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Abstract: Deep learning approaches to estimating full 3D orientations of objects, in addition to object
classes, are limited in their accuracies, due to the difficulty in learning the continuous nature of
three-axis orientation variations by regression or classification with sufficient generalization. This
paper presents a novel progressive deep learning framework, herein referred to as 3D POCO Net,
that offers high accuracy in estimating orientations about three rotational axes yet with efficiency
in network complexity. The proposed 3D POCO Net is configured, using four PointNet-based
networks for independently representing the object class and three individual axes of rotations. The
four independent networks are linked by in-between association subnetworks that are trained to
progressively map the global features learned by individual networks one after another for fine-tuning
the independent networks. In 3D POCO Net, high accuracy is achieved by combining a high precision
classification based on a large number of orientation classes with a regression based on a weighted
sum of classification outputs, while high efficiency is maintained by a progressive framework by
which a large number of orientation classes are grouped into independent networks linked by
association subnetworks. We implemented 3D POCO Net for full three-axis orientation variations
and trained it with about 146 million orientation variations augmented from the ModelNet10 dataset.
The testing results show that we can achieve an orientation regression error of about 2.5◦ with
about 90% accuracy in object classification for general three-axis orientation estimation and object
classification. Furthermore, we demonstrate that a pre-trained 3D POCO Net can serve as an
orientation representation platform based on which orientations as well as object classes of partial
point clouds from occluded objects are learned in the form of transfer learning.

Keywords: orientation representation; 3D point cloud; 3D object; progressive learning; associa-
tion network

1. Introduction

Data representation is crucial when dealing with 3D objects. As far as data representa-
tion for 3D objects is concerned, there are three approaches available currently: (1) multiple
2D images from different perspectives, (2) voxel or octree representation and (3) 3D point
cloud or mesh representation. Among them, 3D point cloud representation presents the
most efficient means of representing 3D objects, featured with order-independence in its
data structure. In addition, 3D point cloud representation is further supported by the
availability of low-cost yet highly robust real-time RGB-D cameras. More significantly,
the recent advancement of deep point networks, such as PointNet [1], FoldingNet [2] and
their variants [3], demonstrates that 3D point clouds can be effectively processed by deep
point networks for classification, segmentation and reconstruction with high accuracy
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and generalization power. In general, deep point networks employ a point-wise multi-
layer mapping approach with shared weights, while choosing the maximum point values
from individual axes of the mapped space to define the global features as a means of
exploiting order-independence. Moreover, deep point networks can be trained based on a
number of publicly available 3D object datasets, including ModelNet [4], PASCAL3D+ [5],
ShapeNet [6], LineMod [7] and OCID [8], where 3D point clouds are either from object
CAD models or from actual measurements. The deep point networks trained with 3D point
cloud representation of 3D objects can effectively serve as a platform for the classification of
3D objects. Notably, however, as far as 3D objects are concerned, it is not only their classes,
but also their poses, i.e., their orientations, that are important attributes to be represented.
However, unlike object classes, 3D object orientations represent continuous variations
about three independent rotational axes that pose a challenge in precisely identifying
orientations using deep learning–based classification or regression.

To date, deep learning approaches for 3D object recognition and orientation estimation
are focused on relaxing limitations through a trade-off between precision and complexity.
To deal with the trade-off, hybrid approaches are introduced such that the strength of
deep learning approaches for object detection and recognition and that of conventional
vision technologies for high precision orientation estimation are combined [9]. In other
words, hybrid approaches seek for precision in orientation estimation at the expense of
computational cost associated with conventional vision technologies. Should end-to-end
deep learning approaches to orientation estimation be considered, they have to limit the
number of orientation classes or the precision in regression to a manageable level [10].
Recently, a number of end-to-end deep learning approaches for 6D object pose estimation
based on RGB and RGB-D data have been proposed. They show that end-to-end deep
learning approaches can possibly achieve a sufficient level of accuracy in pose estimation,
while taking full advantage of the processing speed provided by deep networks. They
solve the problem of the precision–complexity trade-off by combining feature-induced
regression, using local and global RGB or RGB-D features with deep iterative 6D pose
refinement, supported by a powerful semantic segmentation of objects from a scene.

Despite the recent progress, the precision–complexity trade-off remains a fundamental
issue for deep learning approaches in 6D pose estimation. In fact, this trade-off represents a
general problem common to the estimation of multi-variate continuous functions through
either classification or regression. Furthermore, should we include additional variations,
such as occlusions, to represent 3D objects, the trade-off becomes even worse, due to
the increased complexity. In this paper, we propose to solve the precision–complexity
issue based on a progressive framework for learning the object class and three axes of
orientation variations. The proposed framework is configured with four independent
networks representing object class and three axes of orientations that are connected by
in-between feature association subnetworks. The proposed framework progressively learns
the object class and three axes of orientation variations with training samples limited only to
pertinent variations. Instead, in-between feature association subnetworks learn to cover full
data representations for independent networks. With the proposed progressive framework,
we intend to develop a deep learning network that serves as a representation platform for
3D objects based on point cloud representation of 3D objects. As a platform, the proposed
network is expected to be easily extended to learn partial point cloud representation of 3D
objects, due to occlusion.

