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Abstract

Background: The conformational energy landscape of a protein, as calculated by known potential energy functions, has
several minima, and one of these corresponds to its native structure. It is however difficult to comprehensively estimate the
actual numbers of low energy structures (or decoys), the relationships between them, and how the numbers scale with the
size of the protein.

Methodology: We have developed an algorithm to rapidly and efficiently identify the low energy conformers of oligo
peptides by using mutually orthogonal Latin squares to sample the potential energy hyper surface. Using this algorithm,
and the ECEPP/3 potential function, we have made an exhaustive enumeration of the low-energy structures of peptides of
different lengths, and have extrapolated these results to larger polypeptides.

Conclusions and Significance: We show that the number of native-like structures for a polypeptide is, in general, an
exponential function of its sequence length. The density of these structures in conformational space remains more or less
constant and all the increase appears to come from an expansion in the volume of the space. These results are consistent
with earlier reports that were based on other models and techniques.
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Introduction

Current theories of protein folding postulate an energy

landscape for the polypeptide chain that always includes a ‘folding

funnel’, with the native conformation at its bottom [1,2]. The

chain has an initial random (self-avoiding) conformation, and then,

during the folding process, follows multiple paths down the funnel

to attain the final folded conformation [3,4]. It is also postulated

that the sequence of the polypeptide has evolved such that the

folding pathways offer minimal frustration [5,6]. Thus, not only is

the final conformation at the bottom of the funnel distinctly the

preferred equilibrium state, but it is also the one most easily

attained from any random starting conformation [7]. These design

principles thus allow only a small portion of the unimaginably vast

sequence space to be actually possible in biological systems [2,7].

Despite these limitations on the sequences, for each one of them

a large number of low-energy structures can be computed using all

known models of the interactions that drive the folding process [8–

11]. These structures are often referred to as decoys, and have

potential energy values comparable to, or even more favourable

than the native, experimentally determined structure [12,13]. The

decoy structures mimic many of the other characteristics of true

protein structures, such as the secondary structure content, the

numbers of native contacts, and the possession of a hydrophobic

core. However they are not biologically active conformations. The

general inability to unambiguously and consistently distinguish

between the decoys and the native structure is one of the

weaknesses of current theories and methods in protein folding, as

well as in ab initio protein structure prediction [14].

Decoy structures are not merely an expression of the errors in

the model force fields. They could be kinetic traps in the folding

pathway that, under appropriate – perhaps pathological –

conditions, lead to misfolded structures [3]. They could be

intermediate states in the folding pathway, between the molten

globule state and the native state, which are populated transiently,

slowing down the folding process, eventually to converge on the

native structure [15,16].

Several workers have generated libraries of decoy structures that

serve primarily to test and refine theories and methods of protein

structure prediction [8,9]. These include discrete state models [12]

as well as off-lattice models [17]. The methods used to generate

the decoy sets include Monte Carlo optimisation with simulated

annealing [18], random search of conformational space with

subsequent local minimization [10], molecular dynamic trajecto-

ries [19–21], the graph theoretic algorithm [22] and a fragment

insertion method using Bayesian scoring functions [23]. Park and

Levitt [12] used a highly simplified model to generate decoy sets of

35,000 to 200,000 decoy structures each for eight proteins. Using a
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novel relaxation method to further refine this set, they ended up

with a library of decoys consisting of 650 structures on an average

for each protein. Keasar and Levitt [10] generated decoy set for 14

small proteins with different folds using random sampling of

conformational space with subsequent local energy minimization.

They started with 100,000 structures for each protein. After

refinement the final data set consists of about 450 decoys for each

protein. Using an all-atom model [9], Tsai and his group

generated decoys for 78 diverse proteins with different topologies.

The final library contains about 1400 decoys for each protein.

Apart from the above decoy sets, such sets have also been

constructed for loop structures in proteins. The one constructed by

Samudrala and Moult [24], consists of 400 decoys per loop.

In all methods mentioned here, the final number of decoys has

been selected from about 100,000 starting structures. The exact

number of initial structures generated for each protein depended

on the computational costs involved, and ranged from as low as 26

[18] to as high as 14,000 [21]. It is not clear from the literature if

these numbers were based on estimates of the numbers of decoy

structures that possibly exist in the conformational space of a

protein.

