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Abstract

Two theories regarding the role for dopamine neurons in learning include the concepts that their activity serves as a
(1) mechanism that confers incentive salience onto rewards and associated cues and/or (2) contingency teaching
signal reflecting reward prediction error. While both theories are provocative, the causal role for dopamine cell activity
in either mechanism remains controversial. In this study mice that either fully or partially lacked NMDARs in dopamine
neurons exclusively, as well as appropriate controls, were evaluated for reward-related learning; this experimental
design allowed for a test of the premise that NMDA/glutamate receptor (NMDAR)-mediated mechanisms in dopamine
neurons, including NMDA-dependent regulation of phasic discharge activity of these cells, modulate either the
instrumental learning processes or the likelihood of pavlovian cues to become highly motivating incentive stimuli that
directly attract behavior. Loss of NMDARs in dopamine neurons did not significantly affect baseline dopamine
utilization in the striatum, novelty evoked locomotor behavior, or consumption of a freely available, palatable food
solution. On the other hand, animals lacking NMDARs in dopamine cells exhibited a selective reduction in reinforced
lever responses that emerged over the course of instrumental learning. Loss of receptor expression did not, however,
influence the likelihood of an animal acquiring a pavlovian conditional response associated with attribution of incentive
salience to reward-paired cues (sign tracking). These data support the view that reductions in NMDAR signaling in
dopamine neurons affect instrumental reward-related learning but do not lend support to hypotheses that suggest that
the behavioral significance of this signaling includes incentive salience attribution.
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Behavior is shaped to a dramatic degree by the occurrence of rewards, through both pavlovian and
instrumental conditioning processes; these mechanisms give rise to both normal and abnormal behavior. It
is crucial to understand the neural mechanisms that give rise to normal actions and how they lead to
pathological behaviors, such as overeating and drug addictions. Though dopamine neurotransmission has
often been implicated in reward-related learning, the specifics of this role remain poorly understood. The set
of studies described in this manuscript reveals that NMDA/glutamate-mediated dopamine transmission
contributes to the acquisition of instrumental reward-seeking actions, possibly highlighting these mecha-
nisms as targets of interventions designed to alter the occurrence of reward-related actions, like drug

kseeking and drug taking. j
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Introduction

The electrical activity of dopamine neurons, and associ-
ated activity-dependent synaptic release of dopamine, is
thought to be critical to reward-related learning and be-
havior (Wise and Rompre, 1989; Robbins and Everitt,
1992; Robinson and Berridge, 1993; Salamone, 1994;
Schultz et al., 1997; Redgrave et al., 1999; Kelley, 2004).
Because alterations in reward-related behaviors are found
in a range of psychiatric conditions (Robinson and Ber-
ridge, 1993; Taylor and Jentsch, 2001; Neuringer, 2002;
Everitt and Robbins, 2005; Martin-Soelch et al., 2007;
Flagel et al., 2009; Groman et al., 2009; Shiflett and
Balleine, 2011), and because many of these disorders are
thought to involve dopaminergic dysfunction (Swerdlow
and Koob, 1987; Billstedt, 2000; Robinson and Berridge,
2000; Everitt and Robbins, 2005; Nestler and Carlezon Jr,
2006; Iversen et al., 2008; Groman et al., 2009), understanding
the mechanistic role for dopamine release in reward-driven
learning remains an important research question.

A considerable body of evidence, derived mostly from
electrophysiological recordings of midbrain neurons in
nonhuman primates, implicates brief event-related, high-
frequency discharge activity of dopaminergic neurons,
and the associated phasic, nonlinear increases in the
quantity of transmitter released (Grace and Bunney, 1984;
Gonon, 1988; Bean and Roth, 1991), as a neural instan-
tiation of the “prediction error” signal that figures in both
classical and modern mathematical learning models (Re-
scorla and Wagner, 1972; Schultz et al., 1993, 1997;
Sutton and Barto, 1998; Day et al., 2007). Phasic aspects
of dopamine signaling may represent the difference between
predicted and actually received rewards (Schultz, 2002),
information used in these models to update expectancies of
the organism as it learns the contingent relationships be-
tween stimuli that predict biologically significant outcomes,
and the responses that produce them.

An alternate perspective regards dopaminergic trans-
mission as the mechanism by which rewarding events and
reward-predictive stimuli are imbued with incentive moti-
vational properties, transforming them from merely plea-
surable, or “liked,” to “wanted” attractors of motivated
behavior and attention (Crow, 1976; Robinson and Ber-
ridge, 1993; Berridge and Robinson, 1998). A variety of
lines of evidence support this conclusion: elevating dopa-
mine release, in multiple contexts, can invigorate motivation
to engage in a behavior, without affecting learning of the
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behavior itself (Robbins, 1978; Wyvell and Berridge, 2000,
2001; Salamone et al., 2001, 2005; Pecina et al., 2003;
Cagniard et al., 2006; Yin et al., 2006). Altering dopamine
can alter the magnitude of established responding immedi-
ately (Berridge, 2007), indicating that dopamine can impact
reward-driven behavior without an experience of a predic-
tion error as a precondition; indeed, aspects of reward learn-
ing are possible when dopamine is nearly absent altogether
(Cannon and Palmiter, 2003; Hnasko et al., 2005), suggest-
ing that dopamine might function to instruct motivational
value, rather than associative contingencies.

The prediction error and the incentive salience perspec-
tives are often both supported by the results of experi-
mental manipulations of dopamine transmission. For
example, optogenetic simulation of dopamine neuron
burst firing acts as an unconditioned stimulus that rein-
forces instrumental and pavlovian behaviors (Tsai et al.,
2009; Witten et al., 2011). While this establishes a causal
role for phasic dopaminergic activity in reward-related
learning, whether it conveys a prediction error signal that
teaches contingencies or whether it instructs the incentive
motivation to engage in these behaviors cannot readily be
distinguished. However, studies of individual differences
in the nature of behaviors expressed during autoshaping
may offer a unique paradigm better suited for distinguish-
ing these theories. Specifically, contingency learning via
prediction error signals, expressed as a pavlovian ap-
proach to a reward-delivery location (goal tracking), can
be differentiated from contingency learning that addition-
ally involves incentive salience attribution to reward-
predictive cues (sign tracking; Robinson and Flagel,
2009). Recent evidence suggests that the magnitude of
cue-evoked, phasic dopamine release positively relates to
incentive salience attribution (Flagel et al., 2011): sign-
tracking rats exhibited greater conditional stimulus (CS)-
elicited dopamine transients than goal trackers.

