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Abstract

Phosphorylation by serine-threonine and tyrosine kinases is critical for determining protein

function. Array-based platforms for measuring reporter peptide signal levels allow for differ-

ential phosphorylation analysis between conditions for distinct active kinases. Peptide array

technologies like the PamStation12 from PamGene allow for generating high-throughput,

multi-dimensional, and complex functional proteomics data. As the adoption rate of such

technologies increases, there is an imperative need for software tools that streamline the

process of analyzing such data. We present Kinome Random Sampling Analyzer (KRSA),

an R package and R Shiny web-application for analyzing kinome array data to help users

better understand the patterns of functional proteomics in complex biological systems.

KRSA is an All-In-One tool that reads, formats, fits models, analyzes, and visualizes Pam-

Station12 kinome data. While the underlying algorithm has been experimentally validated in

previous publications, we demonstrate KRSA workflow on dorsolateral prefrontal cortex

(DLPFC) in male (n = 3) and female (n = 3) subjects to identify differential phosphorylation

signatures and upstream kinase activity. Kinase activity differences between males and

females were compared to a previously published kinome dataset (11 female and 7 male

subjects) which showed similar global phosphorylation signals patterns.
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Introduction

Protein phosphorylation marks one of the most important biological mechanisms that underlies

various normal cellular functions, acting in complex protein-substrate networks. Phosphoryla-

tion cascades are also perturbed in many disease states [1, 2]. As a result, kinases are one of the

most studied proteins given their central role in normal and abnormal cell biological mecha-

nisms [3–6]. Kinomics, or the study of kinases and kinase signaling, has expanded from individ-

ual activity assays, with one peptide to study one kinase, to array or chip-based technology of up

to 1000 reporter peptides, called kinase arrays or kinome arrays [7–9]. The selected reporter

peptides are designed to cover a broad range of signaling pathways, with large numbers allowing

for a better understanding of kinase interactions and global changes that occur between two

states (i.e., disease, cell type). However, analyzing the data from these peptide arrays is a complex

process given that several kinases can phosphorylate the same peptide and an individual kinase

can phosphorylate many peptides. For these reasons, interpretation of such data is a challenging

task. As the use of these kinome arrays becomes more widespread, there is an increasing need

for tools that efficiently and accurately analyze these high-throughput datasets. In particular,

user-friendly analytic tools are needed for nonexpert users of kinome array platforms.

Bioinformatics tools that are specifically designed to analyze kinome array datasets are

beginning to emerge. One of these analytic tools is the Kinomics Toolkit, which gives users a

platform for exploration of the peptide phosphorylation data but does not provide upstream

kinase predictions [10]. Another tool that was designed specifically to process kinase array

data is the PamgeneAnalyzeR package, though this package is primarily focused on the pre-

processing steps of kinase array datasets and not the downstream analysis [11].

However, open source tools that comprehensively analyze kinome array data are nonexis-

tent. Current approaches of analyzing kinome array data are relying on manual statistical anal-

yses or proprietary software such as BioNavigator by PamGene (https://pamgene.com/ps12/).

Prediction of upstream kinase activity and network-based analyses provide a biologically

meaningful springboard for further kinase related research. There are existing tools that aim to

predict upstream kinases based on an input of enriched genes or phosphopeptides, like KEA

[12] and PTM-SEA [13]. However, none of these tools are specifically designed to take raw

data from PamChip datasets and run a complete analysis pipeline starting from pre-processing

to visualizing kinome networks.

A common and validated approach to predicting upstream kinase activity is to analyze the

differences between 1) kinases predicted to be upstream of the peptides that are differently

phosphorylated between two conditions and 2) kinases predicted to be upstream of the

remaining peptides on the chip [14, 15]. In a similar statistical approach, we have previously

described a method which uses random sampling to identify highly active kinases from

kinome array data [16–18]. Briefly, we look at overrepresented/underrepresented kinases rela-

tive to an expected distribution using random permutation sampling of peptides. This type of

analysis is valuable because it separates kinases that are truly differentially active from those

who are highly active globally and don’t represent a change between states.

Here we present the Kinome Random Sampling Analyzer, or KRSA, an R package which

automates many of the steps described above, including parsing kinome array raw files, pep-

tide filtering, random sampling, different visualizations, and kinase network generation. We

have also developed a web-based R Shiny application, that is built on top of the KRSA R pack-

age, that allow for users with no programming skills to analyze their data. The KRSA Shiny

application can be used by biologists and data scientists alike, with no knowledge of statistical

software required. KRSA makes analyzing kinome array datasets accessible and eliminates

much of the human workload that the previous method required.
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This method has been applied to multiple datasets and predictions have been experimen-

tally validated in our laboratory through individual kinase activity assays and inhibitor studies

[16–22]. An early version of KRSA, containing only the random sampling algorithm, identified

altered phosphorylation of peptides and subsequently perturbed kinase activity in the anterior

cingulate cortex (ACC) between schizophrenia and control subjects [17]. This tool was also

used to analyze date from frontal cortex and hippocampus of rats subjected to lateral fluid per-

cussion as a model of traumatic brain injury (TBI) and their sham surgery counterparts to

identify differences in kinase activity in these brain regions [16]. We used the platform to

explore the kinase activity in cortical neurons differentiated from induced pluripotent stem

cells (iPSCs) from a schizophrenia patient with a 4-bp mutation in the DISC1 gene [18]. KRSA

also was used to analyze kinome signatures of genetic perturbation of NRXN1 and FURIN1 in

human induced pluripotent stem cell (hiPSC)-derived neurons [19, 20]. KRSA has also been

utilized to analyze the kinome signature of mice with a genetic deletion of a specific subunit of

cystine/glutamate antiporter system (xCT −/− mice) [21]. Additionally, KRSA was used to

investigate the unique kinomic networks of different patient-derived pancreatic ductal adeno-

carcinoma (PDAC) cell lines [22]. KRSA was also used to investigate mTOR kinase signaling

networks in schizophrenia [23]. More recently, KRSA identified kinases potentially involved

in CO2-inhalation regulated memory liability in mice [24].