Based on a random energy model, Bryngelson and Wolynes

[25] have earlier made an estimate of the possible numbers of

metastable structures, of which the ones with the deeper minima

would correspond to folding intermediates. They found that the

numbers of such structures increase as [exp(an)]/n, where a is of

the order of 1 and n is the number amino acid residues. A more

recent estimate, which was based on computations of all-against-all

gapless threading amongst a database of 1,011 non-homologous

proteins, with an optimised potential of interactions [26], showed

that for current models and force fields, proteins of length 150 to

250 residues could have about 1012 decoys distinct from the native

structure, distributed uniformly over the conformational space.

Here, we report our estimates of the exhaustive numbers of

possible decoys (low-energy structures) that exist for a given

sequence. These estimates are made using the MOLS algorithm

and the ECEPP/3 force field [27]. We have shown that this

algorithm, which was developed in our laboratory [28], has the

ability to identify all the low energy conformers of a given peptide

sequence. We apply this method to exhaustively identify the

numbers and densities of low-energy structures in the conforma-

tional space of several peptides, ranging in length from 5 to 10

residues. We then extrapolate the results to estimate these numbers

for protein sequences of any length.

Methods

The use of mutually orthogonal Latin squares (MOLS) in
exploring conformational space

As detailed elsewhere [28] the technique uses MOLS to perform

an unbiased and exhaustive conformational search to locate

minimal energy conformations of a peptide. In the design of

agricultural or clinical experiments [29] MOLS sampling is used

to reduce the size of the experimental space. If m is the number of

variable parameters in the experiment, or in other words, the

number of dimensions in the experimental space, and n is the

number of points along each dimension, the size of the

experimental space is nm points. MOLS are used to identify a

sample of size m2 points of these nm points, without serious loss of

information. Thus, to identify the optimal point in the space,

instead of performing nm experiments, only m2 experiments are

performed. This sample is then statistically analyzed to obtain

optimal point. In our application of this technique, we cast the

problem of conformational search to identify optimal (low energy)

conformations as one of experimental design, and use MOLS to

identify a small sample as representative of the vast conformational

space. For reasons made clear below, however, we cannot use

same techniques of analyses of variance to analyse this sample.

Instead we use a variant of the mean field technique to analyse the

sample of conformational space selected by MOLS and use that to

identify the optimal conformation. Thus it would be appropriate

to explain the calculations from the viewpoint of the mean field

technique (MFT).

MFT has been previously used to address conformational

search problems [30,31], for example to arrive at the optimal side-

chain configurations of a protein, given a specific back-bone fold.

Here we use this application as an example to elucidate the

technique. If W is the search space (for example, all possible side

chain conformations), this is divided into a number of subspaces Qi

(for example, individual side chains). Each such subspace has a

number of states Qij (for example, the side chain rotamers), each

with a probability of occurrence rij. The effective potential due to

a state Qrs of a subspace Qr is given as

Veff Qrsð Þ~
X

i,j
rijV Qrs,Qij

� �
ð1Þ

where the summation is over all subspaces i ? r, and all the states

of these subspaces. V(Qrs, Qij) is the interaction potential between

Qr and Qi, calculated with Qr set to Qrs, and Qi set to Qij. The

procedure starts by assigning rij = 1/mi (mi is the number of states

of the subspace Qi, all equally probable), and equation (1) is used to

evaluate the effective potential for all states of all subspaces. The

probabilities r are re-evaluated as

rrs ~ exp {Veff Qrsð Þ
�

RT
� �.X

q
exp {Veff Qrq

� �.
RT

� �
ð2Þ

where the summation is over all the states of the subspace r. R is

the gas constant and T is the temperature. The newly determined

probabilities are then used to re-determine the effective potentials.

This is iterated until the probabilities converge to a set of self-

consistent values. The set of most probable states of the subspaces

defines the most probable state of the system (e.g. the most

probable set of side-chain conformations).

In applying this technique to the conformation of peptides, (and

not just the side chains) we define the subspaces as the torsion

angles (including the backbone torsion angles), and the states as the

values that these angles can assume. Once again, initially all values

are equally probable, and the effective potential due to setting the

torsion angle Qr to the value Qrs is calculated using equation (1).

However, this extension to torsion angle space is not straightfor-

ward, since the potential V in the summation cannot be calculated

by simply considering the two torsion angles Qr and Qi alone – we

need to set all other torsions also to specific values. In other words,

the interaction between a pair of subspaces (when the subspaces

are the torsion angles) does not depend only on their respective

states, but depends also on the states of all other subspaces. The

expression V(Qrs, Qij) is thus not sensible in this context, and the

summation in equation (1) has to be performed over all possible

combinations of the states of all the subspaces except Qr. This will

clearly lead to combinatorial explosion since the number of such

combinations is an exponential function of the number of

subspaces.

