxon‐dependent (Hebert 
et al., 2003; Hickerson, Meyer, & Moritz, 2006; Meyer & Paulay, 
2005) and will become more precise with increased sampling effort.

DNA barcoding has its roots in the historic disciplines of 
Darwinian evolutionary theory, population genetics, and phylo‐
genetics: The coalescent is a modern interpretation that recon‐
ciles these domains (Rosenberg & Nordborg, 2002). While genetic 

http://www.boldsystems.org
http://www.boldsystems.org
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distance‐based approaches to species delimitation are common‐
place within barcoding studies because they scale well to large taxon 
datasets, early‐proposed arbitrary separation methods like the 2% 
or 10× rule completely ignore evolutionary relationships that exist 
among closely related species. Objective tools for the delimitation 
of species are well known and generally fall into three overlapping 
categories: phylogenetic, coalescent, and phylogenetic‐coalescent 
(Hubert & Hanner, 2015). The well‐known neighbor‐joining cluster‐
ing method was advocated for in the early barcoding literature as a 
means of confirming the presence of reciprocal monophyly across 
sampled taxa. More recently, novel bioinformatic algorithms, most 
notably distance‐based approaches such as Automatic Barcode Gap 
Discovery (ABGD; Puillandre, Lambert, & Brouillet, 2011) and tree‐
based methods including variants of the Generalized Mixed Yule 
Coalescent (GMYC; Monaghan et al., 2009; Pons et al., 2006), have 
been put forth in order to facilitate species separation, an otherwise 
daunting task for even the most highly skilled and knowledgeable 
taxonomist. ABGD is a nonparametric technique of partitioning 
species on the basis of the barcode gap using DNA sequences. On 
the other hand, GMYC is a likelihood‐based method that relies on 
the premise that bifurcation (i.e., fully resolved branching) within 
ultrametric species trees is indicative of speciation/diversification 
events, and therefore suggests the presence of undescribed taxa. 
A key factor in the success of such methods is sample size, and few 
groups have been so extensively inventoried (Hubert & Hanner, 
2015). For example, GMYC is especially prone to the under‐ or 
overestimation of putative species, which can be magnified due to 
differences in effective population sizes as well as historical versus 
contemporaneous patterns of migration/gene flow among subpop‐
ulations (Lohse, 2009; Papadopoulou, Monaghan, Barraclough, & 
Vogler, 2009). Thus, sufficient sampling is paramount. Often, re‐
searchers would like to know whether all unique haplotypes within a 
lineage or deme have been adequately sampled; unfortunately, this 
is complicated by the fact that the majority of species are both geo‐
graphically widespread and rare. As a result, given that ascertain‐
ment and operational biases are inevitable (Mutanen et al., 2016), 
an extensive sampling of all local populations that comprise a given 
species is unrealistic, even under the best situations (e.g., strong re‐
search budget, easy access to sampling locations). Thus, whenever 
possible, a more comprehensive sampling of study sites is required 
in order to avoid false positives/negatives and to reveal divergent 
haplotypes that may have been missed with spatially narrower sam‐
pling routines (Monaghan et al., 2009). Incorporation of coalescent 
and population genetics theory can aid in informing researchers on 
broad macro‐level processes that may be at play in shaping trends 
seen within haplotype accumulation curves on the basis of extant 
patterns of intraspecific genetic diversity.

The Barcode Index Number framework for animals, first intro‐
duced by Ratnasingham and Hebert (2013), represents a potentially 
novel approach to addressing the issue of sample sizes necessary 
for barcoding initiatives. The BIN system partitions COI barcodes 
into distinct Operational Taxonomic Units (OTUs) on the basis of 
the REfined Single Linkage (RESL) clustering algorithm and Markov 

clustering (Ratnasingham & Hebert, 2013). BINs comprise high‐
quality sequences linked to BARCODE compliant records. The 
BARCODE standard currently in place stipulates that only barcode 
sequences with read lengths of at least 500 bp and containing less 
than 1% ambiguous nucleotides are designated unique BIN clusters 
(Hanner, 2005). While BINs generally show high concordance with 
actual biological species, they can be further employed to gauge in‐
stances of suspected cryptic species diversity, especially in the cases 
where intraspecific distances are not clear‐cut. Species that fall into 
two separate BINs (termed a SPLIT) is evidence that they are being 
overlumped. Further, the occurrence of rare BINs (i.e., those repre‐
sented by a single specimen) may be the result of limited sampling 
(Hausmann et al., 2013; Huemer, Mutanen, Sefc, & Hebert, 2014). 
Stand‐alone BINs may also reflect sequencing errors in the form of 
very low‐frequency (VLF) variants or cryptic pseudogenes (Stoeckle 
& Kerr, 2012; Stoeckle & Thaler, 2014). Increased sampling coverage 
can be beneficial in such instances, as true biological variation is less 
likely to be misidentified as artificial biological variation and uninten‐
tionally flagged as potential VLFs.