1.1. Related Work

Currently, the approaches proposed for the representation of 3D objects include the
following: (1) multiple 2D images from different perspectives [11–14], (2) voxel represen-
tation and its variants, such as a hybrid grid–octree data structure [4,11,15–18], (3) 3D
point cloud representation [19,20] and (4) mesh representation [21]. For deep learning
approaches, voxel representation allows direct extension of the methodologies that are well
established for 2D convolutional neural networks (CNNs). However, direct application of
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CNNs to voxel representation of 3D objects may suffer from computational cost, due to
the inclusion of a large number of voxels with no actual contribution, although multi-level
octree representation can reduce such computational cost to a certain degree [21]. On the
other hand, point cloud representation is more efficient but requires special order inde-
pendent processing, such as the one done by PointNet and FoldingNet, where the global
geometric features are extracted based on a point-wise mapping with shared weights and
a max selection operation. Note also the recent emergence of approaches to reinforce 3D
object representation with structural or topological information based on graph or mesh
convolutional networks [20–22].

Traditionally, 6D pose estimation is done by matching the extracted features with those
of the ground truth object models [23]. Such traditional vision approaches may offer high
precision in pose estimation, provided that a sufficient number of features can be extracted
and matched for pose estimation. However, they suffer from high computational cost
as a result of extracting and matching hand-crafted photometric and geometric features,
besides the lack of robustness and generalization in dealing with variations. The recent
advancement in deep learning networks offers an opportunity to overcome the limitation
of traditional approaches by presenting a powerful platform for the detection, recognition
and segmentation of objects in a cluttered scene [24–26]. Deep learning–based object
detection, recognition and segmentation platforms are able to provide not only robustness
and generalization in performance, but also fast processing speeds. The availability of
such deep learning platforms enables the development of hybrid approaches [27], where
deep learning approaches for object detection, recognition and segmentation are combined
with traditional approaches to pose estimation so as to achieve high accuracy and speed
at a reduced cost. Recently, end-to-end deep learning approaches for 6D pose estimation
have emerged, where not only object detection, recognition and segmentation, but also
6D pose estimation are conducted by deep learning networks so that both accuracy and
speed are at their maximum. For instance, RGB-based approaches determine 6D object
poses either by directly regressing a quaternion representation of object orientations [28],
by iteratively matching the rendered object view against the captured object image [12], or
by predicting 3D coordinates of each object pixel through an auto-encoder generator, using
a GAN framework. This is followed by iterative computation of the PnP algorithm with
RANSAC [12]. In addition, RGB-D–based end-to-end deep learning network approaches
are proposed for 6D pose estimation, in which pixel-wise embedding of color and point
cloud, as well as the global feature representing both embedding, are generated and
concatenated to regress pixel-wise 6D pose with the refinement of residual pose errors [29].
Lastly, it is worthwhile to introduce approaches extending pose estimation from an instance
level to a category level, for instance, based on a pose-aware image generator trained by
VAE for iterative optimization of object pose and shape [30], and a canonical representation
of object categories with deep networks for estimating the object pose and size [31].

Recently, a progressive deep learning framework was proposed as a means of explor-
ing the ability to transfer knowledge learned from prior tasks to a new task via lateral
connections [32]. Such a progressive framework can be effective for learning multiple
tasks or a complex task configured with multiple subtasks by correlating their embedded
structure of data or knowledge. For instance, progressive frameworks have been applied
to learning a variety of games in complex reinforcement learning domains [33] as well as
modeling the acoustic features of noisy speech based on the knowledge transfer between
different noise conditions [34]. Alternatively, progressive frameworks are adopted to recog-
nize images having different visual complexities based on a set of network units activated
sequentially with progressively increasing complexities, or to transfer knowledge between
three paralinguistic tasks: speaker, emotion, and gender recognition, by exploiting how
knowledge captured in one emotion dataset can be transferred to another [35]. Progressive
deep learning frameworks have been reported to offer efficiency in learning with faster con-
vergence and improvement in performance over conventional pre-training and fine-tuning
with transfer learning [36].
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1.2. Problem Statement and Proposed Approach