To overcome this problem, we use a small sample of the possible

combinations, in other words, a small sample of the conforma-

tional space, to calculate the effective potential. We use mutually

orthogonal Latin squares (MOLS) to perform this sampling. The
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procedure to construct a set of MOLS is given in the

supplementary material (Text S1) along with a schematic diagram

(Figure S1 and Figure S2). If there are n such torsion angles, each

with m possible values, then Qrs, (r = 1, n; s = 1, m) defines the

search space in which the sampling is to be carried out. To

calculate the effective potential due to setting Qr to Qrs we now use

the following equations.

Veff Qrsð Þ{
X

q
wqVq Qrs . . .ð Þ, for q ~ 1, N

wq ~ exp {Vq Qrs . . .ð Þ
�

RT
� �.X

q
exp {Vq Qrs . . .ð Þ

�
RT

� �ð3Þ

The summation is over all the N points in the MOLS grid at

which Qr is set to Qrs. Vq is the potential function. The ellipsis in

the expression for the potential indicates the setting of all the other

torsion angles (except Qr), determined using the MOLS algorithm.

Veff(Qrs) is used to evaluate the probability of the value Qrs for Qr –

the value with the lowest effective potential being the most

probable. The set of most probable values for the angles defines

the low energy conformation of the peptide. It may be noted that

in this formulation the procedure is no longer an iterative one. The

weights wq in equation (3) are not the same as the probabilities r in

equation (2). Thus one cycle of MOLS calculations leads to one

low energy conformation. To locate another low energy structure,

we perform another cycle of calculations, again selecting m2 points

in the conformational space using a different set of MOLS. For n

subspaces with m states each, there are (m!)n different ways of

choosing a set of MOLS [32]. Using any one of them as the basis

for one cycle of calculations would lead to a low energy structure.

The procedure may be repeated several times, with different sets of

MOLS, to eventually identify all the low energy conformations.

We have earlier [33] demonstrated that the procedure is

exhaustive. Since this is an important point in the present

discussions, we shall do so again here, in the ‘Results’ section. A

stepwise presentation of the algorithm is given in supplementary

figure S3.

Clustering
To ensure an exhaustive sample, we used the MOLS procedure

to generate 10000 structures for each selected peptide sequence.

However every cycle of the procedure does not lead to a new

structure, and very often the structure obtained at the end of one

run is the same as, or similar to, another generated by a different

run. Thus, the next step in the procedure is to weed out the similar

structures in the sample, and restrict the library to only the unique

ones. This was accomplished by use of the following clustering

procedure. The first structure generated was placed in the first bin.

The second generated structure was compared to the first by least

squares superposition and calculation of the rmsd in atomic

coordinates. If the rmsd was less than a specific value, the second

structure was considered the same as the first one, and placed in

the same bin. If not it was placed in a new bin. If there were more

than one structure in a bin, subsequent comparisons were made

between all the structures in that bin and newly generated

structure. If the new structure had an rmsd of less than a specified

cut off value with any one of the members in a bin, it was placed in

that bin. The new structure was then compared with the structures

in all remaining bins, placed in every bin in which it found a

match. The procedure was repeated for all 10,000 structures

generated for each sequence.

Many structures had rmsd less than the cut-off value with many

other structures and thus appeared in multiple clusters. The

procedure therefore incorporated a second pass to ensure that

each structure appeared in only one cluster. This was accom-

plished as follows. Assume, for example, that structure number one

appeared in many bins. In each such bin, this structure was

compared to every other structure in that bin, and an average

rmsd calculated. The structure was then assigned to the bin in

which it had the lowest average rmsd, and deleted from all the

other bins. This procedure was repeated for all structures in

multiple bins, until finally all the 10,000 generated structures were

sorted into a smaller number of clusters, and each structure

appeared in only one cluster. The centroid of each cluster was then

recalculated, and used to represent that cluster. The above

procedure is similar to the one adopted by Betancourt and

Skolnick [34].

The number of clusters, or equivalently, the number of unique

structures, and the number of structures in each cluster varied

according to the length of the sequence as well as the choice of

rmsd cut-off. This is discussed in greater detail in the ‘Results’

section.