2.5 | Consideration of species’ life histories

Life history traits, particularly those pertaining to reproductive strat‐
egies and sex determination, in well‐studied metazoan taxa such as 
fishes, insects, and herpetofauna, are presumed to play a significant 
role in observed patterns of mtDNA barcode sequence variation at 
the species level. For instance, the high occurrence of haplodiploidy, 
a mode of inheritance whereby females develop from fertilized eggs 
(hence are diploid), while males arise from unfertilized eggs (there‐
fore are haploid), is common across many insect orders such as 
Hymenoptera, and may explain the large abundances and varying 
(effective) population sizes seen in representative species that ulti‐
mately drives speciation and hybridization (Hebert, Ratnasingham, 
& Zakharov, 2016). Similar “exceptions to the rule,” such as (asexual) 
modes of parthenogenesis (e.g., unfertilized eggs producing female‐
only offspring in Squamata such as species of whiptail lizards), or 
paternal/biparental organelle inheritance in bivalve molluscs (e.g., 
mussels of the genus Mytilus), will likely help inform researchers 
on the required level of sampling depth needed to fully character‐
ize broad ranges of COI haplotype diversity in taxa that do not oth‐
erwise conform to traditional mtDNA inheritance patterning (i.e., 
strictly maternal lineage), and thus prevent the naïve implementa‐
tion of recommendations of any one statistical approach employed 
in the calculation of intraspecific sample sizes for accurate specimen 
assignment and rapid species delineation. As an example, because 
parthenogenetic species display lower standing genetic diversity 
compared to fully sexually reproducing species (as a result of being 
exact clones of their parent due to lack of chromosomal recombina‐
tion) (Bengtsson, 2003), haplotype frequencies aside, the observa‐
tion of the faster approach of haplotype accumulation curves to an 
asymptote is expected. Thus, species exhibiting such mechanisms 
will require reduced levels of sampling effort. Such a result can be 
invoked through consideration of Muller’s ratchet, as the irreparable 
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accumulation of deleterious mutations that are fixed by genetic drift 
within asexual genomes directly limits the ability of a species to sur‐
vive and reproduce (Felenstein, 1974; Muller, 1964).