The fundamental issue to address here is how precise and accurate a deep learning
network could be for estimating or predicting general three-axis orientations of 3D objects.
This represents a general problem associated with deep learning approaches regarding their
capability for approximating continuous functions with high dimensional input–output
relationships. Recently, deep learning approaches to general three-axis orientation or 6D
pose estimation of 3D objects based on classification and regression have shown consid-
erable progress in their precision and accuracy toward the level offered by conventional
hand-crafted feature engineering approaches [12,29,37]. However, further improvement
in precision and accuracy, possibly to the level required by object manipulation tasks
in various industrial applications, remains a necessity. Such improvement makes deep
learning approaches highly preferable to conventional approaches for a wide range of
applications with the advantages in robustness, generalization and computational speed.
To tackle the above issue, we pay attention to how different ways to structure deep learning
networks for estimating general three-axis orientations affect the performance in precision
and accuracy. To be more specific, precision in orientation estimation relies on the number
of classes to output, whereas accuracy in classification depends on the degree of data varia-
tions that individual output classes should generalize as well as the number of training
data available for individual output classes. For higher precision and accuracy, we prefer
defining a larger number of output classes, a smaller degree of data variations to generalize
by each output class, and a larger number of training data available. On the other hand,
for higher efficiency, we prefer a smaller number of output classes for structural simplicity
manageable by available training data and computational power. As such, the structure
of a deep learning network for orientation classification should be optimized in terms of
the number of output classes, data variations associated with individual output classes,
training data available as well as structural simplicity under optimal trade-off among
precision, accuracy and efficiency. In particular, we need to address the issue caused by the
exponential growth in the number of classes, as the orientation resolution represented by
individual classes is increased for high precision estimation. Note that the above observa-
tion on precision and accuracy in orientation estimation in conjunction with classification
structure can equally be applied to regression. This is because, in principle, they rely on the
same structure for building embedding before outputs are trained in terms of regression or
classification [37]. In fact, in this paper, we present both classification and regression for
orientation estimation, where regression outputs are obtained as a weighted sum of class
outputs with the weights given by class probabilities. Note that it is also possible to build a
fully connected network on top of classification outputs to train for continuous orientation
estimation, instead of a weighted sum of classification outputs with the weights from the
probability distribution of output classes. We conjecture that classification-based regression
has an advantage in that classification outputs play a role as control points in fitting data
into a continuous regression function, where the distances of the data to control points may
be used for local refinement of the regression function.

The structure of conventional deep learning approaches to orientation classification
can be categorized into “fanned”, “grouped” and “hierarchical” (Figure 1).

By “fanned”, we mean that all individual three-axis orientation classes are separately
represented as individual output classes [10,19,37]. By “grouped”, we mean that all
individual three-axis orientation classes are clustered into three separate groups: x-, y-, and
z-axis orientation class groups, where the x-axis group consists of only x-axis orientation
classes with all y- and z-axis orientations clustered into x-axis orientation classes, and so
on. By “hierarchical”, we mean that objects are classified hierarchically, e.g., in a hierarchy
of x-, y- and z-axis classifications [9]. Table 1 shows the number of output classes, the
data variations associated with individual output classes, the training data available for
individual output classes as well as the simplicity in network structures associated with
the above three conventional structures.
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Table 1. Performance comparison of the proposed progressive structure with other typical structures for classification in
terms of the number of output classes, degree of data variations and the number of training data per output class.

Structure No. of
Output Class

Degree of Data Variation
per Output Class

No. of Training Data
per Output Class

Fanned N == M3 1 D/N(==M3)

Grouped 3M 3 D/M

Hierarchical
Progressive

N + M2 + M
3M

3, 2, 1 for 1st, 2nd, 3rd Layer
1, 2, 3 for 1st, 2nd, 3rd Process

D/M, D/M2, D/M3 for 1st, 2nd, 3rd Layer
D/M3, D/M2, D/M for 1st, 2nd, 3rd Process

N: Total no. of classes(N == M3), M: no. of classes for each axis, D: Total no. of training data.

Generally speaking, for classification with a small number of orientation classes, a
fanned architecture may be adopted. However, for classification with a large number
of orientation classes, a grouped structure may be preferred for network simplicity at
the expense of some accuracy. In between, we may consider a hierarchical structure as
a compromise.

In this paper, we propose a “progressive” structure for deep learning–based orientation
classification, as an alternative to the above conventional structures, that can handle a large
number of orientation classes by a small number of output classes, yet with a reduced
degree of data variations. The proposed progressive structure achieves this by progressively
learning the embedding of x-, y- and z-axis orientation classes one after another and, at
the same time, by progressively extending the degree of data variations associated with
individual axes and learning association between the embedding of two-axis orientation
classes in sequence along the progression. For example, as illustrated in Figure 1, first,
one axis class outputs are trained to learn their embedding with other axes data variations
fixed to their reference orientations. Then, another axis class outputs are trained to learn
their embedding with the remaining axis data variations fixed as their reference orientation
and, at the same time, to learn the association between the current and the prior axis
embedding. Finally, the last axis class outputs are trained to learn their embedding while
learning the association between the current and the prior axis embedding. Table 1 shows
the comparison of the proposed progressive structure with the conventional ones in terms
of the number of output classes, the data variations associated with individual output
classes, the training data available for individual output classes as well as the simplicity in
network structures. It indicates that the proposed progressive structure allows the number
of output classes to be the same as that of a grouped structure, yet allows the degree of
data variations to be the same as that of a hierarchical structure in such a way that high
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precision and accuracy in the orientation estimation, closer to a fanned structure, can be
achieved with a simple network structure.

2. D Point Cloud Based Object Class and Orientation Estimation Network: 3D
POCO Net

As described in Section 1.2, we provide a deep learning network as a platform for rep-
resenting object class and orientations in high precision and accuracy based on point cloud
representation of 3D objects. To this end, a progressive framework for learning three axes of
the orientation variations as well as the object class is designed and implemented based on
independent networks that are connected by in-between feature association subnetworks
(Figure 2). The proposed framework progressively learns the object class and three axes of
orientation variations with training samples limited only to pertinent variations. Instead,
in-between feature association subnetworks learn to cover full data representations for
independent networks. The framework is based on the order-independent point cloud
representation of PointNet for simplicity in implementation and computational efficiency.
The progressive framework of networks thus implemented for object classification and
orientation estimation is referred to here as the 3D Point Cloud Based Object Classification
and Orientation Estimation Network or 3D POCO Net, in short form. 3D POCO Net is
composed of the reference network, which outputs the classes associated with the 3D
objects in their reference orientations and the three independent orientation networks,
which generate their own orientations representing three consecutive rotations from the
reference orientation. The reference network and the three orientation networks are linked
by the association subnetworks that are trained to output the global features learned by
the adjacent networks that they are linked to. Then, orientations of individual axes are
estimated based on the weighted sum of orientation classes with the weight given as the
class probabilities generated by the respective orientation networks. In the subsequent
sections, we present the details of the network configuration and training procedure.
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2.1. Network Configuration