Potential energy landscape of the decoys
We used principal coordinate analysis [35] to visualize the

potential energy landscape of the decoy structures of the

sequences. We achieved this by projecting the full multi-

dimensional space on an appropriate low-dimensional sub-space,

where the variance of projection is maximized along orthogonal

directions. The procedure operates on the n6n distance matrix,

which is based on a similarity measure between any two

conformations. As in the clustering, the coordinate based rmsd is

used as a similarity measure. This distance matrix is transformed

into a centred matrix, which is then diagonalized. The resulting

eigenvalues are normalized to give the percentage of the projection

of the original distribution on the new set of axes. The

eigenvectors, scaled by their corresponding eigenvalues, give the

coordinates of the original data points in the new axes. The best

two principal coordinates, i.e., the ones that explain the largest

portions of the total variance in the data set, are used to view the

energy landscape.

Sequence selection
We selected six sequences with lengths 5, 6, 7, 8, 9 and 10

residues, respectively, for the calculations. The sequences were all

chosen from the PDB [36] so that the experimental structure could

provide a point of reference for the calculations. Of the six, three

are free-standing peptides. Since there were no such sequences in

the PDB of lengths 6, 7 and 9, peptides of these three lengths were

chosen from loop sequences in larger proteins. The selected loop

sequences are found more than once in the PDB, and they have

the same structure in all the occurrences – the root mean square

distance between the backbone atoms when they appear in

different proteins is ,1 Å in all three cases. We therefore consider

that these loop sequences have an independent structure,

irrespective of the rest of the protein. There were other sequences

that also had these properties, but these three are the best in this

category, and have better resolution, R-factors and average

temperature factors than the others.

Choice of potential energy function
Several potential energy functions have been used in modelling

protein structures [27,37,38]. Some of these are statistical

functions, constructed by mining the structure databases [23,39–

41]. In the present calculations, since we are mapping the energy

landscapes of peptides, we used the ECEPP/3 [27] potential

energy function. We did not use any explicit solvent terms. As

Protein Structure Density
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reported earlier [42], and as may be seen from the results, the

function performs well enough to identify low energy structures

very similar to the experimental ones, indicating its suitability. In

order to ensure that the results were not only a consequence of the

choice of the potential function, we repeated the calculations with

the AMBER [38] force field as well. It may be noted that

discussions of protein folding pathways usually refer to the free

energy [43,44]. However, it is common to calculate potential

energy maps and use these to discuss the energy landscapes

[33,35].

Figure 1. The MOLS sampling is exhaustive. The number of unique structures identified at different rmsd cutoff values in 10,000 MOLS cycles
with the ECEPP/3 potential for each peptide. A : At 1.0 Å rmsd cutoff. B: At 2.0 Å rmsd cutoff.
doi:10.1371/journal.pone.0005148.g001
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Results

The results are presented in four parts. In the first part we

establish that the MOLS algorithm carries out an exhaustive

search of conformational space. In the second one we count the

number of decoy structures for sequences of various lengths, and

extrapolate from these results to longer sequences. In the third we

calculate the densities of the decoys in conformational space. In

Figure 2. Joint projection of the conformational samples. The joint projection of two different conformational samples on the first two
principal coordinates for each peptide. Crosses represent conformations from the first sample; squares represent conformations from the second. The
two samples cover exactly the same area in the low-dimensional principal sub-space, indicating that each conformation sample covers the entire
available conformation space.
doi:10.1371/journal.pone.0005148.g002
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the final section we sketch out the six energy landscapes considered

and describe their features.

The search is exhaustive
We establish this in three different ways. Firstly, Figure 1A

shows that as the number of structures generated increases, the

number of new (or unique) structures falls off sharply. This is

especially clearly seen in the case of the smaller peptides, though

the trend is clear even for the larger ones. Understandably, the

number of unique structures depends on the rmsd cut-off used in

the clustering process. At a cut-off value of 1.0 Å, for the

pentapeptide, all the unique structures have been identified by the

8303 structure generation cycle, and no new ones are identified

after this. For the decapeptide, at the same cut-off, new structures

are discovered even after 10,000 structures have been generated,

though the number of such structures being discovered begins to

drop. If the cut-off is increased to 2.0 Å, for the pentapeptide,

almost all the 10,000 structures generated are the same; for the

decapeptide, no new structures appear after generation number

9788 (Figure 1B). Thus, it is clear that the algorithm exhaustively

searches the conformational space, given a sufficient number of

iterations. Though the number of iterations required rapidly

increases with the size of the peptide, this reflects the number of

such structures actually present in the conformational landscape,

and is not a limitation of the algorithm.