3  | KE Y FINDINGS

3.1 | DNA barcoding and sample size: past studies

The ability of DNA barcodes to uncover levels of standing genetic 
variation within species is strongly influenced by the scale of speci‐
men sampling, which has been recognized as a major barrier to the 
success of DNA barcoding since its early days (Hebert et al., 2004; 
Meyer & Paulay, 2005; Ward, Zemlak, Innes, Last, & Hebert, 2005). 
In spite of this, global barcoding efforts have only been partially suc‐
cessful in capturing the full extent of COI barcode variation in ani‐
mals due to the majority of studies forgoing deep taxon sampling in 
favor of maximizing the number of different taxa sampled (Matz & 
Nielsen, 2005; Zhang et al., 2010). Sample sizes of a few individuals 
per species (typically in the range of 5–10, but one or two specimens 
is not uncommon since these are often the only representatives 
available, either due to unclear species boundaries or limited geo‐
graphic sampling of intraspecific variation) are widespread in bar‐
coding studies (Hajibabaei, Singer, Hebert, & Hickey, 2007; Matz & 
Nielsen, 2005; Zhang et al., 2010). Recommended sample sizes cur‐
rently in place are by no means sufficient since species abundance 
is often skewed geographically/ecologically. For example, five speci‐
mens per species per FAO (Food and Agriculture Organization) re‐
gion were initially suggested by the Fish Barcode of Life (FISHBOL; 
Ward, Hanner, & Hebert, 2009) initiative, but the sampling of up to 
25 individuals or more may be necessary for some species exhib‐
iting widespread distribution patterns (Becker, Hanner, & Steinke, 
2011; Steinke & Hanner, 2011). Similarly, in assessing haplotype and 
nucleotide COI variation across wide‐ranging animal taxa, Goodall‐
Copestake et al. (2012) note that a sample size of five individuals per 
species population was adequate to differentiate between extremes 
of h, but as many as 25 specimens would need to be collected in 
order to achieve maximum accuracy. Jin, He, and Zhang (2012), and 
Matz and Nielsen (2005) both point to a sample size of 12 speci‐
mens, whereas Ross, Murugan, and Li (2008) suggest that sampling 
five or more reference barcodes is sufficient for accurate species 
identification. Bias toward low sample sizes observed for most spe‐
cies may be the result of many factors (see Bucklin, Steinke, and 
Blanco‐Bercial (2011) for a concise summary in marine metazoa), in‐
cluding the presence of cryptic diversity, amplification of nonfunc‐
tional gene copies (i.e., pseudogenes/nuclear–mitochondrial inserts 
(NUMTs)), contamination by foreign DNA from other species (e.g., 
bacterial symbionts such as Wolbachia), insertion–deletion (indel) 
mutations, or errors arising from PCR/sequencing runs (Goodall‐
Copestake et al., 2012). Molecular diagnosis of specimens to the spe‐
cies level using DNA barcoding is not definitive; numerous technical 
sources of error exist that can hamper the ability of reliable taxon 
assignment, in particular, misidentifications, sequencing errors, and 
lack of taxonomic metadata (e.g., inclusion of GPS coordinates, 

record linkage to a voucher specimen). While such factors are likely 
to occur infrequently for interspecific barcodes, this is not the case 
for intraspecific datasets. Taken together, biases in sample sizes will 
likely be considerable. In certain cases, the occurrence of biological 
phenomena can lead to problems encountered later on in the labora‐
tory, specifically during the sequence amplification stage using PCR. 
A well‐known example of this is the symbiotic association of the 
bacterium Wolbachia with insects. Integration of Wolbachia within 
host genomes of various Hymenoptera, Diptera, and Lepidoptera 
can cause fluctuations in intraspecific distances (Smith et al., 2012) 
and thus observed haplotype diversity between infected and unin‐
fected hosts (Chen et al., 1984). Misamplification of host sequences 
for bacterial symbionts is widely encountered, as is the amplification 
of pseudogenes/NUMTs. Technical sources of error such as expert 
taxonomic misidentifications, sequence contamination, and errors 
arising from the amplification/sequencing process can be controlled 
and can be minimized to a degree. Two critical steps in avoiding such 
issues are as follows: (a) the construction of an NJ tree in order to 
pinpoint potentially misidentified specimens and/or sequence con‐
taminants (as opposed to solely being used in the establishment of 
reciprocal monophyly, as argued by Collins and Cruickshank (2013)) 
and (b) the careful inspection of BOLD specimen trace files in order 
to resolve noisy sequence regions that inflate estimates of standing 
genetic variation through the introduction of functional (heteroplas‐
mic) sequence variation (as in e.g., Hebert, Penton, Burns, Janzen, 
& Hallwachs, 2004) and/or nonexistent low‐frequency species hap‐
lotypes occurring in high abundance (Stoeckle & Kerr, 2012). The 
effect of these on generated haplotype accumulation curves is 
delayed saturation to an asymptote due to larger required sample 
sizes. Combined with initially large numbers of specimens within 
intraspecific datasets (e.g., N > 100), this effect can be quite sub‐
stantial. As BOLD is ever‐evolving, in part due to the sheer volume 
of DNA barcode sequences being added on a daily basis, it is crucial 
that suspected errors within taxon records be dealt with in a timely 
manner (e.g., through community users flagging problematic records 
for closer examination by submitters), so that sequence integrity is 
not compromised. While the issue of determining adequate sample 
sizes for molecular species diagnosis has largely been aimed at ani‐
mal taxa, Liu, Provan, Gao, and Li (2012) explored optimal sample 
sizes needed for plant DNA barcoding. It was found that relatively 
small sample sizes were adequate to recover sequence variation in 
slowly evolving genes (two or three sequences per species popula‐
tion for matK), whereas higher numbers are necessary for rapidly 
evolving markers (minimum of 10, 8, and 6 individuals per popula‐
tion for trnH‐psbA, trnL‐trnF, and ITS, respectively) (Liu et al., 2012). 
Further, the authors found that a sample size of 8–10 individuals 
per species across the entire geographic range appears sufficient 
for Taxus barcoding. Unfortunately, such small sample sizes, likely 
the result of low information content due to the high presence of 
sequence artifacts (e.g., indels within mitochondrial/plastid mark‐
ers), often lack discriminatory power that is needed for accurate 
identification of specimens on the basis of genetic polymorphism 
with DNA barcodes.
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To date, few studies explicitly exploring simulated sample sizes 
for DNA barcoding in wide‐ranging animal taxa have been conducted. 
One of the first studies to examine the issue of sample sizes for DNA 
barcoding via haplotype accumulation curves was conducted by 
Zhang et al. (2010) using a modified form of the Michaelis—Menten 
equation. Using this method, the authors found that the random 
sampling of 250–1,188 individuals from the Costa Rican skipper but‐
terfly (Astraptes fulgerator) cryptic species complex are likely needed 
in order to detect 95% of all genetic diversity for this species based 
on an initial sample size of 407 individuals. Conversely, the same 
authors found that 156–1,985 specimens were needed to retrieve 
95% of COI variation using simulated island (Wright, 1951) and step‐
ping‐stone (Kimura & Weiss, 1964) coalescent models across three 
distinct subpopulations and under varying effective population sizes. 
In addition, a sample size outlier of only 47 individuals was found for 
one subpopulation of A. fulgerator butterflies. The authors note that 
this may be due to the low level of genetic variation observed in this 
population: Only two haplotypes were observed across 14 sampled 
individuals. In contrast, a later study on European diving beetles un‐
dertaken by Bergsten et al. (2012) found that based on 419 sampled 
Agabus bipustulatus specimens, a sample size of 250 specimens was 
required to be randomly sampled across its range to achieve 95% 
haplotype recovery. On the other hand, 70 individuals of the same 
species was necessary to be sampled in order to recover 95% of COI 
variation when geographic dispersion between a new sample and the 
closest previous sample was maximized using resampling simulation.