Interest within the neuroscience community in defining sex differences in the brain has

increased over the past several decades. Differences in kinase activity and signaling between

males and females have been implicated in sex-related variations in neuronal cell survival, out-

comes after brain injury, and fear extinction, among other research areas [25–27]. To demon-

strate the use of KRSA, we used postmortem brain tissue from the dorsolateral prefrontal

cortex (DLPFC) to investigate kinome signature differences between female and male healthy

subjects. We also paired this experiment with a previously published postmortem brain

kinome array study [28] to compare against our findings.

Design and implementation

We will briefly describe the design and functionally of the KRSA R package. More details are

available in the package vignettes which are also hosted online (https://CogDisResLab.github.

io/KRSA/). This resource provides comprehensive details on all KRSA functions and example

datasets. The web page also hosts a complete KRSA workflow starting from reading raw data

to visualizing network models. Additionally, we built an R shiny app for KRSA using the R

package. The KRSA R Shiny GitHub page has complete details on how to access the app and

interact with its user interface (https://github.com/CogDisResLab/KRSA_App). The general

pipeline of using the KRSA R package can be divided into three main steps: loading raw files,

choosing design parameters, exploring upstream kinase analysis results (Fig 1).

Image processing and formatting

The PamChip images are pre-processed using BioNavigator to generate numerical values of

the median minus background signal intensity. This raw file is then read by KRSA as the main

input file. KRSA will read, parse, and reformat the raw file for downstream analyses using the

krsa_read() function. The user then defines the groups within the samples, either using an

existing variable in the input file, or creating a new one. krsa_extractEndPointMaxExp() and

krsa_extractEndPoint() will extract the end point (last cycle) data points from the processed

data, which then will be used to filter out some peptides based on different quality control

(QC) parameters. The data will undergo a couple of QC steps using different functions:

krsa_qc_steps() scales the negative values to the base line and optionally filters out data points
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Fig 1. Workflow overview illustrating the primary steps of the KRSA pipeline. The “Input Files” section outlines the initial input

files for KRSA, including the raw kinome array data and the peptide-kinase association file as well as the initial filtering step in

KRSA. The “Identify Kinases” section describes the random sampling and distribution evaluation methods used to identify

differentially active kinases. Finally, the “Expand and Validate” portion of the figure shows the kinase network generation step of

KRSA and confirmation experiments that can be used to validate the predictions from KRSA.

https://doi.org/10.1371/journal.pone.0260440.g001
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with high signal saturation values. krsa_filter_lowPeps() will filter out peptides with very low

signals. All QC steps are carried out by dedicated functions with arguments that can be

adjusted by the user.

Model fitting

Linear regression slope of the signal intensity as a function of exposure time is calculated to

represent the peptide phosphorylation intensity. This value is then multiplied by 100 and log2

transformed to represent the final signal of the peptide. These steps are carried out by the

krsa_scaleModel() function. This function will return a list of three data frames: modeled data,

normalized modeled data by Barcode/Chip, and grouped modeled data. Peptides with a rela-

tively low R2 can be excluded from subsequent analyses using krsa_filter_nonLinear().

Global signals visualization

The KRSA package can then plot the final signal intensity of selected samples using different

figures, including heatmaps and violin plots. krsa_heatmap() has several data scaling options

such as scaling the data by row (peptide), column (sample), and no scaling. Additionally, there

is an option to specify the different algorithms that will be used for the hierarchical clustering.

There is also an optional function, krsa_cv_plot(), that generates a coefficient of variation (CV)

plot that can be used to identify potential outliers in specific groups.

Differential phosphorylation analysis

Using the final signal values, log2 fold changes (LFCs) are calculated between different samples

using two approaches. 1) across chip analysis, using the average signal across all samples and

chips and 2) within chip analysis, using the log2 fold change analysis within each chip (it’s rec-

ommended to do the within chip analysis if the samples are found within each chip). We use

the LFC as the main metric to determine the top differentially phosphorylated peptides using

either a single cutoff or multiple cutoffs (multiple cutoffs are recommended). By doing multi-

ple cutoff values, we address the bias in the arbitrary chosen cutoff value by doing the upstream

kinase analysis on multiple peptide sets and choosing the kinase that are shown to be impli-

cated consistently across the different peptide sets. All of that is done through krsa_group_diff
().

After calculating the LFCs, there are additional visualization options available. Beside the

heatmaps and violin plots, users can generate a waterfall plot representing the LFCs values for

each peptide using krsa_waterfall(). Another available figure is a curve plot, which represents

the linear model fit for each peptide and colored by the different groups, which can be done by

calling krsa_curve_plot().

Upstream kinase analysis

Protein kinases predicted to act on phosphorylation sites within the array peptide sequences

were identified using GPS 3.0 and Kinexus Phosphonet (Kinexus Bioinformatics) [29]. These

programs provide predictions for serine-threonine kinases targeting peptide sequences

ordered by likelihood of binding. The union of the highest ranked 5 kinases in Kinexus and

kinases with scores more than two times the prediction threshold in GPS 3.0 were considered

predicted kinases for each peptide and used in KRSA analysis [18]. This list was combined

with kinases shown in the literature to act on the phosphorylation sites of the peptides via

PhosphoELM (http://phospho.elm.eu.org) and PhosphoSite Plus (https://www.phosphosite.

org). The user has the option to use the KRSA built-in curated kinase-substrate mapping files

PLOS ONE KRSA: Upstream kinase analysis of kinome array data

PLOS ONE | https://doi.org/10.1371/journal.pone.0260440 December 17, 2021 5 / 16

http://phospho.elm.eu.org
https://www.phosphosite.org
https://www.phosphosite.org
https://doi.org/10.1371/journal.pone.0260440


or upload their own mapping files to perform the upstream kinase analysis. The upstream

kinase analysis is done through the main function of the KRSA package, krsa(), which takes in

the list of differentially phosphorylated peptides and kinase-substrate mapping data frame and

performs the random sampling analysis. Additionally, arguments can be adjusted like the

number of iterations and seed number. The krsa() function can be run in a parallel fashion

across different cores utilizing the future_map() function from the furrr package (https://

davisvaughan.github.io/furrr/), which will speed up the process of computation specifically

when doing multiple peptide sets.