Because NMDA/glutamate receptors (NMDARs local-
ized within midbrain dopaminergic neurons regulate do-
pamine transmission, including through influences on the
burst firing activity; Suaud-Chagny et al., 1992), phasic
dopamine release is attenuated in a mouse model lacking
NMDAR in dopamine neurons (Zweifel et al., 2009; Luo
et al., 2010). One application of this system, therefore, is
to evaluate the effects of quantitiative reductions of affer-
ent input-generated phasic dopamine signaling on behav-
ior. Here, we assessed instrumental learning (which
involves both prediction error and incentive salience attri-
bution) in mice lacking NMDAR in dopamine neurons, and
then studied sign-tracking/goal-tracking behavior to test
the idea that NMDA-dependent aspects of dopamine sig-
naling are causally related to propensity for incentive
salience attribution.

Materials and Methods

Mouse lines

B6.SJL-Slc6a3m"-(cre)Bkmny ) (stock #006660; http://
jaxmice.jax.org/strain/006660.html; referred to here as
DATcre+) mice, each heterozygous for a mutated dopa-
mine transporter (DAT) gene expressing Cre recombinase,
and B6.12984-Crintm2St j (stock #005246; http://jaxmice.
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jax.org/strain/005246.html; referred to here as NR170x/fox)
mice were purchased from The Jackson Laboratory. In
DATcre+ mice, Cre recombinase cDNA was inserted into
the 3’ untranslated region of the DAT gene for bicistronic
mMRNA translation; Cre-mediated recombination is detect-
able in this line as early as E15 and is primarily restricted
to the substantia nigra, ventral tegmental area, and retro-
rubral field within the midbrain (Backman et al., 2006).
NR17¥oX mice have a loxP site between exons 11 and 12
and another loxP site, along with a neomycin resistance
gene, at the 3’ end of the Grin1 gene (Tonegawa et al.,
1996). The NR1 gene is an obligatory component of the
functional NMDAR (Forrest et al., 1994), which regulates
NMDAR-mediated plasticity and also dopamine cell burst
firing, the latter by facilitating temporal summation of
excitatory inputs (Suaud-Chagny et al., 1992; Overton and
Clark, 1997). Conditional deletion of NR1 expression
blocks NMDAR activity (Tsien et al., 1996), reducing the
magnitude of phasic dopamine release events to ~30%
of control levels (Zweifel et al., 2009; Parker et al., 2010).

Male DATcre+ mice were bred with female NR17ox/fox
mice; the DATcre+ males in the resulting F1 generation
were further bred with a different set of female NR17ox/flox
mice to create DATcre—NR17W! DATcre—;NR17ox/flox
DATcre+;NR17wt  and DATcre+;NR17¥ X mice (col-
lectively referred to as DATcre;NR1 mice). Male DATcre+
mice were also separately crossed to female B6.129S4-
GT(ROSA)26Sor'™'S°"/J (stock #003474; http://jaxmice.
jax.org/strain/003474.html; referred to as ROSA26-Lac2)
reporter mice (Soriano, 1999), obtained from Dr. Alcino
Silva’s laboratory at University of California, Los Angeles.
DATcre, NR1, and ROSA26-LacZ zygosity was deter-
mined using conventional PCR methods.

Mice were between 60 and 120 d old when involved in
this study. All subjects were socially housed in cages of
two to four individuals with Sani-Chip cage bedding (PJ
Murphy Forest Products) in a temperature- and humidity-
controlled room on a 14/10 h light/dark cycle. Behavioral
testing was conducted during the light cycle. Food was
available ad libitum during locomotor behavior and free-
reward consumption testing, but was restricted during
other experiments, as detailed below. All animal proce-
dures are performed according to the regulations of the
university animal care committee for each author.

LacZ X-Gal staining

DATcre+ mice also expressing the ROSA26-LacZ gene
were killed by isoflurane overdose, then transcardially
perfused with freshly mixed, cold 4% paraformaldehyde.
Brains were stored in paraformaldehyde for 1 d before
being switched to a 30% sucrose/PBS solution. Slices of
40 um width were cut on a cryostat and rinsed in PBS.
The staining solution contained 85.33 mg potassium fer-
rocyanide, 64 mg potassium ferricyanide, 4 ml of 20 mm
MgCl,, 36 ml PBS, 60 mg X-gal, and 800 ul dimethylfor-
mamide. The solution was allowed to react with brain
slices at 37°C for 48 h; the slices were then rinsed,
counterstained, and mounted on slides.
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Quantification of monoamine utilization in the
striatum

Thirty-five conscious DATcre;NR1 mice (males and fe-
males, DATcre—NR17Wt n = 9: DATcre—NR17¥/fox n =
8; DATcre+;NR17"t n = 10; DATcre+;NR17¥ox n =
8) were killed by rapid decapitation and tissue samples
were collected from the ventral striatum. Samples were
frozen for subsequent analyses of monoamines and their
metabolites using HPLC. Tissue was homogenized in 0.1
M perchloric acid, centrifuged for 25 min, and the content
of 200 ul of supernatant was quantified by reverse-phase
column HPLC (BAS) at 0.7 V applied, using a 7%
acetonitrile-based mobile phase. Protein content was
quantified using the Lowry method (Lowry et al., 1951).

Locomotor activity in a novel context

The locomotor behavior of 165 DATcre;NR1 mice
(males and females, DATcre—NR17Wt n = 42; DATcre—;
NR17ox/flox n = 42: DATcre+;NR1™%! n = 40; DATcre+;
NR17ox/flox 'n = 41) was characterized by placing subjects
in clean, standard acrylic animal cages that were novel to
the mouse (24 X 40 cm), with a thin layer of bedding. Each
cage was equipped with Opto M3 locomotor activity mon-
itors (Columbus Instruments) fitted with 1” spaced x-axis
infrared beam emitters. Locomotor behavior was moni-
tored for 30 min (data collected in 5 min time bins).
Locomotor data for 36 mice was lost because of equip-
ment failure, leavingn = 36, n = 32, n = 31, and n = 31
for the four genotype groups, respectively.

Free consumption of a palatable food

Subsequently, the same sample of 165 mice used in the
locomotor experiment underwent habituation to a two
bottle, free-choice palatable food consumption procedure
over the course of 2 d. In 2 h sessions of individual
housing, mice had access to 2 Lixit tube-equipped water
bottles, one filled with water and the other filled with a
10% v/v sweetened condensed milk solution (Kroger).
Bottle positions (i.e., left side of the cage vs right side,
order counterbalanced across genotypes) were switched
on the second day of habituation. Testing began the
following day, bottle positions were again switched, and
data were collected for 2 d; a final switch, followed by 2 d
of data collection, concluded the procedure. Data pre-
sented are averages of consumption levels on the second
day of placement on each side.