Not all studies find evidence for greatly broadening the scope 
of comprehensive specimen sampling. Luo et al. (2015) demonstrate 
the utility of the central limit theorem (CLT), employing a simple res‐
ampling scheme along with the modified Michaelis—Menten satura‐
tion model. The CLT states that the distribution of the sample mean 
tends toward the (standard) normal distribution as the sample size in‐
creases. It was found that a minimum sample size of only 20 individu‐
als is needed to provide a reliable estimate of genetic polymorphism 
at the species level on the basis of observed haplotype numbers. 
The authors note however that sample sizes should be as large as 
possible, even though new haplotypes will tend to be observed with 
lower frequency. Compared to present sample size range of 5–10 
specimens per species, a slightly larger minimum sample size range 
of 11–15 individuals per species was recommended by Yao et al. 
(2017) for widely distributed coastal and inland aquatic salt‐tolerant 
plant species of the families Poaceae and Chenopodiaceae across 
seven different genera, based on results obtained through resam‐
pling procedures and nonparametric Mann–Whitney U tests.

Though not devoted to estimating sample sizes for mitochon‐
drial genes such as COI, using resampling simulation, Hale, Burg, and 
Steeves (2012) found that a sample size of 25–30 individuals was 
sufficient to accurately estimate microsatellite allele frequencies in 
hypothetical populations of hairy wood ants (Formica lugubris), kakis 
(Himantopus novaezelandiae), black‐browed albatrosses (Thalassarche 
melanophris), and red squirrels (Sciurus vulgaris). The sampling of 
25–30 individuals per species for the assessment of genetic diversity 
via microsatellite loci was also recommended by Pruett and Winker 

(2008) in an earlier study of song sparrows (Melospiza melodia). A 
more recent simulation study examining minimum sample sizes 
for accurate estimation of genetic diversity from a large number 
of single nucleotide polymorphism (SNP) markers in the terrestrial 
Amazonian plant Amphirrhox longifolia found that sample sizes be‐
yond eight are sufficient for genetic diversity assessment and as few 
as two individuals are needed in order to obtain good estimates of 
population differentiation (Nazareno, Bemmels, Dick, & Lohmann, 
2017). These studies clearly point to the need for large sample sizes 
in multilocus population genetic studies for the overall assessment 
of genetic diversity at the species level.