Kinase network model

The complexity of cellular signaling ensures that kinases do not act in isolation, but instead as

part of an interacting network with other kinases and proteins that regulate biological pro-

cesses [30]. The nature of this system means that final KRSA predictions should include poten-

tially interacting kinase families for downstream pathway analysis and hypothesis generation.

To accomplish this goal, KRSA connects the initial set of kinase hits with other kinases using

protein-protein interaction (PPI) databases. The krsa_ball_model() is used to generate the net-

work, which utilized the igraph package (https://igraph.org/).

Results

To elucidate differences in kinase activity between the brains of healthy male and female

human subjects, we used KRSA to predict differential upstream kinase activity.

Input and parameters

The input file format is a crosstab view generated by BioNavigator “Image Analysis” Protocol

(PamGene International B.V.). The first line in this format comprises of meta information

about the BioNavigator software version, date, and quantification type used to process the raw

data. The required quantification type is either “Median_SigmBg” or “Mean_SigmBg”, which

are short for “Median/or Mean Signal Minus Background”. These values represent the signal

intensity of each peptide at different cycles and exposure times. Next, the following few lines

contain information on the chip wells (including sample name and chip IDs) and datapoints

(including cycle and exposure time). The following lines include information on the reporter

peptides (including peptide ID, sequence, Uniprot Accession ID) and signal values. The main

parameters found in KRSA are the minimum signal (threshold used to filter out peptides with

low signals), R2 (threshold used to filter out peptides with weak linear fit), log2 fold change cut-

offs (threshold used to determine differential phosphorylated peptides), and Z score cutoff

(threshold used to determine kinase hits). A critical parameter is the mapping file which will

be used as the reference for the upstream kinase analysis. It must contain the reporter peptides

IDs and their upstream kinases (a curated mapping file is attached with the KRSA package).

Input files, selected parameters, and the full script used in the analysis of this manuscript are

found in the KRSA manuscript GitHub page (https://github.com/kalganem/krsa_manuscript).

Data description

To demonstrate the various functionalities of KRSA, we set out to compare kinase activity lev-

els between female and male dorsolateral prefrontal cortex (DLPFC). We analyzed postmor-

tem tissue obtained from 3 male and 3 female control subjects (for demographics, see S1 and

S2 Tables). We also analyzed a previously published kinome array dataset that studies the

changes in protein kinase activity during Alzheimer’s Disease (AD) pathogenesis [28]. This
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Fig 2. Global serine-threonine kinase activity in female vs. male DLPFC. (A) Global phosphorylation plots, showing signal intensity

(phosphorylation levels) at each reporter peptide, as well as the average phosphorylation values (thick line), and a Mann-Whitney test when comparing

females to males. A heatmap generated by KRSA depicting the relative signal intensity at each reporter peptide for the 6 samples on the array (3 females

and 3 males) (B) Global phosphorylation plots, showing signal intensity (phosphorylation levels) at each reporter peptide, as well as the average

phosphorylation values (thick line), and a Mann-Whitney test when comparing females to males using 18 control samples from the HPC cohort (11

females and 7 males). To highlight differences, the heatmap is normalized per row to present relative changes at each individual peptide between the

groups. Red indicates relatively higher levels of phosphorylation and yellow indicates relatively lower levels of phosphorylation.

https://doi.org/10.1371/journal.pone.0260440.g002
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postmortem study was performed using hippocampal (HPC) brain section samples. From this

dataset, we reanalyzed all of data for the control samples (Braak Stages 0–1) for both female

and male subjects. Given the Braak Stage 0 samples only contain male subjects and the appar-

ent effect of Braak Staging on the kinome signatures, we limited ourselves to samples with

Braak Stage 1, and that resulted into having 18 subjects, 11 female and 7 male (for demograph-

ics, see S1 and S2 Tables).

Fig 3. Changes in phosphorylation at reporter peptides in female vs. male DLPFC. (A) Waterfall plot showing log2 fold changes (LFC) in

phosphorylation at reporter peptides for female vs. male DLPFC. Peptides with positive LFC indicate higher phosphorylation in males, and peptides

with negative LFC indicates lower phosphorylation in males. The dashed line indicates the 0.2 LFC cutoff (B) Representative examples of linear model

fit of the phosphorylation curves of three reporter peptides in female vs. male DLPFC.

https://doi.org/10.1371/journal.pone.0260440.g003
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Outputs

Global serine-threonine protein kinase activity in female vs. male (DLPFC). In the QC

steps, KRSA filtered out 55 peptides that were considered undetectable, 2 peptides that were

not linearly increasing with exposure time (based on R2 > 0.9), and 11 references/control pep-

tides. The log2 fold change was calculated for the remaining 84 peptides by taking the female

group as the “baseline.” Based on the three chosen LFC cutoff values (0.2, 0.3, 0.4), three pep-

tide sets were extracted with the lengths of 56, 44, and 33 respectively. Using the first set of

peptides, krsa_violin_plot_grouped() was used to visualize the global phosphorylation levels

and the results indicate that the signatures are not significantly different between females and

males (Fig 2A, p value = 0.59 using a Mann-Whitney test). A heatmap of phosphorylation

intensity at each reporter peptide was generated using krsa_heatmap() and scaled by row (by

peptide) (Fig 2A).