Reference Network: The reference network is composed of the “feature extraction
subnetwork” and “object classification subnetwork” (Figure 2). The aim of the feature
extraction subnetwork is to extract the global features associated with the 3D objects in their
reference orientations based on PointNet with no T-Net for orientation compensation. The
feature extraction subnetwork is configured with five weight-sharing hidden layers in [64,
64, 64, 128, 1204] format for individual 3D point, where each layer is followed by non-linear
activation and max-pooling operations. A 1024 dimension of the global feature vectors
is then extracted by applying the element-wise max selection operation to the output of
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the last hidden layer. The resultant global feature vectors are then fed to the three-layered
fully connected network of [512, 256, nc] configuration, with nc representing the number of
object classes. This object classification subnetwork adopts the Leaky ReLU activation and
batch normalization [38] for all the layers, except for the last decision layer. In addition, a
dropout layer with a dropout rate of 0.3 is used just before the decision layer. The Adam
optimizer is used to optimize the network parameters.

Orientation Networks: Three orientation networks are configured in 3D POCO Net
to generate their particular axes of rotations, such as roll, pitch and yaw angles. Each
orientation network is composed of the “feature extraction subnetwork”, “orientation
classification subnetwork” and “feature association subnetwork”. Apart from the reference
network, each orientation network has the feature association subnetwork that is trained to
generate the global features of the adjacent network. The feature association subnetwork is
configured as a stack of fully connected layers of [1024, 768, 512, 768, 1024]. The orientation
classification subnetwork concatenates the two outputs from its feature association and
feature extraction subnetworks for use as input in order to obtain the probability of the
predefined number of orientation classes as the output. The orientation classification
subnetwork is configured as a stack of fully connected layers of [2048, 1024, 512, 256,
no], where no represents the number of predefined orientation classes. The orientation
classification subnetwork adopts the Leaky ReLU activation and batch normalization for
all the layers, except the last decision layer. Similarly, a dropout layer with a dropout rate
of 0.3 is used just before the decision layer.

2.2. Training Procedure

The training of 3D POCO Net starts with training of the reference network for object
classification based on the reference samples, i.e., the 3D object sub-dataset with the
reference orientation as the input. Then, the trained reference network is kept fixed as
the first orientation network is trained to learn its feature association and orientation
classification subnetworks based on the first orientation samples, i.e., the 3D object sub-
dataset generated by the first axis of rotation of the reference samples (Figure 3). In
particular, this is followed by retraining the object classification subnetwork of the reference
network in order to fine-tune based on the additional training samples available from the
initial orientation samples. The same training procedure is repeated as the training proceeds
to individual networks in the order of their association, except that retraining is applied to
all the prior classification subnetworks one by one in the reverse order. The details of the
training procedure are given in the following steps:

Step 1: The feature extraction and the object classification subnetworks of the reference
network are trained using the reference sample data by optimizing the following loss
function:

Lr({yi}, {ui}) = ∑
i

Lcls( fr(r(yi)), ui) (1)

where yi and ui represent the ith reference input sample and its object class, respectively;
r(y i) represents the extracted global feature of yi from the feature extraction subnetwork;
fr(r(y i)) is the output of the object classification subnetwork; and Lcls denotes SoftMax
log classification loss.

Step 2: Once the training of the reference network is completed, the first orientation
network is then trained, while the reference network trained is fixed, with the following
objectives: 1) to make the output of its feature association subnetwork, r′(xi1), xi1 be the ith

first orientation sample, which is equal to the output of the feature extraction subnetwork,
r(y i), of the reference network; 2) to have its orientation classification subnetwork output,
fo(r′(xi1), p(xi1)), same as the true orientation class, ai1, where the input of the orientation
classification subnetwork is obtained by concatenating the output of its feature association
subnetwork, r′(xi1), and the output of its feature extraction subnetwork, p(xi1); and 3) to
ensure that the first orientation sample, xi1, also satisfies its object class constraint, i.e.,
fr(r′(xi1)) is equal to ui. The feature association subnetwork, the orientation classifica-



Sensors 2021, 21, 6108 8 of 18

tion subnetwork and the feature extraction subnetwork of the orientation network are
simultaneously trained by optimizing the following overall loss function:

Lo({xi1}, {yi}, {ui}, {ai1}) = ∑
i

Lcls( fo(r′(xi1), p(xi1)), ai1)+

β ∗∑
i

√
||r′(xi1)− r(yi)||2 + (1− β) ∗∑

i
Lcls( fr(r′(xi1)), ui)

(2)

where β represents the weight that balances the contributions of the feature association
error and the object classification error. The loss is minimized based on the stochastic
gradient decent optimization.
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tion networks.