These examples serve to illustrate the fact that, as is the case for 
species divergence thresholds, there is no one universal sample size 
that can accurately recover the majority of intraspecific genetic vari‐
ation across taxa and it appears likely that varying levels of additional 
sampling will be required within taxa and across geographic ranges 
(Lou & Golding, 2012). What seems to be clear is the fact that many 
previous assessments of sample sizes necessary for DNA barcoding 
studies have underestimated levels of sampling depth that are actually 
needed in order to recover much of the genetic variation that exists at 
the species level. Such a trend seems most attributable to restricted 
geographic sampling and unclear species boundaries, limited funding 
for adequate specimen retrieval, and human‐mediated mechanisms 
such as errors accrued during the amplification/sequencing process.

4  | C A SE STUDY: PHILLIPS ET AL .  (2015)

Phillips et al. (2015) wished to estimate sampling sufficiency (θ)—the 
sample size at which accuracy is maximized and above which no ad‐
ditional sampling information is likely to be gained. This was applied 
in the context of haplotype accumulation curves in order to deter‐
mine the point on the x‐axis where curve saturation first becomes 
evident. If such an estimate exists, it would provide a useful stopping 
rule for specimen sampling (Phillips et al., 2015). That is, if a lower 
bound for specimen sample size exists, then it would provide the 
best estimate of sampling sufficiency for a given species.

4.1 | Model assumptions

In developing their sampling model, Phillips et al. (2015) made sev‐
eral important assumptions, which together form a baseline “per‐
fect‐world” scenario for further exploration of specimen/haplotype 
sampling. These are as follows:

• that specimen sampling is carried out randomly and without re‐
placement from an infinitely large, panmictic population with con‐
stant size;

• that species haplotypes are both biologically real and unique; and
• that species haplotypes occur with equal frequency.

In the first assumption, the contribution of genetic drift is pre‐
sumed to be negligible and it is assumed that population structure 
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is absent. Luo et al. (2015) presumed a constant population size, as 
well as an absence of natural selection, when calculating intraspe‐
cific sample sizes for their simulation study. The argument was that 
a limited number of individuals would be available in species pop‐
ulations undergoing contraction and that coalescence may not be 
evident. With regard to the second assumption, DNA barcodes are 
presumed to be of sufficiently high quality such that they are free 
of both ambiguous and missing nucleotide bases, which can lead to 
overestimation of observed and total haplotype numbers through 
creating artificial haplotype variation within species (Athey, 2013; 
Dasmahapatra, Elias, Hill, Hoffman, & Mallet, 2010; Phillips et al., 
2015; Stoeckle & Kerr, 2012; Stoeckle & Thaler, 2014).

Assumptions 1 and 3 were employed by Dixon (2006) in propos‐
ing a method to assess the extent of haplotype sampling complete‐
ness utilizing a Bayesian statistical framework based on the use of 
Stirling numbers. It was noted that the probability of all haplotypes 
being observed for a species becomes less accurate if the assump‐
tions of random sampling and equal haplotype frequencies are not 
met and that the presence of rare species haplotypes will lead to 
overestimation of overall sampling completeness. Similarly, Phillips 
et al. (2015) hypothesized that the presence of rare haplotypes 
within species will lead to inflation of total sample sizes. Further, as 
noted by Dixon (2006), evolutionary mechanisms such as isolation 
by distance, which describes the variation in genetic composition of 
species populations with increasing geographic distance, will likely 
cause the true extent of sampling effort to be overestimated. In 
exploring coalescent simulations, Luo et al. (2015) treated barcode 
sequences as panmictic. In this way, all specimens can be regarded 
as being sampled from a single geographic region. Such an assump‐
tion is not uncommon within DNA barcoding studies, which are 
often geographically focused (Collins & Cruickshank, 2013). While 
Luo et al. (2015) did not consider spatial heterogeneity within their 
simulation study, it was proposed that stratified sampling, where 
individuals are repetitively sampled without replacement from a 
preselected number of strata, can be employed, with the added as‐
sumption that gene flow can largely be ignored.