Global serine-threonine protein kinase activity of the independent dataset (HPC). The

same approach was done using the independent cohort. However, since this cohort has a larger

number of subjects, we were able to detect a significant difference between male and female

kinome signatures (Fig 2B, p value = 6.04e-5 using a Mann-Whitney test). The samples signa-

tures showed distinct clustering between males and females in both the heatmap unsupervised

clustering (Fig 2B) and in the principal component analysis (PCA) (S1 Fig).

Altered kinase activity in female vs. male (DLPFC). The different peptide sets, based on

the different LFC cutoff values, were used to perform the upstream kinase analysis step in

KRSA. krsa_waterfall() was used to visualize the average LFCs at each peptide (Fig 3A). A

small set of peptides were chosen to demonstrate the output of krsa_curve_plot(), which shows

the linear fit models (Fig 3B). krsa() was used to run the upstream kinases analysis which gen-

erates data frames that contain random sampling distribution, standard deviation, and Z

scores for each kinase family for each peptide set. The Z scores were averaged to determine the

final score of each kinase family (S2 Fig). Taking one peptide set as an example, the top kinases

include CDK, PDK1, STE7, and in addition to others included in Table 1. Additionally, krsa_-
histogram() was used to visualize the experimental peptide hits relative to the random sampling

distribution (Fig 4).

Altered kinase activity in female vs. male in the independent dataset (HPC). We used a

similar method to determine the upstream kinase hits for the HPC cohort, and one set of pep-

tides led to the identification of serval different serine-threonine kinase families differentially

represented in HPC between female and male control subjects (Table 2).

Table 1. Predicted kinases and distributions for female vs. male (DLPFC).

Kinase Observed SamplingAvg SD Z

CDK 30 39.76 2.62 -3.72

PDK1 15 24.97 2.86 -3.48

STE7 11 20.26 2.80 -3.30

P38 12 20.69 2.85 -3.05

JNK 11 19.19 2.75 -2.98

PLK 11 18.21 2.76 -2.61

DYRK 14 21.38 2.88 -2.56

ERK 16 23.36 2.91 -2.53

BARK2 3 1.16 0.84 2.19

NMO 1 4.38 1.55 -2.18

https://doi.org/10.1371/journal.pone.0260440.t001
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To statistically compare the similarities between the two cohorts, DLPFC (current study)

and HPC (Rosenberger et al.), we performed a Pearson correlation analysis of upstream kinase

hits (using the KRSA Z scores). The results of this analysis showed a significant correlation

between these two studies (r = 0.65, P = 5.9e-11) (S5 Fig). For the HPC cohort, and due to the

Fig 4. Observed frequency of selected kinases relative to expected random sampling distribution in female vs. male DLPFC. Examples are shown

for kinases identified in the reporter peptides more than by random chance alone (e.g., BARK2), less than by random chance (e.g., ERK, CDK, JNK), as

well as for kinases that were not identified to be significantly relevant (e.g., COT, MARK, RIPK). KRSA was performed with 2000 iterations and

histograms were automatically generated. Gray areas indicate ± 2 standard deviations from the expected distribution mean. The red line indicates the

number of mapped peptides for the corresponding kinase based on one of the log2 fold change cutoffs (0.2 shown here). The Z scores for each kinase

are derived by calculating how many standard deviations the red line is away from the mean.

https://doi.org/10.1371/journal.pone.0260440.g004
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larger sample size, the unsupervised clustering and PCA also showed a clear separation

between male and female signatures. Using Z-score threshold of 2, we saw an overlap of several

kinase families, including STE7, JNK, ERK, DYRK, P38, and PDK1 among the two cohorts.

There were kinases that were unique in each cohort like CDK and PEK in the DLPFC dataset,

and PKA and AKT in the HPC dataset.

Kinase network model of female vs. male DLPFC. The krsa_ball_model() function was

used to generate a network to connect the kinase hits with other kinases families (Fig 5). One

of the largest nodes in this pathway based on number of connections is ERK, which is also one

of the highest scoring hits identified by KRSA. ERK has an observed presence in our data

much lower than would be expected by random chance (16 versus 23.36, Z-score = -2.53). The

model also highlights potential targets that are important in the network despite their low Z-

scores. For example, even though the Z-score for AKT is low (Z-score = -0.719), it connects to

many of the nodes in the kinase network model suggesting its important role within the

network.

Validation of robustness. To test the robustness of detecting similar upstream kinase

scores under different signal-to-noise ratios (SNRs), we added random noise (unseeded) to the

ratio of differences between the tested groups in our existing data based on different SNR val-

ues (from 1 to 30). We then ran our standard upstream kinase analysis under each of these

conditions. We calculated the Pearson correlation coefficient of the kinase Z scores generated

by KRSA between our original analysis and the generated noisy data. The correlation coeffi-

cient ranged from 0.74 and 0.98, showing stronger correlation (above 0.9) when the SNR is

larger than 4 (S4 Fig).

Discussion

Unlike many diseases and conditions, where distinct high-magnitude changes in gene expres-

sion and subsequent downstream function occur because of the disease processes, differences

between healthy male and female brains are theoretically subtler and harder to characterize. As

an example of KRSA’s capabilities, we probed for kinase activity differences in the male and

female brain using postmortem dorsolateral prefrontal cortex. We also compared our findings

to a previously published kinome array study [28]. The samples from that study showed a simi-

lar pattern of changes between female and male kinome signatures as an overall higher phos-

phorylation levels in the female samples (Fig 2B, P< 0.05). Examining the global signal, the

sum average of the phosphorylation signal intensity of all reporter peptides, showed differ-

ences between males and females.