Step 3: The refinement of the object classification subnetwork of the reference network
is then followed based on the first orientation sample data available from Step 2, while all
the parameters of other subnetworks are kept fixed. Specifically, the dataset for refining
the object classification subnetwork is created by randomly mixing all the pair-wise data,
{r(y i), ui} and {r′

(
xj1
)
, uj}, representing the global features and their object classes of the

reference samples and the first orientation samples, respectively, in order to form {gk, uk}=
{r(yi), ui} U{r′

(
xj1
)
, uj }, k = either i or j. The object classification subnetwork of the

reference network is then retrained by optimizing the following loss function:

Lo({gk, uk} ) = ∑
k

Lcls( fr(gk), uk) (3)

Step 4: Once the training of the first orientation network is completed, the second
orientation network is trained in the same way as the first orientation network, and the
second orientation sample dataset is generated by rotating the first orientation sample
dataset about the second axis of rotation. First, with the first orientation network and the
already trained reference network being kept fixed, the feature association subnetwork and
the orientation classification subnetwork of the second orientation network are trained first
by making their outputs, r′(xi2) and fo(r′(xi2), p(xi2)), become equal to the output, p(xi1),
of the feature extraction subnetwork of the first orientation network and the true second
orientation class, ai2, respectively. However, the training of the second orientation network
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should ensure that not only the second orientation sample, xi2, satisfies its first orientation
class, i.e., fo(r′( xi1 = r′(xi2)), r′(xi2)) = ai1, but also that it satisfies its object class, i.e.,
fr(r′( xi1 = r′ (xi2))) = ui. Therefore, the training of the second orientation network is
based on the following loss function:

Lo({xi2}, {xi1}, {ai2}, {ai1}, {yi}, {ui}) = ∑
i

Lcls

(
fo

(
r′(xi2), p(xi2)

)
, ai2

)
+

α ∗∑
i

√
||r′(xi2)− p(xi1)||2+

β∗∑
i

Lcls

(
fo

(
r′(xi1= r′(xi2)), r′(xi2)

)
, ai

)
+

γ∗∑
i

Lcls

(
fr

(
r′(xi1= r′(xi2))

)
, ui

)
where α+β+ γ

(4)

Step 5: The refinement of the first orientation classification subnetwork as well as
the object classification subnetwork of the reference network is then followed by other
subnetworks being kept constant. The refinement is based on all the sample data available
from the second orientation sample data labelled with their first orientation classes and
their object classes. For more details, refer to Step 3.

Step 6: The training of the third orientation network and the refinement of the first
and second orientation classes and object classes are conducted in the same way as in Steps
4 and 5.

3. Experimental Verification

In this study, experiments were conducted to evaluate the performance of the proposed
3D POCO Net for 3D object classification and orientation estimation. For training and
testing 3D POCO Net, the ModelNet10 dataset of 3D objects was used as the reference
samples. First, 4905 3D object samples were obtained from the ModelNet10 dataset as
reference samples, out of which 3994 and 911 samples were selected, respectively, for
training and testing. Then, the reference samples from the ModelNet10 dataset were
used to generate a large pool of data for three-axis orientation variations. Specifically, we
generated a 3D object dataset for x-axis, y-axis and z-axis orientation variations by rotating
the reference samples about x-axis, y-axis and z-axis by (α◦, 0◦, 0◦), (α◦, α◦, 0◦) and (α◦,
α◦, α◦), with α chosen as 3◦, 5◦ and 10◦ resolutions to cover 90◦ rotations. This led to a
total of 152,055, 93,195 and 49,050 samples for (3◦, 0◦, 0◦), (5◦, 0◦, 0◦) and (10◦, 0◦, 0◦),
respectively; 4,713,705, 1,770,705 and 490,500 samples for (3◦, 3◦, 0◦), (5◦, 5◦, 0◦) and (10◦,
10◦, 0◦), respectively; and 146,124,855, 33,643,395 and 4,905,000 samples for (3◦, 3◦, 3◦), (5◦,
5◦, 5◦) and (10◦, 10◦, 10◦), respectively. Total training time was about 16 h for training (3◦,
3◦, 3◦), (5◦, 5◦, 5◦) and (10◦, 10◦, 10◦) resolutions simultaneously up to 3200 epochs with 4
GPUs (RTX 2080 Ti). The average running time for (3◦, 3◦, 3◦), (5◦, 5◦, 5◦) and (10◦, 10◦,
10◦) resolution was about 0.01 sec. for each.

Here, orientation classes are defined based on the resolution of orientation variations.
However, the orientation estimation is done by the weighted sum of the orientation classes
with the weights from the probability distribution of individual orientation classes so
as to obtain continuous orientation estimation by regression. In addition, as a means
of quantifying the performance of orientation estimation, we defined the following two
performance indices, (1) the mean absolute error applied to the total testing samples, MAE-
T, and (2) the mean absolute error applied only to the misclassified testing samples, MAE-F,
as follows:

MAE-T =
1
N

N

∑
i

∣∣∣∣∣orientation_anglei − ui

∣∣∣∣∣ (5)

MAE-F =
1
M

M

∑
j

∣∣∣∣∣orientation_anglej − uj

∣∣∣∣∣ (6)
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where ui, uj, N and M represent the ground truth orientation angles and the number of
total and misclassified samples, respectively.