Instrumental conditioning

An experimentally naive set of 112 mice (males only,
DATcre—;NR1™Wt 'n = 26; DATcre—NR17¥/ox 'n = 27;
DATcre+;NR17wt n = 22: DATcre+;NR17*¥fox n = 26;
reflects data exclusion from 11 mice due to technical
failures with the operant chambers, e.g., pellet dispenser
or lever failures) were introduced to limited access to
chow in their home cages in order to achieve body
weights ~85% of free-feeding levels. Mice were exposed
to 0.5 g of the reinforcer pellets (14 mg Dustless Precision
Pellets, used in subsequent behavioral experiments; Bio-
Serv) in their home cages during the first day of food
restriction. Body weight was maintained at this level
throughout the experiment, and standard chow was pro-
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vided in the home cage at least 1 h after daily testing.
Mice were trained on sequential days in extra wide alu-
minum and polycarbonate Med Associates modular
mouse-testing chambers, each stationed inside a sound-
attenuating chamber and equipped with a white noise
generator, house light (both always on during all experi-
ments), and a tone generator. A horizontal array of five
illuminable nose-poke apertures formed one side of the
box, and on the other resided an illuminable pellet-
delivery magazine with an entry-detection photocell.
Chambers also contained two retractable ultrasensitive
mouse levers (2 g force requirement for actuation; Med
Associates); these were positioned one each on both
sides of the food magazine.

Training began with 2 d of familiarization to delivery of
food pellets to the magazine. Fifty pellets were delivered
to the magazine on a fixed-time 30 s schedule, each
followed by a 2 s illumination of the magazine. Ten daily
30 min sessions of instrumental training followed. Ses-
sions began with the extension of both levers, and re-
sponses on the active lever (designated left vs right in a
counterbalanced fashion across genotypes) resulted in a
50 ms tone pulse, which was accompanied by pellet
delivery and a 2 s illumination of the magazine light upon
completion of the ratio schedule. The first 10 pellets per
session were delivered on a fixed-ratio 1 schedule; sub-
sequently, pellets were delivered on a variable-ratio 2
schedule. Responses to the inactive lever were recorded
but had no programmed consequence. A 0.5 s timeout
followed each pellet delivery, during which responses
could not elicit delivery of another reward, but did count
toward completion of the next reinforcement schedule.

Sign tracking/goal tracking

Methods for sign-tracking/goal-tracking pavlovian
learning were modeled after Flagel et al. (2011). In the
instrumental conditioning studies (above), DATcre+;
NR17*"t mjce were phenotypically similar to DATcre—;
NR1™wt and DATcre—;NR17°¥fx  control  groups
(Figures 1, 2), indicating that they could act as adequate
controls; here, we treated them as such and compared
their behavior with DATcre+;NR17°¥% gnimals. A set of
63 experimentally naive animals was used (males only,
DATcre+;NR17"t n = 32; DATcre-+;NR17¥°x n = 31),
We also tested DATcre—;NR17*"t animals (males, n =
31) to provide further empirical support for the validity of
comparisons between DATcre+;NR17"t and DATcre+;
NR17ox/flox animals. The same schedule of caloric restric-
tion described above was initiated prior to behavioral
training. Animals first underwent 2 d of magazine training
in which 30 food pellets were delivered to the magazine
on a variable-time 60 s schedule. Fifteen daily sessions of
sign-tracking/goal-tracking conditioning began the next
day. These sessions consisted of 15 presentations on a
variable-time 180 s schedule of a CS (“lever-CS”). Each
lever-CS involved a 20 s extension of the lever to the right
of the food magazine; two food pellets were delivered to
the magazine coincident with lever-CS termination. Actu-
ations of the lever-CS were recorded but had no pro-
grammed consequences.
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On the day following the last conditioning session, all mice
underwent a single test of conditioned reinforcement,
wherein the two most lateral nose-poke apertures were
iluminated. Responses to the active aperture (designated
left vs right in a counterbalanced fashion across genotypes)
resulted in a 5 s extension of the lever-CS, while responses to
the inactive aperture were recorded but were without pro-
grammed effect. No food was delivered during this session.
The session ended 60 min after the first active aperture re-
sponse or after 90 min had elapsed, whichever occurred first.

Data analysis

Statistical tests, outlined in Table 1, were conducted using
Stata 13 (StataCorp LP). In all omnibus tests, DATcre (+ vs
—) and NR1 (flox/wt vs flox/flox) zygosity were entered as
between-subjects factors. In sign-tracking/goal-tracking ex-
periments, for comparisons between DATcre-+;NR17*/t
and DATcre+;NR17¥% mjice, NR1 genotype was the sin-
gular between-subjects factor; for comparisons between
DATcre—NR17*" and DATcre-+;NR17*" mice, DATcre
genotype was the singular between-subjects factor.

All datasets were inspected for conformity to assump-
tions of the general linear model. Where assumptions
were met, data were analyzed by univariate or repeated-
measures ANOVA, with t tests where appropriate. For
locomotor and learning experiments, we found significant
departures from assumptions of traditional repeated-
measures ANOVA, including violations of sphericity
and/or heterogeneous, correlated residuals. These were
not entirely unexpected, especially in our learning exper-
iments, because correlations between testing days
change as behavior progressively changes. Because
population-level analysis often does not accurately char-
acterize individual learning curves (Lashley, 1942; Estes,
1956; Gallistel et al., 2004; Verbeke and Molenberghs,
2009), generalized linear mixed models were used as a
means to address these assumption violations, leading to
better fits of the data by allowing subjects to vary with
respect to intercepts and slopes and accommodating
non-normal data distributions and nonconstant error vari-
ances/covariances. Models were fitted via maximum like-
lihood with cluster robust SEs using mean-variance
adaptive Gauss—-Hermite quadrature. Random subject-
specific intercepts and/or linear slopes across days and
their covariance were included on the basis of signifi-
cantly improved model fit (tested via likelihood ratio test-
ing of nested models). Distribution and link functions were
chosen on the basis of properties of the variable studied
and normality of the model residuals. Continuous data
were analyzed using Gaussian identity-link models (i.e.,
linear mixed models); heavily skewed continuous data
were modeled as log-normal. Log-link negative binomial
models were applied to overdispersed count data and
binomial logit models were applied to probability data.
Statistics presented are tests of fixed effects. Wald x?
tests of main effects and interactions were followed by
contrasts of simple effects and, where appropriate,
Bonferroni-adjusted tests of means.