4.2 | Mathematical details

Phillips et al. (2015) derived a simple Method of Moments (Pearson, 
1894) estimator in order to predict adequate specimen sample sizes 
necessary to uncover the majority of cytochrome c oxidase subunit 
I (COI) DNA barcode haplotype diversity existing within animal spe‐
cies according to the equation

Above, N* is considered an estimate of θ, the true sampling suf‐
ficiency, which, under the Frequentist statistical paradigm, is a fixed 
but unknown parameter. The quantity [N/H] is the number of spec‐
imens represented by each haplotype ([x] is the ceiling function ap‐
plied to a number x, evaluated by rounding up to the nearest integer). 

Since haplotypes are assumed to be sampled with equal frequency 
from a species population, in a sample of N = 100 sequences com‐
prising H = 10 distinct haplotypes, it is expected that each haplotype 
is represented by 10 specimens (Phillips et al., 2015). H* is found 
using the equation

where N is the number of DNA sequences observed for a given spe‐
cies, H is the number of observed haplotypes, and H* is the estimated 
total number of haplotypes (both observed and unobserved) for a 
species. The above estimator is similar to estimators of total species 
richness used widely in ecological settings (e.g., the Chao1 estimator 
of abundance Chao, 1984). The central idea around the above esti‐
mator is that the majority of haplotypes within a species are rare, 
being represented by only one (singleton) individual. Thus, once such 
haplotypes have been accounted for in a species sample, few addi‐
tional unduplicated haplotypes are likely to be observed, since the 
majority of remaining haplotypes will be dominant (duplicates) in the 
population (i.e., being represented by two or more specimens); thus, 
species comprising many singleton haplotypes should be expected 
to require larger sample sizes in order to capture most of the existing 
genetic variation for a given species of interest (Phillips et al., 2015; 
Williams, Huang, Rasmont, & An, 2016).

Phillips et al. (2015) also proposed both absolute and relative 
“measures of sampling closeness” in order to quantify the extent 
of specimen and haplotype sampling effort. These quantities are as 
follows:

• Mean number of haplotypes sampled: H
• Mean number of haplotypes not sampled: H*–H
• Proportion of haplotypes sampled: H

H∗

• Proportion of haplotypes not sampled: H
∗−H

H∗

• Mean number of individuals not sampled: N* – N

The above equations, which are central to Phillips et al.’s (2015) 
sampling model, can be depicted graphically as follows (Figure 2).

Figure 2 resembles the general shape of a saturated haplotype 
accumulation curve for a hypothetically well‐sampled species. The 
point labeled (N, H) on the curve reflects the current level of sam‐
pling effort that has been expended for a given species (i.e., as found 
in BOLD). The goal is to extrapolate the curve to the point (N*, H*) 
in order to observe the value on the x‐axis (i.e., N*) at which leveling 
off toward an asymptote (on the y‐axis) first becomes evident (i.e., at 
the value of H*). Here, N∗ −N is the number of additional specimens 
that must be randomly sampled in order to observe H∗ −H additional 
haplotypes for a given species. If H is equal to H*, then N* will be 
equal to N, and no further sampling is necessary; otherwise, if H is 
less than H*, then N* will be greater than N, and additional sampling 
will be required. The curve in Figure 2 passes through the point (1, 
1), which is due to the fact that the sampling of a single individual of 
a given species corresponds to observing one unique haplotype for 
that species.

(7)N∗ =

[

NH∗

H

]

.

(8)H∗ =

H
∑

i=1

i=
H(H+1)

2
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4.3 | Application to ray‐finned fishes

Phillips et al. (2015) investigated levels of existing COI haplotype 
variation in 18 species of ray‐finned fishes (Chordata: Actinopterygii) 
represented by a minimum of 60 individuals in accordance with 
Grewe et al. (1993). Results showed that 147–5,379 specimens likely 
must be randomly sampled to uncover all predicted haplotype di‐
versity in the selected species (between 3 and 528 total haplotypes) 
(Phillips et al., 2015). Sample size estimates obtained by Phillips et al. 
(2015) are comparable in magnitude to those of Zhang et al. (2010), 
but not in the case of Luo et al. (2015), which are closer to practi‐
cal sample sizes for DNA barcoding. Further, haplotype accumula‐
tion curves displayed evidence of reaching an asymptote for only 
3/18 examined species: Chinook salmon (Oncorhynchus tshawyts-
cha), Rockfish (Sebastes sp.), and Siamese fighting fish (Betta splen-
dens) based on significance testing of curve slopes with a one‐sided 
t test using the last 10 points on the end of accumulation curves 
(Phillips et al., 2015). Of note is the haplotype accumulation curve 
for Chinook salmon, which appeared to show premature saturation 
despite only 12 out of an estimated total of 78 haplotypes being 
found for the species. At the time of publication of Phillips et al.’s 
(2015) study, Sebastes sp. was linked to a single BIN. The BIN system 
is inherently dynamic: As more sequences are added within BOLD, 
specimens assigned to a single BIN may be allocated to multiple 
BINs or multiple existing BINs may be coalesced into a single BIN. 
This is especially the case as species boundaries become clearer or 
taxonomic revisions are made. As an example, the genus Sebastes 
is a highly speciose group, thought to have undergone an adap‐
tive radiation as recently as 8–9 million years ago (Steinke, Zemlak, 
Boutillier, & Hebert, 2009). This fact could explain the low haplo‐
type diversity observed for this species (two haplotypes across 98 