The second corroboration for the exhaustive nature of the

search comes from an application of the sample overlap procedure

[35] to the structures generated. According to this procedure, two

independent conformational samples of the same system are

generated using different protocols (e.g. different initial conditions

or different initial random number seeds). If the two samples

overlap and occupy the same area in conformational space, the

sampling is exhaustive. We have generated two samples of 10,000

structures each for the pentapeptide and the decapeptide. Figure 2

shows the joint projections of the two samples on the first two

principal coordinates for each peptide, calculated as described in

the methods section. Clearly, in both cases, the two samples cover

exactly the same area in the low-dimensional principal sub-space,

thus establishing that MOLS sampling exhaustively covers the

conformational space of the molecules.

Finally, Table 1 (and Figure 3) gives a comparison of the

generated structures with the respective experimental structure.

For each peptide, some of the former are accurate replicas of the

latter, and have very low values of the rmsd in atomic positions on

superposition. This is true for the loop sequences as well, though

the force field did not use any information about the flanking

sequences, or about the interactions the residues in the loop make

with the rest of the protein or with the atoms of the solvent. In

addition, as we have discussed elsewhere [42], the MOLS search

also identifies other low energy-structures observed by other

techniques, both experimental and theoretical. For example, in the

case of the neuropeptide Met-enkephalin the sample of 1500

structures contained the global energy minimum as revealed by

other calculations [45–47], besides the structures seen in

experiments [48]. Again these facts support our contention that,

despite the relatively small number of structures generated, MOLS

sampling covers conformational space thoroughly. In general, the

energy values of the structures closest to the experimental results

are not the lowest of all the generated structures. However they are

within about 25 kcal/mol of the latter, with no short contacts or

other unphysical interactions.

How many low-energy structures (decoys) are there in
conformational space?

Figure 4 gives the total number of mutually dissimilar, or

‘unique’, structures that remain after clustering the 10,000

generated structures at different cut-off values. As explained in

the ‘Methods’ section, a high value for the rmsd cut-off would

result in a lower number of unique structures after clustering, and

vice versa. The unique structures give an indication of the number

of low-energy structures, or decoys, that are present in the

conformational space of the peptides. Thus, if the clustering is

carried out at a cut-off of 1 Å, the pentapeptide has 265 low energy

structures, while the decapeptide has more than 9000 such

conformations. At 2.0 Å cut-off, these numbers reduce to just 3 for

the pentamer, and to less than 700 for the decamer. Thus, at all

the rmsd cut-off values applied, every sequence considered has a

limited number of low-energy structures.

This number increases with the length of the sequence. Figure 5

is plot of the number of decoys at various cut-off values as a

function of sequence length. At low cut-off values, (less than 1.3 Å),

the increase is linear. If the trend at 1.0 Å is extrapolated, one may

expect 30965 decoys to populate the conformational space of a 20

mer, and 40935 decoys that of a 25 mer.

At high cut-off values (greater than 1.3 Å), the increase is

exponential. If the trend at 2.0 Å is extrapolated, a 20-mer would

have 3.366107 decoys in its conformational space and a 25-mer

would have 8.576109 decoys. The general expression in this case

Table 1. Quality of the MOLS sampling.

Sequence Length Sequence (A) (B) Best Predicted structure Lowest Energy structure

rmsd (Å) Energy (kcal/mol) rmsd(Å) Energy (kcal/mol)

5 YGGFM 2.04 29.61 0.30 0.04 3.73 215.30

6 FVDNHD 2.68 245.63 0.62 237.57 3.00 256.89

7 SLLDNFE 2.74 247.50 0.75 241.88 3.45 260.45

8 DRVYIHPF 3.1 253.32 1.12 244.93 4.19 270.58

9 TGLGRSAGW 3.45 239.23 1.29 238.05 2.96 255.07

10 HKTDSFVGLM 4.01 222.11 1.69 229.96 4.25 238.3

Comparison between the structures generated using MOLS and the respective experimental structures. When the structures were binned according to their energy
values, the ones in the lowest 10% bin were compared with the experimental structures. Column (A) gives the average rmsd of this set, and column (B) gives the
average energy of the structures in this set. The other columns compared the single best predicted structure and the one with the lowest energy with the respective
experimental structures.
doi:10.1371/journal.pone.0005148.t001
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to calculate the number of decoys m as a function of the sequence