Locomotor behavior measures (hnumber of x-axis beam
breaks) were analyzed across 5 min time bins; the bin was
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Table 1 Statistical tests used to analyze data
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Data structure Type of test

Post-hoc power

a Normal 2 X 2 ANOVA 0.06

b Negative binomial (overdispersed count) GLMM, RI, and S a

c Normal 2 X 2 X 6 repeated-measures ANOVA 0.27

d Negative binomial GLMM, RI, and S with UCS matrix a

e Negative binomial GLMM, RI, and S with UCS matrix (test of simple effects) 2

f Negative binomial GLMM, RI, and S with UCS matrix (Bonferroni-corrected a
post-hoc comparisons)

g Negative binomial GLMM, RI, and S with UCS matrix (test of simple effects)

h Negative binomial GLMM, RI, and S with UCS matrix (Bonferroni-corrected a
post-hoc comparisons)

i Negative binomial GLMM, RI, and S with UCS matrix (test of simple a
effects)

j Negative binomial GLMM, RI, and S with UCS matrix a

k Negative binomial GLMM, RI, and S with UCS matrix (test of simple 2
effects)

/ Negative binomial GLMM, RI, and S with UCS matrix (Bonferroni-corrected a

post-hoc comparisons)

m Negative binomial

GLMM, RI, and S with UCS matrix (Bonferroni-corrected a

post-hoc comparisons)

n Negative binomial GLMM, RI a

o Binomial GLMM, RI, and S with UCS matrix a

p Negative binomial GLMM, RI, and S with UCS matrix a

q Normal GLMM, RI, and S a

r Normal GLMM, RI, and S with UCS matrix a

s Normal GLMM, RI, and S with UCS matrix (Bonferroni-corrected a

post-hoc comparisons)

t Binomial GLMM, RI a

u Negative binomial GLMM, RI, and S 2

v Log-transformed normal GLMM, RI, and S a

w Binomial GLMM, RI, and S with UCS matrix a

X Negative binomial GLMM, RI, and S with UCS matrix 2

y Normal GLMM, RI, and S a

z Normal GLMM, RI, and S with UCS matrix a

aa Binomial GLMM, RI a

bb  Binomial GLMM, RI a

cc  Negative binomial GLMM, RI, and S a

dd  Log-transformed normal GLMM, RI, and S 2

ee  No assumptions made Spearman’s p nonparametric correlation >0.96°

ff No assumptions made (underlying Wilcoxon rank sum nonparametric test 0.05, 0.07°
distributions unknown; high kurtosis (two-sample Mann-Whitney)
and skew)

gg  Proportions Fisher’s exact test for cross-tabs 0.12

hh  Normal Independent samples t tests, equal variances 0.08, 0.08, and 0.09

(tested by Levene’s test)
ii No assumptions made Wilcoxon rank sum nonparametric test 1.00°

(goal-tracker
distribution non-normal)

(two-sample Mann-Whitney)

GLMM, generalized linear mixed model; RI, random intercept; S, random slope (of repeated measure; UCS, unstructured covariance matrix between random
effects (UCS matrix; covariance was fixed to zero in other GLMM models). Estimates of observed (post hoc) power are for experimentally relevant interaction
effects. 2Estimates for main effects and interactions in GLMMS with Rl and/or S, and for normally distributed data with Rl and S are not readily calculable.
This is the result of the complex, nonclosed form nature of optimizations of GLMMs with multiple random effects, which renders estimation of power not di-
rectly derivable, nor estimation via brute force, highly repeated simulation readily feasible. ®Simulation assumes normal distributions. °Simulations assume (fit-

ted) Weibull distributions.

treated as a linear covariate. Free-food consumption
(ml/kg consumed) was analyzed with day of measurement
as a repeated measure. Because water consumption lev-
els were negligible, these data were not analyzed. Dopa-
mine utilization was analyzed as the ratio of metabolite
DOPAC content to dopamine content.

In all learning experiments, training day was treated as
continuous covariate, initially as a quadratic effect (i.e.,
curvilinear regression); if no quadratic effect of day was

May/June 2015, 2(3) e0040-14.2015

detected, it was removed, leaving the linear effect. For
instrumental learning, reinforcers earned across days
were analyzed, as were active and inactive lever presses.
For sign-tracking/goal-tracking data, we analyzed geno-
type effects on behavioral data acquired across succes-
sive sessions, mirroring the analysis in Flagel et al. (2011).
Sign tracking was quantified by analyzing (1) the proba-
bility of lever contact (contacts were defined as full
actuations of the lever-CS) during lever-CS presenta-
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tion, (2) total number of lever contact responses, and (3)
latency to contact the lever. Goal tracking was similarly
measured as the (1) probability of making a head entry
into the magazine during a lever-CS presentation, (2)
total number of head entries during the lever-CS pre-
sentations, and (3) latency to enter the magazine upon
lever-CS presentation. A “conditioning ratio” measure
of discriminative responding was also formed from
goal-tracking data, calculated by comparing magazine
head entries during the CS to those made during a time
period of equivalent duration immediately preceding
the CS (the latter termed the pre-CS period):
CS magazine entries / CS entries + Pre-CS entries.

We also calculated proposed conditional response “bias”
measures described by Meyer et al. (2012), wherein pheno-
typic tendency toward sign tracking versus goal tracking is
quantified by the following: (1) differences in response prob-
abilities, Pr(lever contact) — Pr(magazine entry), (2) a discrim-
ination index of responses, lever contacts — magazine
entries / lever contacts + magazine entries, and (3) relative
response latencies, X magazine entry latency — X lever
contact latency / CS duration (20 sec). These three indices
ranged from +1 to —1, representative of bias toward sign
tracking versus goal tracking, respectively. Their correlational
structure was explored, and they were then averaged to form a
conditional approach “summary bias score.” Summary bias
scores were further averaged over three session blocks. Distri-
butions of summary scores at the start and end of training were
analyzed using nonparametric tests. To investigate whether
any genotype effects on sign tracking were obscured by anal-
ysis of all subjects’ behavior simultaneously, we used the final
summary bias score (from the last three sessions) to designate
mice as either a sign tracker or goal tracker on the basis of
whether their score was positive or negative, respectively. Ge-
notype effects on designation distribution were analyzed with
Fisher’s exact test. We then plotted sign-trackers’ behavior and
goal-trackers’ behavior separately, visualizing learning rates
within each genotype/conditional response type combination.

Data from six subjects on day 8 were lost due to
technical failure. These data points were treated as miss-
ing at random in mixed model analysis.

Measures of responding for conditioned reinforcement
included number of lever-CSs earned and number of
active and inactive aperture nose pokes. Because sign
tracking has been associated with greater conditioned
reinforcement in rats (Robinson and Flagel, 2009; Flagel
et al., 2011; Lomanowska et al., 2011), we also compared
number of lever-CSs earned by animals designated sign
trackers with numbers earned by animals designated goal
trackers to establish whether the same relationship exists
in mice.

Figures are presented as mean = SE line plots or as
Tukey box-plots, the latter demonstrating spread about a
group median with plus symbols (+) demarcating group
means.