individuals). Such findings may be due to the underlying assumptions 
of the model, which are likely to be over‐simplistic, particularly that 
of equality of intraspecific haplotype frequencies. Further, the pro‐
posed estimator for the calculation of total haplotype diversity (H*) 
(Equation 7) may be a gross overestimate. Despite not being realistic 
for populations of real species, the reason for adopting a uniform 
distribution of haplotypes was due to mathematical convenience, in 
order to make calculations of sample size as simple and as straight‐
forward as possible. This is commonly done in practice, since deter‐
mining the true distribution of species haplotypes is likely strongly 
dependent on species under study. Thus, values of N* are likely over‐
estimates of the true number of specimens that must be randomly 
sampled in order to observe most haplotype variation that exists for 
a species (Phillips et al., 2015). Phillips et al. (2015) argue that the 
use of a limited number of points in the calculation of curve slopes 
may not be adequate; the authors argue that a fixed proportion of 
curve points should instead be used. Further, through successively 
targeting the last 20%–15%, 15%–10%, and the last 10% of species 
haplotype accumulation curves, in order to observe a statistically 
significant change in slope values, the precise point of saturation can 
be localized (Phillips et al., 2015).

Determining the precise point corresponding to haplotype ac‐
cumulation curves reaching an asymptote (i.e., having a slope near 
zero) is difficult. One way this can be accomplished is through em‐
ploying numerical techniques, specifically iteration. Such methods 
work by repeatedly recycling computed values into an algorithm; 
that is, current values are used as starting values to the next iteration 
until convergence to a solution is achieved. One way this can be real‐
ized is through iterating Equation 7 along with the equations for the 
“measures of sampling closeness” proposed by Phillips et al. (2015). 
This seems to be the most logical way forward in better ascertaining 

F I G U R E  2   Graphical depiction of 
Phillips et al.'s (2015) sampling model as 
described in detail within the main text. 
The x‐axis is meant to depict the number 
of specimens sampled, whereas the y‐axis 
is meant to convey the cumulative number 
of unique haplotypes uncovered for every 
additional individual that is randomly 
sampled. N and H refer to specimen and 
haplotype numbers that are observed 
for a given species. N* is the total sample 
size that is needed to capture all H* 
haplotypes that exist for a species N N*

H*

H

H* - H

N* - N

(N*, H*)

(1, 1)

(N, H)
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at what level specimen sampling is deemed sufficient and thus when 
further collection of specimens should be ceased.

5  | FUTURE PROSPEC TS

The present review explores the issue of sampling in DNA barcoding 
from the perspective of computational and statistical methodolo‐
gies. Key sample size studies in the barcoding literature were exam‐
ined in detail. A lack of consensus exists in the most appropriate 
number of specimens that must be targeted in order to uncover the 
majority of haplotype diversity that exists at the species level for a 
variety of taxa. This question is similar to the problem of calculating 
species divergence thresholds for taxon delimitation and is strongly 
dependent on species abundances, life histories, and geographic 
coverage. To date, few studies exploring sample sizes for DNA bar‐
coding have been conducted. Existing studies (Phillips et al., 2015; 
Zhang et al., 2010) appear to point to the comprehensive sampling 
of hundreds to thousands of specimens in order to capture a wide 
range of standing genetic variation for a given species based on as‐
ymptotic behavior of haplotype accumulation curves.