Table 2. Predicted kinases and distributions for female vs. male (HPC).

Kinase Observed SamplingAvg SD Z

PKA 42 28.55 2.97 4.52

JNK 10 22.79 2.90 -4.41

ERK 15 28.05 3.00 -4.35

P38 13 24.59 2.89 -4.01

RSK 51 39.43 2.98 3.88

DMPK 59 48.99 2.59 3.86

DYRK 15 25.76 2.86 -3.77

PDK1 19 29.90 2.92 -3.73

PKG 33 22.89 2.84 3.56

AKT 28 18.99 2.74 3.29

https://doi.org/10.1371/journal.pone.0260440.t002
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Comparing the results from the upstream kinases analysis and network modeling, there are

common kinase hits between the two cohorts such as MAPKs (ERK, JNK, P38) and AKTs.

ERKs, or extracellular signal-regulated kinases, are part of the MAPK/ERK pathway that regu-

lates a wide variety of processes including differentiation, proliferation, adhesion, and migra-

tion, among others [31]. ERKs have sex-related differential activity, as kinases of this family

are involved in regulating hormones [32, 33]. The activation of estrogen receptor beta (ERβ)

Fig 5. Kinase network model of female vs. male DLPFC. The kinase network was obtained in KRSA by growing the kinome array hits with kinase

interacting partners as identified using STRING and PhosphoSitePlus. The kinome array hits are color coded by the averaged z score values. Circle size

corresponds to the number of interactions, with larger circles having more interactions. Black lines represent interactions with a kinome array direct

hit, while gray represent interactions made between associated the other kinase families.

https://doi.org/10.1371/journal.pone.0260440.g005

PLOS ONE KRSA: Upstream kinase analysis of kinome array data

PLOS ONE | https://doi.org/10.1371/journal.pone.0260440 December 17, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0260440.g005
https://doi.org/10.1371/journal.pone.0260440


induces the MAPK pathway which explains the differences between males and females that we

observed in the KRSA results [34]. AKT, also known a protein kinase B, is in part activated by

hormonal regulation and takes part in processes such as metabolism, apoptosis, and prolifera-

tion [35]. Recent research has identified sex-specific differences in AKT isoforms as a key fac-

tor in regulating neurobiological processes [36]. AKT was also differentially phosphorylated in

hippocampal samples in the same direction as KRSA predictions [37]. Finally, another study

identified differential expression of AKT-associated genes, but did not find significance in

phosphorylation of AKT itself between males and females [38]. Instead, similar levels of AKT

phosphorylation were maintained in the brain between the sexes through differing level of

PTEN expression [38]. This last example highlights the power of the kinase network model

versus examining kinases alone, as KRSA can draw attention to highly connected nodes that

are near or below the threshold for being considered a hit but are still potentially important

targets to study due to their importance within the network.

In the area of kinomics, there is a need for end-to-end processing of kinome array data in a

user-friendly, open source, and interactive environment. The Kinome Random Sampling Ana-

lyzer (KRSA) R package and Shiny app fill this gap in the field and serve as a steppingstone for

the use and interpretation of kinome array data for laboratory biologists and computational

biologists alike.

Supporting information

S1 Fig. Principal Component Analysis (PCA) of the independent dataset from the HPC

cohort. Using the subjects in HPC cohort dataset (controls only) showing the clustering of

samples and the factors that most explain the variance in the kinome signatures. PMI: post-

mortem interval, Barcode: Chip ID.

(TIF)

S2 Fig. Z scores waterfall plot for the DLPFC cohort. Multiple z scores for each kinase that

were calculated using the different peptide sets (that were derived based on the different log2

fold change cutoffs, 0.2, 0.3, and 0.4). The bigger dots represent the averaged Z scores which

are also color coded based on the absolute values of the averaged z scores.

(TIF)

S3 Fig. Venn diagrams showing overlap of the total of overrepresented/underrepresented

kinases for both cohorts. DLPFC from current study, and the HPC cohort study. Filtered

kinase with absolute values of Z scores equal or above 2 for both datasets. DLPFC: dorsolateral

prefrontal cortex, HPC: hippocampus.

(TIF)

S4 Fig. Correlation analysis between the DLPFC and HPC cohorts. To statistically compare

the similarities between the two cohorts, DLPFC (current study) and HPC (Rosenberger

et al.), a Pearson correlation analysis of upstream kinase hits (using the KRSA Z scores) is per-

formed. DLPFC: dorsolateral prefrontal cortex, HPC: hippocampus.

(TIF)

S5 Fig. Robustness analysis of capturing upstream kinase scores under different signal-to-

noise ratio (SNR) values. To detect the upstream kinase scores under different SNRs, we

added random noise (unseeded) to the ratios of differences between the tested groups in our

existing data based on different SNR values (from 1 to 30), and ran our proposed upstream

kinase analysis under each condition. We calculated the Pearson correlation coefficient of the
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kinase Z scores generated by KRSA between our original analysis and the noisy data.

(TIF)

S1 Table. Kinome array subject demographics of the DLPFC cohort. Subjects demographics

of the DLPFC cohort (current study) indicating sex, age, pH, and PMI. pH: acidity measure,

PMI: postmortem interval.

(DOCX)

S2 Table. Kinome array subject demographics for the HPC cohort. Subjects demographics

of the HPC cohort (Rosenberger et al.) indicating sex, age, and PMI (control subjects only).

pH: acidity measure, PMI: postmortem interval.

(DOCX)

Acknowledgments

We would like to thank Daniel Schnell for helpful discussions on the statistical methods

behind KRSA. We also thank the developers of R studio, Shiny, and supporting R packages

used in the implementation of KRSA. We would like to acknowledge and thank the Alabama

Brain Collection for providing the human brain samples for our studies.