For implementation, TensorFlow on TITAN X Pascal GPU is used. In training, the
Adam optimizer is used with the mini-batch size of 32, at a learning rate of 0.001.

3.1. Training and Testing of Reference Subnetwork for Object Classification Based on Samples with
Reference Orientations

The reference network is trained and tested for object classification, using 3994 samples
for training and 911 samples for testing. These samples serve as reference samples with
reference orientations such that they are subjected to progressive rotation about z-axis,
y-axis and x-axis in order to generate a larger pool of samples representing orientation
variations based on the progressive framework. Note that it is free to choose the order of
progressive rotations. We achieved 97.6% accuracy in object classification for the reference
subnetwork with the reference samples (Table 2).

Table 2. Object classification accuracy for the reference orientation with ModelNet10 data as refer-
ence samples.

Reference Orientation

3D POCO Net 97.6%

3.2. Training and Testing of the 1st Orientation Subnetwork for z-Axis orientation Variations

After training of the reference network is done, the first orientation network is trained
and tested by defining 31, 19 and 10 orientation classes, respectively, with 3◦, 5◦ and 10◦

resolutions. To this end, we augmented the reference samples by rotating them about the
z-axis by 3◦, 5◦ and 10◦ resolutions, as illustrated in Figure 4 in the case of 10◦ resolution.
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This results in 123,814, 75,886 and 39,940 samples for training and 28,241, 17,309
and 9110 samples for testing, respectively, for 3◦, 5◦ and 10◦ resolutions. Tables 3 and 4
summarize the results. The result show that we can achieve less than 0.5◦ of MAE-T and
2.9◦ of MAE-F in regression with 3◦ precision in orientation classification, while achieving
over 93% accuracy in object classification after retraining.
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Table 3. Orientation classification and regression accuracy for z-axis orientation variations from ModelNet10.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

Orientation Classification Rate 91.6% 93.9% 98.3%
Orientation Regression MAE-T 0.44◦ 0.6◦ 0.44◦

Orientation Regression MAE-F 2.89◦ 5.0◦ 12◦

Table 4. Object classification accuracy for z-axis orientation variations from ModelNet10.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

3D POCO Net 93.7% 93.8% 93.9%

3.3. Training and Testing of the 2nd Orientation Subnetwork for z-Axis and y-Axis
Orientation Variations

To train and test z-axis and y-axis orientation variations with the second orientation
network, we rotate the 3D point cloud samples used for the first orientation network
around the y-axis by 3◦, 5◦ and 10◦ resolutions and define 961, 361 and 100 orientation
classes, respectively. Figure 5 illustrates the 1st and 2nd rotations. This results in 3,838,234,
1,441,834 and 399,400 samples for training and 875,471, 328,871 and 91,100 samples for
testing, respectively, for 3◦, 5◦ and 10◦ resolutions.
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Tables 5 and 6 show the accuracies of orientation classification and of regression with
MAE-T and MAE-F for the second orientation network, as well as those of the retrained
first orientation network. Table 7 shows the accuracy of object classification of the reference
network after retraining. The results show that we can achieve less than 0.4◦ of MAE-T,
3.4 of MAE-F in orientation regression with 3◦ precision in orientation classification, while
achieving about 93% accuracy for object classification after retraining. Although a slight
degradation in performance is observed for the z-axis and y-axis orientation variations
compared to only the z-axis orientation variation, the results summarized in Tables 5–7
suggest that the proposed progressive framework of learning orientation classes through
data expansion and retraining works well.
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Table 5. Orientation classification and regression accuracy for y-axis with z- and y-axis orientation
variations for the second orientation network.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

Orientation Classification Rate 95.0% 96.8% 98.4%
Orientation Regression MAE-T 0.22◦ 0.23◦ 0.27◦

Orientation Regression MAE-F 3.17◦ 5.4◦ 13.3◦

Table 6. Orientation classification and regression accuracy for z-axis with z- and y-axis orientation
variations for the first orientation network after retraining.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

Orientation Classification Rate 90.8% 93.8% 96.5%
Orientation Regression MAE-T 0.40◦ 0.47◦ 0.6◦

Orientation Regression MAE-F 3.4◦ 5.9◦ 13.7◦

Table 7. Object classification accuracy with z- and y-axis orientation variations from ModelNet10.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

3D POCO Net 93.0% 92.3% 92.1%

3.4. Training and Testing of the 3rd Orientation Subnetwork for z-Axis, y-Axis and x-Axis
Orientation Variations

Using the z-axis and y-axis orientation variations as the reference samples, we rotate
them again around x-axis with 3◦, 5◦ and 10◦ resolutions to complete three-axis orientation
variations for training and testing. Figure 6 illustrates 2nd and 3rd rotation examples.
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Figure 6. Examples of z-axis, y-axis and x-axis orientation variations (even column) by rotating z-axis
and y-axis orientation variations (odd column) around x-axis by −20◦, 0◦, 20◦.