length n, is m = a6exp(bn), where a is of the order of 1/n and b is

of the order of 1.0. These results tally remarkably well with those

of Bryngelson and Wolynes [25]. An attempt was made to

calculate the number of decoys for a 20 mer as well as for a 25

mer, to verify that the number fit these results. The sequences

chosen were the loop sequences AGNSGYSQGTIGYPGALPNA

from the structure of the protein Sphericase [49] (PDBID

1EA7_A167-186) and AGKSSDSKGIDLTNVTLPDTPTYSK,

from the structure of inorganic pyrophosphatase [50] (PDBID

1E9G_A231-255). Even at rmsd cut-off values as high as 2.6 Å, all

10,000 structures generated for each sequence were mutually

Figure 3. Comparison with experimental structures. The best matched, i.e. lowest rmsd structure (black) superposed on the respective crystal
structure (white) for each peptide. Only the backbone atoms are shown.
doi:10.1371/journal.pone.0005148.g003
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dissimilar, and clustering did not reduce the total number of low

energy structures. Strictly speaking, this result is compatible with

both a linear increase, as well as with an exponential increase.

However, it is probable that at least some of the 10,000 structures

generated would be similar to each other, if the totals were to be

about 31,000 and 41,000 structures for the 20-mer and 25-mer

respectively as predicted by the linear model. Since this is not the

case in the present calculations, these results further indicate that

the increase is exponential.

To evaluate the effect of the force field, all the calculations were

repeated with the AMBER potential function [38]. The results

were remarkably similar to those obtained above with ECEPP/3.

The numbers of unique structures identified for each sequence

length with AMBER parameters at different rmsd cut-off values

are shown in Figure 6. The plot is a replica of Figure 4. Once

again, the increase in the number of low energy structures at lower

rmsd cutoff (,1.3 Å) is linear, while at larger cutoff (.1.3 Å) the

number increases exponentially with sequence length. We thus

conclude that the conformational landscape of a protein consists of

approximately exp(n) low energy structures, or decoys, where n is

the sequence length.

Density of the decoys
In calculating the numbers of decoy structures above, we have

made the implicit assumption that these structures are uniformly

distributed in conformational space, and that their density, i.e. the

number of unique structures per unit conformational volume, is

approximately independent of the sequence or sequence length.

This assumption may also be stated as follows. The increase in the

number of unique structures with sequence length is due to the

increase in the total conformational volume of the larger molecule,

and not due to any increase in the number of unique structures per

unit conformational volume. We attempted to test this assumption

by calculating the density as the ratio of the number of structures

to the conformational volume. Of the two sets of values required

here, the former has been estimated above. However the latter, i.e.

the volume, is not simply a function – an exponential function – of

the number of the degrees of freedom of the molecule. This is

apparent when we consider that two structures may be separated

quite substantially in a conformational space parameterized in

terms of the torsion angles, but may yet have an rmsd in their

atomic positions less than the cut-off used to estimate the number

of decoys. We have therefore estimated the volume of the

conformational space available to each molecule in terms of the

area projected by the entire set of decoys of each molecule on the

respective first two principal coordinate axes. Principal coordinate

analyses transforms a complex multidimensional space to another

orthogonal set of axes, such that the first principal coordinate

reflects the largest portion of the structural variance in the data set,

the second one the next largest, and so on. In the present case, the

transformation yielded sets of principal axes, the first two of which

accounted for more than 25.5% of the variance in each of the six

data sets considered. Figure 2 indicates the nature of these

projections. We used the areas of these projections as represen-

tative of the volumes of the respective conformational spaces, and

have calculated the densities on this basis.

Table 2 gives the projected area, the number of structures in this

area and the calculated density for each of the six sequences. As

expected, the projected area increases with sequence length,

reflecting the behavior of the total conformational volume. If we

use the 10,000 structures generated for each sequence to calculate

the densities, the pentamer has the highest density, while the

decamer has the least density. This is obviously due to the increase

in the projected area, while maintaining the number of structures

constant. However, if we use only the unique structures (at cut-off

1.0 Å), the density does not show any pattern related to sequence

length, but is approximately the same for all the molecules, about

1000 structures per Å2 in rmsd. In other words, for any given low

Figure 4. Unique structures identified with ECEPP/3 force field. The number of mutually dissimilar structures found at different rmsd cutoffs
for each peptide in 10,000 MOLS structures using the ECEPP/3 potential.
doi:10.1371/journal.pone.0005148.g004
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energy structure, there are about 1000 other low energy structures

within rmsd of 1 Å. At larger rmsd cut-off (2.0 Å) the smaller

sequences have very few structures, and it is difficult to estimate

the density from our data.