Results

Baseline characterization
In Figure 1A, Cre-mediated gene recombination can be
seen prominently in the substantia nigra pars compacta
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and the ventral tegmental area of the DATcre+ mouse,
consistent with its initial characterization (Bédckman et al.,
2006). Quantification of monoamine utilization by HPLC
indicated that neither the DATcre construct, nor the floxed
NR1 gene or its excision in DATcre+ subjects, affected
basal dopamine utilization within the ventral striatum (Figure
1B; DATcre: F4 34y = 0.01, p = 0.932; NR1: F; 39y = 1.51,p
= 0.229; DATcre x NR1: F(; 35y = 0.14,p = 0.713, a in Table 1).
DATcre—;NR1™*wt  DATcre—NR17fox  DATcre+;
NR17¥t and DATcre+;NR171% mice were initially
characterized for total ambulatory activity in a novel en-
vironment. As depicted in Figure 1C, mice exhibited re-
duced locomotor behavior over time as they habituated to
their surroundings; however, no main effects or interac-
tions involving DATcre genotype or NR1 genotype were
detected (DATcre: Wald x%, = 0.12, p = 0.731; NR1: Wald
x%, = 1.88, p = 0.171; DATcre X NR1: Wald x3, = 0.51,
p = 0.474; DATcre X NR1 X time bin: Wald x3, = 0.03, p
= 0.863, b), indicating that that locomotor behavior was
unaffected by genetic manipulation of NMDAR in dopa-
mine cells. All mice increased consumption of the sweet-
ened condensed milk solution across successive days of
access (Day: F; 300) = 12.38, p = 0.0005), but as depicted
in Figure 1D, no effects of genotype were detected (DAT-
cre: F(i300) = 0.06, p = 0.804; NR1: F(; 309= 0.02, p =
0.902; DATcre X NR1: F(4 300= 0.64, p = 0.423; DATcre
X NR1 X day: F4 350 = 0.001, p = 0.962, ¢).

Instrumental learning
Reinforcers earned during the instrumental conditioning
sessions are depicted in Figure 2A. Here, mixed model
revealed significant DATcre X day (Wald x¢= 4.24, p =
0.039), NR1 X day (Wald x3, = 4.65, p = 0.031), and
DATcre x NR1 X day interactions (Wald x%, = 7.38, p =
0.007, d). The NR1 X day interaction was significant
within DATcre+ animals (within DATcre+, Wald x3, =
15.55, p = 0.001; within DATcre-, Wald x3, = 0.18, p =
0.673, e), and successive Bonferroni-corrected contrasts
revealed that while behavior during the initial training
sessions did not differ, DATcre+;NR17¥/f°X mice earned
fewer reinforcers than DATcre+;NR17/"t mice on days
3-6 (Day 3: Wald x%, = 9.01, p = 0.027; Day 4: Wald x?,
= 13.69, p = 0.002; Day 5: Wald x%, = 16.89, p < 0.001;
Day 6: Wald x%, = 9.49, p = 0.021, f). Similar findings
were obtained when the omnibus interaction was ex-
plored via simple effects within NR1 genotypes (within
NR17*x DATcre x day: Wald x4, = 11.93, p = 0.0006;
within NR17*"! DATcre X day: Wald x%, = 0.25, p =
0.620, g). DATcre+;NR17°¥foX earned fewer reinforcers
than DATcre—;NR17"* mice on day 5 (Wald x%, =
10.14, p = 0.014), and a similar trend was found on day 6
(Wald x3, = 7.41, p = 0.065, h). Importantly, no differences in
instrumental behavior between DATcre—NR17¥ % DATcre—;
NR17xt  and DATcre+;NR17"t mice were detected
(genotype: Wald x%, = 4.07, p = 0.133; genotype X day:
Wald x2, = 0.76, p = 0.683, i).

To provide evidence that this difference in instrumental
responding reflected differences in associative behavior,
similar analyses were performed on number of active
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Figure 1 Initial characterization of the DATcre;NR1 mouse. A, Prominent Cre-mediated recombination is seen in the midbrain of
DATcre+ mice crossed with ROSA26-LacZ mice; arrows indicate ventral tegmental and substantia nigra pars compacta nuclei.
B, Ventral striatum dopamine turnover is indistinguishable among the four combinations of DATcre and NR1 genotypes. C, No
genotype effects were found over successive 5 min bins of locomotor behavior, and D, levels of consumption of a 10%
sweetened condensed milk solution were similar across all genotypes.

(reinforced) lever (Figure 2B) and inactive (nonreinforced)
lever (Figure 2C) presses. A DATcre X NR1 X day inter-
action for active lever presses (Wald x%, = 8.27, p =
0.004, j) was decomposed (within DATcre+, Wald x%, =
18.21, p = 0.00001; within DATcre—, Wald X(21) =019,p =
0.664, k) to reveal that fewer active lever presses were
made by DATcre+;NR17/X mice relative to DATcre+;
NR17**! mice, again on days 3-6 (Day 3: Wald x%, =
9.36, p = 0.022; Day 4: x3, = 14.88, p = 0.001; Day 5: x7,
= 18.45, p = 0.0002; Day 6: x%, = 9.72, p = 0.018, ).
Fewer active lever presses were also made by DATcre+;
NR17ox/flox mice relative to DATcre+;NR17* on day 5
(Wald x%, = 11.55, p = 0.007), with near-significant dif-
ferences on day 6 (Wald x%, = 7.72, p = 0.054, m). On the
other hand, no interactions with genotypes were found for
inactive lever pressing (DATcre X NR1: Wald x%, = 0.35,
p = 0.065; DATcre x NR1 X day: Wald xZ, = 0.60, p =
0.439, n), indicating that the impairment in instrumental

May/June 2015, 2(3) e0040-14.2015

behavior observed in animals lacking NMDA receptors in
dopamine neurons was selective to the active lever.

Sign tracking/goal tracking

The acquisition of both sign-tracking and goal-tracking
conditional responses is depicted in Figure 3, using the
dependent measures described in Flagel et al. (2011).
Because we present quantitative measures of both goal
tracking and sign tracking from the same subjects (rather
than segregating subjects as expressing one response or
the other; see Figure 5), the slope of goal-tracking learning
curves appears modest; discrimination ratios, however,
indicate clear evidence of learning. Goal tracking tended
to be expressed first (likely due to the fact that we con-
ducted magazine training prior to pavlovian conditioning),
as can occur in rats (Meyer et al., 2012). In a subset of
animals, goal-tracking is then diminished as it undergoes
response competition during the emergence of sign-
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tracking behaviors. Importantly, in this subpopulation, we
detected both reliable and vigorous sign-tracking behavior.