This defines 29,791, 6859 and 1000 classes, respectively, with 3◦, 5◦ and 10◦ reso-
lutions, while augmenting training and testing samples to 118,985,254, 27,394,846 and
3,994,000 samples for training and 27,139,601, 6,248,549 and 911,000 samples for testing,
respectively, for 3◦, 5◦ and 10◦ resolutions. Tables 8–11 summarize testing accuracies
in estimating general three-axis orientations and object class based on classification and
regression for 3◦, 5◦ and 10◦ resolutions. Tables 8–10 show that we can achieve the accu-
racies in x-, y- and z-axis orientation estimation, respectively, with 4.1◦, 3.3◦ and 2.5◦ of
MAE-T regression errors based on 3◦ resolution in orientation classification. Notice that
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the accuracies in x-, y- and z-axis orientation estimation based on 5◦ and 10◦ resolutions
in orientation classification are not much different from those based on 3◦ resolution in
orientation classification. On the other hand, Table 11 shows that we can achieve about
90% in object classification accuracy, similarly for 3◦, 5◦ and 10◦ resolutions in orientation
classification. Note that the performance of the three orientation networks after inclusion
of the 3rd orientation network for x-axis rotation is somewhat reduced, compared to that
of the two orientation networks before inclusion of the 3rd orientation network. This is
partly due to the fact that the ModelNet10 dataset includes some objects that are rotation-
symmetric about x-axis, as illustrated in Figure 7, such that the 3rd orientation network is
unable to uniquely represent x-axis orientations for those objects.

Table 8. Orientation classification and regression accuracy for x-axis with z-, y- and x-axis orientation
variations for the third orientation network.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

Orientation Classification Rate 79.2% 85.2% 88.6%
Orientation Regression MAE-T 4.1◦ 4.2◦ 4.5◦

Orientation Regression MAE-F 19.3◦ 23.8◦ 28.1◦

Table 9. Orientation classification and regression accuracy for y-axis with z-, y- and x-axes orientation
variations for the second orientation network after retraining.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

Orientation Classification Rate 79.2% 80.9% 82.3%
Orientation Regression MAE-T 3.3◦ 3.4◦ 3.6◦

Orientation Regression MAE-F 6.9◦ 8.0◦ 16.2◦

Table 10. Orientation classification and regression accuracy for z-axis with z-, y- and x-axis orientation
variations for the first orientation network after retraining.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

Orientation Classification Rate 75.8% 79.1% 81.3%
Orientation Regression MAE-T 2.5◦ 2.8◦ 3.1◦

Orientation Regression MAE-F 3.2◦ 5.8◦ 13.5◦

Table 11. Object classification accuracy with z-, y- and x-axis orientation variations from ModelNet10.

TEST3 (3◦) TEST3 (5◦) TEST3 (10◦)

3D POCO Net 89.9% 90.2% 90.8%
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3.5. 3D POCO Net as a Representation Platform Applied to a Partial View 3D Point Cloud Data

The pre-trained 3D POCO Net can be used as an orientation representation platform
to which additional networks are attached to solve novel 3D pose estimation problems.
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To show this, we generated a partial view 3D point cloud dataset from the ModelNet10
dataset for use in partial point cloud–based object classification and orientation estimation
(Figure 8). For classification of object class and orientations based on partial view 3D
point clouds, we attached a PointNet, “Partial View Orientation Network,” to the third
orientation network of 3D POCO Net through an association subnetwork, as shown in
Figure 9 (in red marks).
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The partial view orientation network and the association subnetwork attached to it
are trained with the pre-trained 3D POCO Net, so that the two global features, i.e., the
partial view orientation network and the third orientation network of 3D POCO Net match.
Notably, in training, the loss function includes the errors from all the independent networks
of 3D POCO Net.

Table 12 presents the results of testing partial view data with 10 orientation classes
using 10◦ resolution around the z-axis. As shown, we achieved 1.73◦, 0.25◦ and 0.3◦ of
MAE-T in regression error for the respective z-, y- and x-axis orientation estimations, while
achieving about 82% accuracy for object classification. This application demonstrates the
modular extensibility of the proposed 3D POCO Net as a representation platform.
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Table 12. Orientation classification and regression accuracy of z-, y- and x-axis orientation variations in all three-axis
classification from ModelNet10 with partial view samples in 10◦ resolution.

First Orientation
Network
(z-Axis)

Second Orientation Network
(y-Axis)

Third Orientation
Network
(x-Axis)

Orientation Classification Rate 92.5% 99.3% 99.3%
Orientation Regression MAE-T 1.73◦ 0.25◦ 0.3◦

Orientation Regression MAE-F 13.2◦ 7.3◦ 23.9◦

3.6. Discussion

The proposed progressive framework is trained to learn z-axis, y-axis and x-axis
orientation variations progressively based on in-between feature associations with training
samples limited only to pertinent orientation variations. Refer to Section 1.2 for the implica-
tion of the proposed progressive framework of learning object orientations in comparison
with conventional deep learning approaches with fanned, grouped and hierarchical struc-
tures. We compared the performance of the proposed 3D POCO Net with that of the
state-of-the-art approaches to orientation estimation (Table 13).

Table 13. Comparison of the proposed 3D POCO Net with the state-of-the-art approaches to object orientation estimation.