Author Contributions

Conceptualization: Jennifer L. McGuire, Jaroslaw Meller, Robert E. McCullumsmith.

Data curation: Erica A. K. DePasquale, Eduard Bentea, Nawshaba Nawreen, Jennifer L.

McGuire, Tushar Tomar, Faris Naji, Riet Hilhorst.

Formal analysis: Erica A. K. DePasquale, Khaled Alganem, Eduard Bentea.

Funding acquisition: Robert E. McCullumsmith.

Investigation: Jennifer L. McGuire.

Methodology: Erica A. K. DePasquale, Eduard Bentea, Jennifer L. McGuire, Faris Naji, Riet

Hilhorst, Jaroslaw Meller.

Project administration: Jennifer L. McGuire, Robert E. McCullumsmith.

Resources: Jennifer L. McGuire.

Software: Erica A. K. DePasquale, Khaled Alganem.

Supervision: Jaroslaw Meller, Robert E. McCullumsmith.

Visualization: Erica A. K. DePasquale, Khaled Alganem, Eduard Bentea.

Writing – original draft: Erica A. K. DePasquale, Eduard Bentea.

Writing – review & editing: Khaled Alganem, Robert E. McCullumsmith.

References

1. Simpson CM, Zhang B, Hornbeck PV, Gnad F. Systematic analysis of the intersection of disease muta-

tions with protein modifications. BMC Med Genomics. 2019; 12(Suppl 6):109. https://doi.org/10.1186/

s12920-019-0543-2 PMID: 31345222

2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74. https://

doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

3. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell

signaling and its use as targeted therapy (Review). Int J Mol Med. 2017; 40(2):271–80. https://doi.org/

10.3892/ijmm.2017.3036 PMID: 28656226

PLOS ONE KRSA: Upstream kinase analysis of kinome array data

PLOS ONE | https://doi.org/10.1371/journal.pone.0260440 December 17, 2021 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260440.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260440.s007
https://doi.org/10.1186/s12920-019-0543-2
https://doi.org/10.1186/s12920-019-0543-2
http://www.ncbi.nlm.nih.gov/pubmed/31345222
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.3892/ijmm.2017.3036
https://doi.org/10.3892/ijmm.2017.3036
http://www.ncbi.nlm.nih.gov/pubmed/28656226
https://doi.org/10.1371/journal.pone.0260440


4. Ubersax JA, Ferrell JE Jr.. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol.

2007; 8(7):530–41. https://doi.org/10.1038/nrm2203 PMID: 17585314

5. Pawson T, Scott JD. Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci.

2005; 30(6):286–90. https://doi.org/10.1016/j.tibs.2005.04.013 PMID: 15950870

6. Lahiry P, Torkamani A, Schork NJ, Hegele RA. Kinase mutations in human disease: interpreting geno-

type-phenotype relationships. Nat Rev Genet. 2010; 11(1):60–74. https://doi.org/10.1038/nrg2707

PMID: 20019687

7. Baharani A, Trost B, Kusalik A, Napper S. Technological advances for interrogating the human kinome.

Biochem Soc Trans. 2017; 45(1):65–77. https://doi.org/10.1042/BST20160163 PMID: 28202660

8. Houseman BT, Mrksich M. Towards quantitative assays with peptide chips: a surface engineering

approach. Trends Biotechnol. 2002; 20(7):279–81. https://doi.org/10.1016/s0167-7799(02)01984-4

PMID: 12062966

9. Diks SH, Kok K, O’Toole T, Hommes DW, van Dijken P, Joore J, et al. Kinome profiling for studying lipo-

polysaccharide signal transduction in human peripheral blood mononuclear cells. The Journal of biologi-

cal chemistry. 2004; 279(47):49206–13. https://doi.org/10.1074/jbc.M405028200 PMID: 15355981

10. Dussaq AM, Kennell T Jr, Eustace NJ, Anderson JC, Almeida JS, Willey CD. Kinomics toolbox-A web

platform for analysis and viewing of kinomic peptide array data. PLoS One. 2018; 13(8):e0202139.

https://doi.org/10.1371/journal.pone.0202139 PMID: 30130366

11. Bekkar A, Nasrallah A, Guex N, Fajas L, Xenarios I, Lopez-Mejia IC. PamgeneAnalyzeR: open and

reproducible pipeline for kinase profiling. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/

btz858 PMID: 31922550

12. Lachmann A, Ma’ayan A. KEA: kinase enrichment analysis. Bioinformatics. 2009; 25(5):684–6. https://

doi.org/10.1093/bioinformatics/btp026 PMID: 19176546

13. Krug K, Mertins P, Zhang B, Hornbeck P, Raju R, Ahmad R, et al. A Curated Resource for Phosphosite-

specific Signature Analysis. Mol Cell Proteomics. 2019; 18(3):576–93. https://doi.org/10.1074/mcp.

TIR118.000943 PMID: 30563849

14. Anderson JC, Duarte CW, Welaya K, Rohrbach TD, Bredel M, Yang ES, et al. Kinomic exploration of

temozolomide and radiation resistance in Glioblastoma multiforme xenolines. Radiother Oncol. 2014;

111(3):468–74. https://doi.org/10.1016/j.radonc.2014.04.010 PMID: 24813092

15. Isayeva T, Xu J, Ragin C, Dai Q, Cooper T, Carroll W, et al. The protective effect of p16(INK4a) in oral

cavity carcinomas: p16(Ink4A) dampens tumor invasion-integrated analysis of expression and kinomics

pathways. Mod Pathol. 2015; 28(5):631–53. https://doi.org/10.1038/modpathol.2014.149 PMID:

25523612

16. Dorsett CR, McGuire JL, Niedzielko TL, DePasquale EA, Meller J, Floyd CL, et al. Traumatic Brain

Injury Induces Alterations in Cortical Glutamate Uptake without a Reduction in Glutamate Transporter-1

Protein Expression. J Neurotrauma. 2017; 34(1):220–34. https://doi.org/10.1089/neu.2015.4372 PMID:

27312729

17. McGuire JL, Depasquale EA, Funk AJ, O’Donnovan SM, Hasselfeld K, Marwaha S, et al. Abnormalities

of signal transduction networks in chronic schizophrenia. NPJ Schizophr. 2017; 3(1):30. https://doi.org/

10.1038/s41537-017-0032-6 PMID: 28900113

18. Bentea E, Depasquale EAK, O’Donovan SM, Sullivan CR, Simmons M, Meador-Woodruff JH, et al.

Kinase network dysregulation in a human induced pluripotent stem cell model of DISC1 schizophrenia.