Analyses comparing goal-tracking behavior (Figure
3A-C, left) of DATcre+;NR17¥foX mice and DATcre+;
NR17"t mice revealed no effects of genotype on the
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probability of making a magazine head entry during the
lever-CS (genotype: Wald %, = 0.29, p = 0.592; geno-
type X day: Wald x3, = 1.22, p = 0.268, 0); moreover,
there were no effects of genotype on number of magazine
entries during the lever-CS (genotype: Wald x4, = 0.74, p
= 0.389; genotype X day: Wald xZ, = 0.66, p = 0.418, p).
We also analyzed the discrimination ratio between CS and
pre-CS period responding, again finding no genotype
effects (plotted on right-hand y-axis of Figure 3B; geno-
type: Wald %, = 0.01, p = 0.913; genotype X day: Wald
x4 = 0.76, p = 0.384, q). Though a significant day X
genotype effect on latency to enter the magazine upon
lever-CS onset was found (Wald xZ, = 3.90, p = 0.048, 1),
post hoc tests did not reveal any significant differences
between groups on any of the 15 d of training (all ps >
0.076 uncorrected for multiple comparisons; all ps =
1.000 Bonferroni corrected, s). Thus, with the exception of
a marginal omnibus test suggesting deviations in re-
sponse latency, these analyses do not support altered
discriminated goal approach after loss of NMDA recep-
tors in dopamine neurons.

Surprisingly, analyses of the development of corre-
sponding lever-CS approach/sign-tracking behaviors
(Figure 3A-C, right) also did not reveal evidence of geno-
type effects: DATcre+;NR17¥°X mice and DATcre+;
NR17*"t ‘mjce approached and actuated with the
lever-CS with similar probabilities as conditioning ses-
sions progressed (genotype: Wald x3, = 1.48, p = 0.223;
genotype X day: Wald x3, = 0.001, p = 0.969, t), making
similar numbers of lever contacts (genotype: Wald x%, =
1.49, p = 0.222; genotype X day: Wald x4, = 1.01, p =
0.314, u) and doing so with latencies that did not differ
(genotype: Wald x4, = 0.35, p = 0.553; genotype X day:
Wald x3, = 0.03, p = 0.874, v).

We also compared NR17"t animals that were either
DATcre+ or DATcre— to establish whether Cre-mediated
deletion of a single NR1 allele was sufficient to alter
goal-tracking or sign-tracking responses. Analyses of
these two groups indicated that goal-tracking behaviors
were not significantly different (probability of head entry
during lever-CS, genotype: Wald x3, = 0.04, p = 0.839;
genotype X day: Wald x%, = 0.49 p = 0.484, w; number
of head entries, genotype: Wald xZ, = 0.04, p = 0.850;
genotype X day: Wald xZ, = 0.25 p = 0.616, x; discrim-
ination ratio, genotype: Wald x3%, = 0.73, p = 0.393,
genotype X day: Wald x%, = 0.04 p = 0.842, y; magazine
entry latency, genotype: Wald x%, = 0.07, p = 0.784;
genotype X day: Wald xZ, = 0.25 p = 0.833, z). DATcre—;
NR17*"t and DATcre+;NR17*" differed in their proba-
bility of actuating the lever during a lever-CS (genotype:
Wald x%, = 5.91, p = 0.015; genotype X day: Wald xZ, =
3.77, p = 0.052, aa). Nevertheless, like DATcre+;
NR17%t mice, when DATcre—;NR17“"! animals were
compared with DATcre+;NR17¥X knock-out mice lack-
ing both NR1 alleles in dopamine neurons, no differences
were found (genotype: Wald x%, = 0.10, p = 0.755; ge-
notype X day: Wald x%, = 1.83, p = 0.176, bb). DATcre—;
NR17x"t and DATcre+;NR17*"t expressed other sign-
tracking measures at similar rates (number of lever
contacts, genotype: Wald x3, = 1.67, p = 0.196; geno-
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Figure 3 Genetic deletion of NMDAR in dopamine neurons is without effect on sign-tracking or goal-tracking responses during
pavlovian approach learning. Mice with two floxed NR1 alleles (knock-outs) engage in goal-tracking and sign-tracking behaviors at
levels similar to heterozygote controls, as measured by probability of a single magazine entry (left) or lever contact (right) during
lever-CS presentation (A) and number of magazine head entries (left) and lever contacts (right) during lever-CS presentation (B). For
head entries (left), the ratio between responding during the CS and pre-CS (the latter an equivalent duration preceding period; see
Materials and Methods), a measure of discriminative approach behavior, is plotted on the y-axis (right). Genotype also did not affect
latency to enter the magazine (left) or contact the lever-CS (right) upon its extension (C).

type X day: Wald x%, = 0.26, p = 0.610, cc; lever contact
latency, genotype: Wald x%, = 0.23, p = 0.629; genotype
X day: Wald xZ, = 0.08 p = 0.778, dd). Thus, the behavior
DATcre—;NR1™"t and DATcre+;NR17"! was gener-
ally equivalent, supporting the use of DATcre+;NR17ox/Wt
as controls with DATcre+;NR17o¥flox knock-outs for the
main comparisons described above.

Because sign-tracking responses tend to come at the
expense of goal-tracking responses, and vice versa, we

May/June 2015, 2(3) e0040-14.2015

calculated relative response bias scores on the basis of
probabilities, responses, and latencies to respond to the
lever-CS versus the food magazine (see Materials and
Methods). Individual scores, averaged across 3 d blocks,
demonstrated significant pairwise correlations that in-
creased in magnitude across training (Days 1-3: proba-
bility vs response, Spearman’s p = 0.367, p = 0.003;
probability vs latency, Spearman’s p = 0.934, p < 0.001;
latency vs response, Spearman’s p = 0.328, p = 0.009;
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Figure 4 Distributions of conditional approach summary bias. Summary bias scores, formed from relative probability, response, and
latency data for sign-tracking and goal-tracking responses for individual mice (see Materials and Methods), are plotted in 3 training
day bins. Positive values indicate a tendency to sign track and negative values indicate a tendency to goal track. Goal tracking is
dominant early in training, but sign tracking emerges progressively across successive days; however, no significant differences in
score distributions were found between genotypes. Closed box-plots, DATcre+;NR17*" (partial loss control, “flox/wt”); open

box-plots, DATcre-+;NR17*/foX (knock-out, “flox/flox”).