Energy landscapes of the decoys
As mentioned earlier in the paper, energy landscape theory

postulates the existence of a deep, rather narrow, native well in the

energy landscape of a protein. The native or near-native structures

at the bottom of the well have energies significantly lower than

those in the vicinity. Following the work of Levy and Becker [35],

we have used the MOLS-generated structures to visualize the

conformational energy landscape of the molecules by projection

on the space of the first two principal coordinates. Figure 7 shows

these landscapes, drawn using the unique structures obtained by

clustering at 1.0 Å cut-off. Pictured at low resolution, the

landscapes are more or less featureless, and the experimental

structure (marked by an asterisk on the projection plane) is not

clearly distinguishable from the rest of the structures. This is

especially true for the larger sequences. Thus structures far apart

in conformational space have the same energy. The landscapes

may also be viewed at a higher resolution. For this view we used a

more stringent cut-off, based on the overall structural similarities

of the 10,000 structures generated, and calculated separately for

each sequence as follows. The structures are clustered at 1.0 Å cut-

off. For each cluster an average rmsd is calculated by comparing

Figure 5. Density of decoy structures. The number of decoys at various rmsd cut-off values as a function of sequence length.
doi:10.1371/journal.pone.0005148.g005
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all the structures within the cluster with each other. The average

values are then again averaged over all the clusters, and half this

value is taken as a suitable cut-off. All 10,000 structures are then

clustered using this cut-off, and the set of unique structures so

obtained were used to draw the landscapes (Figure 8). This

procedure avoids the use of arbitrary cut-off values, and allows the

comparison of the landscapes of molecules of different sizes on an

approximately equal footing. Figure 8 shows the portion of the

landscape immediately surrounding the experimental structure for

each sequence. It is clear that the ruggedness increases with

increasing sequence length. Though the overall topologies of the

landscapes are similar, for each sequence there are clearly a few

structures that have distinctly lower energy than all the others, and

one of these lower energy structures is in most cases the native

experimental structure. However, in general, more than fifty

percent of the structures generated are within 5 kcal/mol of the

experimental ones in energy. Note that though the structures are

close in energy, they are quite different in conformation. When the

structures were clustered into different energy bins, those in the

bin containing the lowest energy structures had rmsd between 2 Å

and 5 Å as compared to the other members of the bin.

Discussion

The results indicate that the energy function that we have used

does not distinguish easily between the native structure and the

decoys. Previous reports [12,17,51,52], including some of our own

[42,53], have indicated that this is true of almost all known

potential functions, though functions specifically designed to

model a particular class of proteins (or peptides) [27], or functions

based on known protein structures [39] tend to perform better

than general, physics-based functions such as the one we have

Figure 6. Unique structures identified with AMBER force field. The number of mutually dissimilar structures found at different rmsd cutoffs
for each peptide in 10,000 MOLS structures using the AMBER force field.
doi:10.1371/journal.pone.0005148.g006

Table 2. Density of the decoys.

Sequence Length Projected Area (Å2) Density (All structures) At 1.0 Å rmsd cutoff

Number of structures used Density

5 10.31 969.93 265 25.70

6 14.65 682.59 1860 126.96

7 17.84 560.54 6988 391.70

8 23.37 427.90 8332 356.53

9 32.69 305.90 9390 287.24

10 38.87 257.27 9441 242.89

The densities (in units of structures/Å2) of decoy structures in the conformational landscapes at different sequence lengths as calculated from the PCoorA analysis. The
projection area is calculated using the formula p*(a/2)*(b/2), where ‘a’ and ‘b’ are the largest distances between the points along the first and second principal axes,
respectively.
doi:10.1371/journal.pone.0005148.t002
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Figure 7. Energy landscapes of the peptides. Energy landscaps drawn at 1.0 Å rmsd cut-off. Arrow points to the position of the experimental
structure.
doi:10.1371/journal.pone.0005148.g007
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Figure 8. Energy landscapes of the peptides. Energy landscaps drawn at different rmsd cutoffs (see text for details). Arrow points to the position
of the experimental structure.
doi:10.1371/journal.pone.0005148.g008
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used. The inclusion of solvent effects has been reported to improve