Mol Omics. 2019; 15(3):173–88. https://doi.org/10.1039/c8mo00173a PMID: 31106784

19. Flaherty E, Zhu S, Barretto N, Cheng E, Deans PJM, Fernando MB, et al. Neuronal impact of patient-

specific aberrant NRXN1alpha splicing. Nat Genet. 2019; 51(12):1679–90. https://doi.org/10.1038/

s41588-019-0539-z PMID: 31784728

20. Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common

schizophrenia risk variants. Nat Genet. 2019; 51(10):1475–85. https://doi.org/10.1038/s41588-019-

0497-5 PMID: 31548722

21. Bentea E, Villers A, Moore C, Funk AJ, O’Donovan SM, Verbruggen L, et al. Corticostriatal dysfunction

and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol Psychiatry. 2020.

https://doi.org/10.1038/s41380-020-0751-3 PMID: 32366950

22. Creeden JF, Alganem K, Imami AS, Brunicardi FC, Liu SH, Shukla R, et al. Kinome Array Profiling of

Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine

Kinases. Int J Mol Sci. 2020; 21(22). https://doi.org/10.3390/ijms21228679 PMID: 33213062

23. Chadha R, Alganem K, McCullumsmith RE, Meador-Woodruff JH. mTOR kinase activity disrupts a

phosphorylation signaling network in schizophrenia brain. Mol Psychiatry. 2021. https://doi.org/10.

1038/s41380-021-01135-9 PMID: 33990769

PLOS ONE KRSA: Upstream kinase analysis of kinome array data

PLOS ONE | https://doi.org/10.1371/journal.pone.0260440 December 17, 2021 15 / 16

https://doi.org/10.1038/nrm2203
http://www.ncbi.nlm.nih.gov/pubmed/17585314
https://doi.org/10.1016/j.tibs.2005.04.013
http://www.ncbi.nlm.nih.gov/pubmed/15950870
https://doi.org/10.1038/nrg2707
http://www.ncbi.nlm.nih.gov/pubmed/20019687
https://doi.org/10.1042/BST20160163
http://www.ncbi.nlm.nih.gov/pubmed/28202660
https://doi.org/10.1016/s0167-7799%2802%2901984-4
http://www.ncbi.nlm.nih.gov/pubmed/12062966
https://doi.org/10.1074/jbc.M405028200
http://www.ncbi.nlm.nih.gov/pubmed/15355981
https://doi.org/10.1371/journal.pone.0202139
http://www.ncbi.nlm.nih.gov/pubmed/30130366
https://doi.org/10.1093/bioinformatics/btz858
https://doi.org/10.1093/bioinformatics/btz858
http://www.ncbi.nlm.nih.gov/pubmed/31922550
https://doi.org/10.1093/bioinformatics/btp026
https://doi.org/10.1093/bioinformatics/btp026
http://www.ncbi.nlm.nih.gov/pubmed/19176546
https://doi.org/10.1074/mcp.TIR118.000943
https://doi.org/10.1074/mcp.TIR118.000943
http://www.ncbi.nlm.nih.gov/pubmed/30563849
https://doi.org/10.1016/j.radonc.2014.04.010
http://www.ncbi.nlm.nih.gov/pubmed/24813092
https://doi.org/10.1038/modpathol.2014.149
http://www.ncbi.nlm.nih.gov/pubmed/25523612
https://doi.org/10.1089/neu.2015.4372
http://www.ncbi.nlm.nih.gov/pubmed/27312729
https://doi.org/10.1038/s41537-017-0032-6
https://doi.org/10.1038/s41537-017-0032-6
http://www.ncbi.nlm.nih.gov/pubmed/28900113
https://doi.org/10.1039/c8mo00173a
http://www.ncbi.nlm.nih.gov/pubmed/31106784
https://doi.org/10.1038/s41588-019-0539-z
https://doi.org/10.1038/s41588-019-0539-z
http://www.ncbi.nlm.nih.gov/pubmed/31784728
https://doi.org/10.1038/s41588-019-0497-5
https://doi.org/10.1038/s41588-019-0497-5
http://www.ncbi.nlm.nih.gov/pubmed/31548722
https://doi.org/10.1038/s41380-020-0751-3
http://www.ncbi.nlm.nih.gov/pubmed/32366950
https://doi.org/10.3390/ijms21228679
http://www.ncbi.nlm.nih.gov/pubmed/33213062
https://doi.org/10.1038/s41380-021-01135-9
https://doi.org/10.1038/s41380-021-01135-9
http://www.ncbi.nlm.nih.gov/pubmed/33990769
https://doi.org/10.1371/journal.pone.0260440


24. Lin B, Alganem K, O’Donovan SM, Jin Z, Naghavi F, Miller OA, et al. Activation of acid-sensing ion

channels by carbon dioxide regulates amygdala synaptic protein degradation in memory reconsolida-

tion. Mol Brain. 2021; 14(1):78. https://doi.org/10.1186/s13041-021-00786-7 PMID: 33962650