Days 13-15: probability vs response, Spearman’s p =
0.720, p < 0.001; probability vs latency, Spearman’s p = 0.969,
p < 0.001; latency vs response, Spearman’s p = 0.698, p <
0.001, ee). The three scores were then averaged to form a
summary bias score, as described previously (Meyer
et al.,, 2012). Plotted in Figure 4, summary bias scores
above zero indicate a tendency to sign track rather than
goal track, and negative values correspond to a bias
toward goal tracking. At the start of training, summary
bias scores were similar in both genotypes (Wilcoxon
rank sum, Days 1-3: z 0.007, p = 0.994), and no
genotype differences were found by the conclusion of
testing (Wilcoxon rank sum, Days 13-15,z = 1.650, p =
0.099, ff).

We designated mice as sign trackers or goal trackers
according to whether their final 3 d average summary bias
scores were positive or negative. A bias toward the sign-
tracking conditional response, under this scheme of cat-
egorization, occurred in fewer mice than did goal tracking

May/June 2015, 2(3) e0040-14.2015

(n =11 vs n = 52; n = 5 additional mice were found to
make sign-tracking responses, but in magnitudes that did
not exceed their goal-tracking behaviors). Relative rates
of phenotype designations did not differ between DAT-
cre+;NR17°¥foX mice and DATcre+;NR17"t mice (7 of
31 and 4 of 32, respectively, designated sign trackers;
Fisher’s exact test, p = 0.337, gg). Reasoning we might
be able to more sensitively observe differences in the rate
of learning by examining only their respective conditional
response, we assessed the acquisition of goal-tracking
behaviors in goal trackers exclusively and the acquisition
of sign-tracking behaviors in sign trackers exclusively, as
shown in Figure 5A-C (left and right, respectively). Though
goal-tracking behavior appears similar to that expressed
by the sample as a whole, visual inspection of Figure 5
suggests that among sign trackers, DATcre-+;NR17x/flox
mice express a greater degree of sign-tracking behavior-
opposite of the hypothesized effect. However, because
comparisons of summary bias score distributions did not
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Figure 5 Behavior plotted according to conditional response designation. Animals with a positive summary bias score for days 13-15
were designated sign trackers; those with negative scores were designated sign trackers. As in Figure 3, probability of a single
magazine entry (left) or lever contact (right) during lever-CS presentation (A); number of magazine head entries (left) and lever contacts
(right) during lever-CS presentation, with the ratio between CS and pre-CS responding plotted for head entries on the right-hand
y-axis (B); and latency to enter the magazine (left) or contact the lever-CS (right) upon its extension (C) are measured. Sign-tracking
DATcre+;NR1ex/flox mice appear to display a greater degree of sign-tracking behaviors than controls.

reach traditional levels of statistical significance, no addi-
tional exploratory statistical evaluations of these data
were conducted.

Finally, the ability of the lever-CS to support new learn-
ing via conditioned reinforcement, a phenomenon ele-
vated in sign-tracking animals (Robinson and Flagel,
2009; Flagel et al., 2011; Lomanowska et al., 2011) and
considered reflective of incentive motivational properties
acquired by cues (Berridge, 2000; Flagel et al., 2009), was

May/June 2015, 2(3) e0040-14.2015

evaluated. Mice were allowed to make nose-poke re-
sponses to elicit brief presentations of the lever-CS during
a single session that followed the last day of conditioning.
As shown in Figure 6, the number of lever-CS presenta-
tions earned by DATcre+;NR17* mice and DATcre+;
NR17#°% mice did not significantly differ (ts;, = 0.526,
p = 0.601), nor did the number of active aperture (g1 =
0.559, p = 0.551) or inactive aperture (tsq) = 0.553, p =
0.581, hh) responses. However, as occurs in rats, mice
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Figure 6 Test of conditioned reinforcement. Mice were allowed
to earn brief presentations of the lever-CS by performing a novel
instrumental response. No differences between genotypes in the
number of lever-CSs earned, and nor responses to the active or
inactive nose-poke apertures were found.

designated sign trackers exhibited higher levels of condi-
tioned reinforcement than mice designated goal trackers,
earning more lever-CS presentations (Wilcoxon rank sum,
z = —2.608, p = 0.0009, ii).

Discussion

Here, the effects of genetic excision of the NMDAR from do-
pamine neurons on associative reward-related learing were
evaluated. Mice lacking NMDAR in dopamine neurons exhib-
ited impaired instrumental learning but normal sign-tracking
and goal-tracking responses in a pavlovian conditioning pro-
cedure. These results are presented against the backdrop of
normal exploratory locomotion and palatable food consump-
tion, eliminating these ancillary phenotypes as likely explana-
tions for the observed learning effects.

NMDAR activity in dopamine neurons contributes to
acquisition of an appetitive instrumental response
Loss of NMDAR in dopamine neurons resulted in slower
acquisition of instrumental responding; this finding is in
general agreement with results gathered earlier using a
similar mouse model (Zweifel et al., 2009). Qualitative
aspects of the particular pattern of results offer indica-
tions of the nature of the behavioral deficit observed: the
absence of group differences during the first and final
days of training suggests that genotype did not affect
baseline lever-pressing rates per se, and the similar as-
ymptotic rates of pressing at the end of training indicates
that motivation to obtain the food reward may not be
sensitive to genotype. The impairments in a spontane-
ously acquired instrumental response were observed only
during intermediate stages of the learning process, sug-
gesting that phenotypic differences in mice lacking
NMDAR in dopamine neurons relate to altered learning
capabilities.
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This result suggests a causal role for NMDA-mediated
neurotransmission in dopamine neurons in instrumental
learning. One possibility is that the loss of NMDA recep-
tors disables one mechanism that contributes to phasic,
stimulus-related dopamine neuron firing (Suaud-Chagny
et al.,, 1992; Zweifel et al., 2009; Parker et al., 2010).
Additionally, loss of the NMDAR eliminates NMDAR-
mediated synaptic plasticity within dopamine neurons
(Engblom et al., 2008; Zweifel et al., 2008; Luo et al.,
2010). Thus, while the behavioral effect observed may
well relate to altered phasic release, it is possible that
other mechanisms are at play, including loss of synaptic
plasticity between glutamatergic inputs and dopamine
neurons or other downstream molecular changes. Be-
cause we did not measure NMDA expression or monitor
dopamine activity in the context of behavior, it is difficult
to disentangle these different interpretations, and further
experiments are needed to parse these possibilities.