the identification of the native structure. Most potentials include

such effects implicitly, for example in selecting the parameters

defining the semi-emipirical force fields. In order to evaluate if the

inclusion of explicit solvent molecules in calculating the structures

would make a difference, we carried out the calculations with

explicit water molecules, using the AMBER force field, for the

nonameric sequence TGLGRSAGW. Besides the peptide intra-

molecular non-bonded terms, the force field also include the

interactions between water and the peptide. Of the 10000

structures generated by the MOLS technique, the one shown in

Figure 9 had the lowest rmsd of 1.82 Å with the respective native

structure. The lowest energy structure showed a large deviation

from the native structure (4.61 Å). The number of unique

structures identified after inclusion of explicit solvent shows a

pattern similar to that of in-vacuum simulations (Figure 10). This

suggests that the results reported above for the vacuum simulations

do not change on inclusion of explicit solvent.

In summary, an exhaustive search of the conformational

landscape of peptides ranging in size from 5 to 10 residues using

the MOLS sampling technique has resulted in the identification of

all the low energy or decoy structures for each. The number of

such structures increases exponentially with the sequence length,

in consonance with previous results. The density of structures in

the conformational space remains about the same irrespective of

sequence length, with all the increase in the number coming from

an increase in the volume of the conformational space. The energy

landscapes of the peptides indicate that the native, experimental

structure is not easily identifiable as the minimum energy structure

in the space. Decoy structures far removed in conformation from

the native structure possess comparable energy values. These

results have the following implications for ab initio protein structure

Figure 9. Performance of MOLS with explicit water. Stereo diagram of the best identified model (black) with the explicit water molecules for
the nonameric sequence TGLGRSAGW, superimposed with its respective crystal structure (white).
doi:10.1371/journal.pone.0005148.g009

Figure 10. Unique structures identified with and without hydration. Comparison of the number of dissimilar structures found at different
rmsd cut-off for a nonameric sequence by performing the sampling with and without explicit water molecules.
doi:10.1371/journal.pone.0005148.g010
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prediction. Firstly, available ab initio energy functions are probably

not accurate enough to identify the native structure from the

population of decoys. Though in the current report we have

demonstrated this only for the ECEPP/3 and the AMBER force

fields, other reports [12,17,51,52] including some from our

laboratory [42,53], indicate similar results for other force fields

and scoring functions. Secondly, the view of the energy landscape

as consisting of a ‘folding funnel’ with the native structure at the

bottom model has been formulated in the free-energy framework

[1,2], in which temperature is an important determination of the

shape of the energy landscape of a protein. The MOLS technique,

on the other hand, maps the potential energy landscape and shows

that numerous low energy ‘valleys’, that could act as kinetic traps

at specific temperatures, exist throughout conformational space.

Thus any linear search algorithm for the native structure is

unlikely to be successful, even granting a reliable method of

recognizing the optimum. Thirdly, owing the presence of an

extremely rugged fine structure at the bottom of the landscape,

high resolution prediction of protein structure is likely to be more

complex by many orders of magnitude than prediction of the

overall fold.

Finally, to revisit a statement made in one of our first papers

describing this method [28], one of the obstacles to applying the

MOLS technique to ab initio protein structure prediction was the

non-availability of an appropriate potential function with a deep

and fairly wide minimum in conformational space corresponding

to the native structure. While this remains a problem, our current

results indicate that using MOLS to perform exhaustive sampling

of the conformational space to pick up all possible native-like

structures, (in order to identify the native structure from them) is

computationally too expensive for all but the smallest of proteins.

Supporting Information

Text S1 The procedure to construct a set of MOLS.

Found at: doi:10.1371/journal.pone.0005148.s001 (0.03 MB

DOC)

Figure S1 A Latin square of order 3. (a) The Latin alphabets a,

b, and c and (b) the Greek alphabets a, b and c are used as

symbols for the construction of the Latin squares.

Found at: doi:10.1371/journal.pone.0005148.s002 (0.15 MB

DOC)

Figure S2 Two mutually orthogonal Latin squares (MOLS) of

order 3. This is obtained by the super position of the two Latin

squares given in Figures ‘S1a’ and ‘S1b’. Note that every symbol of

the first square occurs once, and exactly once, with every symbol

of the second square.

Found at: doi:10.1371/journal.pone.0005148.s003 (0.08 MB TIF)

Figure S3 Flowchart of the MOLS algorithm.

Found at: doi:10.1371/journal.pone.0005148.s004 (0.95 MB TIF)
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