25. Armstead WM, Riley J, Vavilala MS. Sex and Age Differences in Epinephrine Mechanisms and Out-

comes after Brain Injury. J Neurotrauma. 2017; 34(8):1666–75. https://doi.org/10.1089/neu.2016.4770

PMID: 27912253

26. Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Shimizu E. Sex differences in fear extinction

and involvements of extracellular signal-regulated kinase (ERK). Neurobiol Learn Mem. 2015;

123:117–24. https://doi.org/10.1016/j.nlm.2015.05.009 PMID: 26079214

27. Zhang L, Li PP, Feng X, Barker JL, Smith SV, Rubinow DR. Sex-related differences in neuronal cell sur-

vival and signaling in rats. Neurosci Lett. 2003; 337(2):65–8. https://doi.org/10.1016/s0304-3940(02)

01179-5 PMID: 12527389

28. Rosenberger AF, Hilhorst R, Coart E, Garcia Barrado L, Naji F, Rozemuller AJ, et al. Protein Kinase

Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology. J Alzheimers Dis.

2016; 49(4):927–43. https://doi.org/10.3233/JAD-150429 PMID: 26519433

29. Xue Y, Liu Z, Gao X, Jin C, Wen L, Yao X, et al. GPS-SNO: computational prediction of protein S-nitro-

sylation sites with a modified GPS algorithm. PloS one. 2010; 5(6):e11290. https://doi.org/10.1371/

journal.pone.0011290 PMID: 20585580

30. Yao Z, Petschnigg J, Ketteler R, Stagljar I. Application guide for omics approaches to cell signaling. Nat

Chem Biol. 2015; 11(6):387–97. https://doi.org/10.1038/nchembio.1809 PMID: 25978996

31. Busca R, Pouyssegur J, Lenormand P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional

Redundancy? Front Cell Dev Biol. 2016; 4:53. https://doi.org/10.3389/fcell.2016.00053 PMID:

27376062

32. Brown JL, Xie J, Brieno-Enriquez MA, Sones JL, Angulo CN, Boehm U, et al. Sex- and Age-Specific

Impact of ERK Loss Within the Pituitary Gonadotrope in Mice. Endocrinology. 2018; 159(3):1264–76.

https://doi.org/10.1210/en.2017-00653 PMID: 29300908

33. Pergola C, Dodt G, Rossi A, Neunhoeffer E, Lawrenz B, Northoff H, et al. ERK-mediated regulation of

leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and

asthma. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105

(50):19881–6. https://doi.org/10.1073/pnas.0809120105 PMID: 19064924

34. Mizuno K, Giese KP. Towards a molecular understanding of sex differences in memory formation.

Trends in neurosciences. 2010; 33(6):285–91. https://doi.org/10.1016/j.tins.2010.03.001 PMID:

20356635

35. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cellu-

lar signalling. 2002; 14(5):381–95. https://doi.org/10.1016/s0898-6568(01)00271-6 PMID: 11882383

36. Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C, et al. Isoform-specific roles for

AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. Elife. 2020; 9.

37. Sheppard PAS, Puri TA, Galea LAM. Sex differences and estradiol effects in MAPK and Akt cell signal-

ling across subregions of the hippocampus. Neuroendocrinology. 2021. https://doi.org/10.1159/

000519072 PMID: 34407537

38. de Mello NP, Andreotti DZ, Orellana AM, Scavone C, Kawamoto EM. Inverse sex-based expression

profiles of PTEN and Klotho in mice. Sci Rep. 2020; 10(1):20189. https://doi.org/10.1038/s41598-020-

77217-5 PMID: 33214645

PLOS ONE KRSA: Upstream kinase analysis of kinome array data

PLOS ONE | https://doi.org/10.1371/journal.pone.0260440 December 17, 2021 16 / 16

https://doi.org/10.1186/s13041-021-00786-7
http://www.ncbi.nlm.nih.gov/pubmed/33962650
https://doi.org/10.1089/neu.2016.4770
http://www.ncbi.nlm.nih.gov/pubmed/27912253
https://doi.org/10.1016/j.nlm.2015.05.009
http://www.ncbi.nlm.nih.gov/pubmed/26079214
https://doi.org/10.1016/s0304-3940%2802%2901179-5
https://doi.org/10.1016/s0304-3940%2802%2901179-5
http://www.ncbi.nlm.nih.gov/pubmed/12527389
https://doi.org/10.3233/JAD-150429
http://www.ncbi.nlm.nih.gov/pubmed/26519433
https://doi.org/10.1371/journal.pone.0011290
https://doi.org/10.1371/journal.pone.0011290
http://www.ncbi.nlm.nih.gov/pubmed/20585580
https://doi.org/10.1038/nchembio.1809
http://www.ncbi.nlm.nih.gov/pubmed/25978996
https://doi.org/10.3389/fcell.2016.00053
http://www.ncbi.nlm.nih.gov/pubmed/27376062
https://doi.org/10.1210/en.2017-00653
http://www.ncbi.nlm.nih.gov/pubmed/29300908
https://doi.org/10.1073/pnas.0809120105
http://www.ncbi.nlm.nih.gov/pubmed/19064924
https://doi.org/10.1016/j.tins.2010.03.001
http://www.ncbi.nlm.nih.gov/pubmed/20356635
https://doi.org/10.1016/s0898-6568%2801%2900271-6
http://www.ncbi.nlm.nih.gov/pubmed/11882383
https://doi.org/10.1159/000519072
https://doi.org/10.1159/000519072
http://www.ncbi.nlm.nih.gov/pubmed/34407537
https://doi.org/10.1038/s41598-020-77217-5
https://doi.org/10.1038/s41598-020-77217-5
http://www.ncbi.nlm.nih.gov/pubmed/33214645
https://doi.org/10.1371/journal.pone.0260440