Reference Approach Dataset
No. of Classes/

Orientation
Resolution

Classification
Accuracy

Regression
Error

Self-Supervised
Learning of Point

Clouds via Orientation
Estimation [19]

Classification(Point
Cloud-based

/Fanned)
ModelNet-40 18 Spatial Vectors

32 Spatial Vectors
89.0%
90.3% NA

Orientation-boosted
Voxel Nets for 3D

Object Recognition [10]

Classification
(Voxel-based

/Fanned)
ModelNet-10 18/20◦

(z-axis rot.) 89% NA

3D Pose Regression
using CNN [9]

Regression
(Image-based/
Hierarchical)

Pascal 3D+ NA NA 15.38◦

Deep Learning for
Spacecraft Pose
Estimation [37]

Classification
Based Regression

(Image-based
/Fanned)

Unreal Rendered
Spacecraft On-
Orbit (URSO)

32 × 32 × 32/30◦

(Euler Angles) NA 7.4◦

Our Approach:
3D POCO Net

Classification with
Regression

(Point
Cloud-based/
Progressive)

ModelNet-10
31 × 31 × 31/3◦

19 × 19 × 19/5◦

11 × 11 × 11/10◦

79.2%
85.2%
88.6%

2.5◦

2.8◦

3.1◦

Due to differences in the training and testing datasets, as well as in the performance
metrics, used by different approaches, direct comparison of performance is not feasible.
However, Table 13 is intended to provide a general idea of where, among the current
state-of-the-art approaches, the proposed 3D POCO Net with a progressive structure is po-
sitioned in terms of its methodology and performance. To further facilitate the performance
assessment for the proposed approach, we extended the experiment with the ModelNet40
dataset to assess 3D POCO Net in terms of its effectiveness in handling a larger dataset.
Out of total 12,308 samples in 40 object categories, we assigned 9840 and 2468 samples,
respectively, to training and testing. To reduce computational burden, we defined output
classes only with 10◦ orientation resolution for experiment. This leads to 10, 100 and 1000
output classes, respectively, defined for (10◦, 0◦, 0◦): z-axis orientation variation, (10◦, 10◦,
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0◦): z- and y-axis orientation variations and (10◦, 10◦, 10◦): z-, y- and x-axis orientation
variations. Then, the ModelNet40 reference samples are augmented to 98,400 training and
24,680 testing samples for (10◦, 0◦, 0◦), 984,000 training and 246,800 testing samples for
(10◦, 10◦, 0◦) and 9,840,000 training and 2,468,000 testing samples for (10◦, 10◦, 10◦). The
total training time is about 11 h for 2300 epochs, and the average running time for testing
is 0.02 sec. The testing results are summarized in Table 14.

Table 14. Orientation regression and object classification accuracy of 3D POCO Net with the progressive variations of z-, y-
and x-axis orientations and retraining, where 10◦ orientation resolution is applied to the ModelNet40 dataset.

10◦ Orientation
Resolution

Reference
Net

z-Axis
Orient. Net

z- and y-Axes
Orient. Net

z-, y- and x-Axes
Orient. Net

z-Axis z-Axis y-Axis z-Axis y-Axis x-Axis

Oient. Class. Rate n/a 85.7% 83.2% 85.8% 75.9% 78.0% 82.7%
Ori. Regress. MAE-T n/a 0.89◦ 1.2◦ 0.81◦ 5.4◦ 5.9◦ 7.2◦

Ori. Regress. MAE-F n/a 16◦ 15.1◦ 14.9◦ 16.2◦ 21.8◦ 30.9◦

Object Class. Rate 87.3% 81.6% 80.2% 78.3%

Table 14 shows that 3D POCO Net performs equally well with a larger dataset. The
proposed framework offers a new approach for representing and estimating orientation
variations, while enhancing the accuracy in orientation estimation with proper learning of
in-between feature associations but with better efficiency.

4. Conclusions

In this paper, we propose a progressive deep learning framework for representing
3D objects in terms of their classes and orientations. The aim of the proposed framework
is to offer high accuracy in regression and classification for three-axis orientations, yet
with efficiency in the network structure. The unique features associated with the proposed
framework include the following: (1) the proposed in-between association subnetworks
learn to link between the networks that represent independent axes of variables so as
to progressively reduce the constraint one after another; (2) independent networks are
subject to retraining for refinement as the amount of data are increased with the progress of
constraint relaxation. The experimental results based on the ModelNet10 dataset indicate
that the proposed 3D POCO Net is effective for representing and estimating three axes of
orientations with high accuracy yet with structural efficiency. For instance, the proposed
3D POCO Net is able to achieve a regression error of less than 3◦ in MAE-T, while achieving
about 90% accuracy in object classification, for general three-axis orientation estimation
and object classification with only 72 orientation output classes. The effectiveness of 3D
POCO Net is further verified by applying it to general three-axis orientation estimation
for a larger dataset, the ModelNet40 dataset, and for partial view-point cloud data. In
particular, the latter indicates that a pre-trained 3D POCO Net can serve as an orientation
representation platform to which partial point clouds from occluded 3D objects are linked
for object classification and orientation estimation in a form of transfer learning. In future,
further investigations will be conducted to enhance the performance by extending the
applications to dealing with rotation-symmetric objects and occluded objects with a larger
scale of various 3D object datasets.
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