In order to thoroughly examine the issue of determining speci‐
men sample sizes that are necessary for full assessment of COI DNA 
barcode haplotype sampling completeness within animal species, 
relaxation of assumptions inherent in Phillips et al.’s (2015) sampling 
model is necessary. Specifically, subsequent approaches should in‐
vestigate the following:

1. relaxing the assumption of uniformity of species haplotype 
frequencies;

2. loosening the assumption of panmixia within species; and
3. testing both above assumptions in tandem.

The incorporation of population structure into models of haplo‐
type sampling is not straightforward, as sampling strategies for DNA 
barcoding are quite variable and highly dependent on the taxa under 
study. Thus, this necessitates the introduction of a more spatially ex‐
plicit systematic sampling (e.g., phylogeographic) of species genetic 
variation across distinct taxon boundaries and along phenotypic gra‐
dients (i.e., clines). The view of DNA barcoding metaphorically as a 
“molecular transect,” along which a wide range of intraspecific hap‐
lotype diversity can be uncovered, is fitting. Within‐species genetic 
variation has been limited to over‐representation of deep sampling 
of a single or a few populations. If the ultimate goal is to account 
for levels of standing genetic variation with species, then constrain‐
ing taxon sampling to narrow geographic regions is not ideal, as this 
can be considered a form of pseudo‐replication. This seems to be 
an issue of nestedness in sampling and while some depth of sam‐
pling within a population is certainly warranted, it cannot be con‐
flated with depth of sampling across populations within a species. 
In addition, future research should aim to answer the question: Is 
there an optimal threshold for specimen sampling above which no 
new DNA barcode haplotype variation is likely to be observed for 

a species? While it should be possible to find this limit for already 
well‐sampled taxa based on trends seen in haplotype accumulation 
curves, the use of haplotype accumulation curves to estimate sam‐
ple sizes that are required for full assessment of COI DNA barcode 
haplotype sampling completeness has only been tested in one pre‐
vious study (Zhang et al., 2010). Phillips et al. (2015) expanded on 
previous studies through proposing a simple and easily implemented 
method to estimate specimen sample sizes for a number of ray‐
finned fish species, which are among the most densely sampled to 
date within BOLD. Sample size optimization for the identification of 
animal species across wide‐ranging geographic scales is key since in‐
traspecific variation within DNA barcodes is not easy to measure, 
and obtaining large numbers of barcodes that reflect a wide range of 
intraspecific genetic divergence is sometimes challenging (Bertolazzi, 
Felici, & Weitschek, 2009). In addition to being able to report likely 
required specimen sample sizes necessary to achieve saturation in 
species haplotype curves, it would be ideal if DNA barcoding stud‐
ies could also provide a global measure of geographic dispersion in 
order to reliably test for cases of isolation by distance within spe‐
cies. Unfortunately, no such measure yet exists in this regard, making 
these kinds of analyses problematic. While model estimates may not 
be practical, having such a framework at hand that easily allows for 
the calculation of lower bounds for sample size offers researchers 
a glimpse into the most appropriate taxon sample sizes to target, 
and potentially where those taxa should be sampled. More crucially, 
the present simulation proposed herein can be employed in order to 
best determine the proper allocation of sampling effort, time, and 
resources (Hortal & Lobo, 2005). Such work finds application in stud‐
ies of metabarcoding (Wares & Pappalardo, 2015) as well as more 
broadly to global climate change (Pfenninger, Bálint, & Pauls, 2012).

The development of a computational simulation of haplotype 
accumulation curves, a tool that can greatly aid biodiversity scien‐
tists in targeting species that will benefit from increased sampling 
effort, can be employed in order to build and grow BOLD with sta‐
tistically defensible taxon records, which ultimately will allow more 
reliable specimen identification. This work is crucial because many 
taxon records currently in BOLD are known from only single speci‐
mens. Further, such a simulation algorithm could aid in species dis‐
covery through providing more reliable estimates of intraspecific 
sample sizes used in the calculation of the barcode gap. Through 
developing statistically relevant sample size estimation tools that 
capture geographic and genetic variation within and between spe‐
cies, researchers will be able to improve sampling design strategies, 
which will lead to a better understanding (and improved database) 
of intra‐ and interspecies genetic variation. As such, new method‐
ologies will fill this void and contribute to the growing literature 
on sample size estimation for DNA barcoding as well as be imple‐
mented as another tool to add to the biodiversity toolbox.
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