Our data are, however, consistent with a number of
optogenetic studies wherein response-contingent optical
activation of dopamine neurons either facilitated an ap-
petitive instrumental response or was sufficient to support
responding alone (Adamantidis et al., 2011; Witten et al.,
2011; Kim et al., 2012). Moreover, after asymptotic acqui-
sition of the relationship between a CS that was predictive
of periods of response-contingent reward availability (i.e.,
a discriminative stimulus), transient optical activation of
dopamine neurons delivered concurrently with presenta-
tion of a compound CS prevented the normally observed
blocking effect (Steinberg et al., 2013). Further, the be-
havioral impact of unexpected negative shifts in outcome
value was also diminished by activation of dopamine
neurons. These findings are consistent with phasic dopa-
mine acting as a prediction error signal that causally
drives learning. The optogenetic studies are convincing,
and thus we argue that the current data are parsimonious
with a hypothesized role for phasic dopamine activity in
reward learning. That said, it remains unclear how light-
evoked events interact with ongoing endogenous phasic
events and tonic activity states, and whether they repro-
duce the postsynaptic effects of normal stimulus-elicited
phasic events. Moreover, experimenter-prescribed stim-
ulation timing is likely unable to precisely mimic ongoing
changes in temporal relationships between the onset of
phasic dopamine bursts and environmental events, for
example, as a stimulus-outcome relationship is learned
and phasic signals shift from the time of reward delivery to
cue onset (Ljungberg et al., 1992; Day et al., 2007). Here,
we demonstrate that instrumental learning is modulated
by NMDA-mediated activity in dopamine neurons and by
putative attenuation of phasic dopamine signals that were
endogenously generated by afferent inputs to dopamine
neurons in response to environmental stimuli.

Loss of NMDARSs in dopamine neurons does not
impact frequency or acquisition of a sign-tracker
conditional response

Sign-tracking rats—those that approach and interact with
a predictive cue (e.g., the extension of a lever-CS) during
an autoshaping task, often at the expense of approaching
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the location of reward delivery (Williams and Williams,
1969)—are thought of as exhibiting a form of incentive
salience attribution over and above the pavlovian contin-
gency learning exhibited by goal-tracking rats. These dif-
ferential conditional responses offer an opportunity to
distinguish between the prediction error and incentive
salience attribution perspectives of dopamine. Flagel
et al. (2011) provided causal evidence that dopamine
receptor activity is required for sign tracking, observing a
deficit in acquisition of sign tracking, but not goal track-
ing, after treatment with a dopamine receptor antagonist.
Importantly, sign-tracking animals also display more
prominent CS-evoked dopamine as they learn their con-
ditional response than do goal trackers (Flagel et al.,
2011). Because goal trackers and sign trackers must both
learn the contingency between the CS and the US to
express their responses, it has been suggested that the
phasic dopamine release patterns do not simply teach
contingency learning. Phasic dopamine release is argued,
in this case, instead to be necessary for a cue to acquire
incentive properties, progressively increasing its motiva-
tional pull on behavior (and, correspondingly, progres-
sively increasing sign-tracking conditional responses) as
CS-US pairings continue (Flagel et al., 2011).

Because NMDAR loss in dopamine neurons results in
attenuation of the magnitude of phasic dopamine release
to ~30% that of controls (Zweifel et al., 2009; Parker
et al., 2010), this genetic model applied to the sign-
tracker/goal-tracker paradigm offered an experimental
design equipped to distinguish between prediction error
and incentive salience perspective. If the relationship be-
tween the magnitude of CS-evoked dopamine and sign
tracking is causal, we hypothesized that a putative reduc-
tion in the amplitude of NMDA-mediated dopamine re-
lease should reduce the frequency of sign-tracking
behavior or the rate of its acquisition. We found no evi-
dence to support this conclusion: for all dependent mea-
sures; no differences in the form of conditional responses
expressed by mice lacking NMDAR in dopamine neurons
and control mice were detected.

In addition to failing to support the incentive salience
perspective of dopamine activity in reward learning, we
also did not yield evidence of a contribution of NMDA-
mediated dopamine activity and/or phasic release to pav-
lovian goal approach, nor have several others using a
similar mouse genetics approach (Parker et al., 2010,
2011). Given that prediction error signals in the mesen-
cephalon have been observed during pavlovian condition-
ing, across a wide variety of task conditions and
parameters, but most extensively characterized within the
context of appetitive pavlovian conditioning (Ljungberg
et al., 1992; Schultz et al., 1993, 1997; Waelti et al., 2001;
Fiorillo et al., 2003), and because pharmacological strat-
egies have shown that the pavlovian approach has been
shown to be dependent upon NMDAR activity in the
ventral tegmental area (Stuber et al., 2008; Ranaldi et al.,
2011), this is a surprising result.

One possibility is that the reported residual 30% phasic
signal in the DATcre;NR1 mouse may be sufficient to
support pavlovian approach learning. Given that reward
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preference and reward learning is possible even after
massive dopamine depletions (Cannon and Palmiter,
2003; Robinson et al., 2005), this residual phasic activity
may indeed provide more than adequate signal to noise
necessary for pavlovian delay conditioning, especially
when associative contingencies are binary and determin-
istic (i.e., P(USICS) = 1, P(USI~CS) = 0). The magnitude
of midbrain neuron burst responses encodes the relative
value of predictive stimuli (Fiorillo et al., 2003); perhaps a
behavioral impairment would be revealed in a scenario
where 30% of the normal signal-to-noise in dopamine
neurons provides insufficient dynamic range (e.g., dis-
criminating between two stimuli with marginal differences
in predictive value). Given, however, that sign-tracker rats
are distinguished from goal-tracking rats by a quantitative
difference in CS-evoked dopamine (Flagel et al., 2011), if
this difference causally influenced the form of conditional
response expressed, we would still expect a measureable
difference in the degree of sign-tracking behavior in DAT-
cre+:;NR1¥°x mjce that have a dramatic, albeit not full,
diminution of phasic dopamine release. There was no
indication of this in our data. Alternatively, it is possible
that a loss of NMDAR-mediated synaptic plasticity or
other NMDAR-dependent physiological mechanisms in
mice lacking NMDAR in dopamine neurons obscured the
observation of a behavioral difference in sign tracking.
Additionally, it is possible that these behaviors may be
supported by dopaminergic projections to the basolateral
amygdala or prefrontal cortex, as these cells express very
little DAT (Lammel et al., 2008); therefore, NR1 recombi-
nation may have not fully occurred. However, a study
using PCR to detect recombination of NR1 in the SN/VTA
in the same mouse model found successful recombina-
tion of NR1 in 34 of 36 such cells (Luo et al., 2010). Thus,
Cre recombinase expression appears to be sufficient to
drive excision of NR1 in the majority of dopaminergic
neuronal populations, even those expressing very low
levels of DAT.

The role of NMDAR in dopamine neurons in reward-
related behaviors

What is clear from these experiments is that NMDAR-
mediated activity in dopamine neurons is not required to
adaptively respond in the pavlovian approach paradigm.
Interestingly, in addition to the pavlovian approach, other
phenotypes that were historically thought to require
NMDAR in dopamine neurons, such as sensitization to
psychostimulants (Kalivas and Alesdatter, 1993; Wolf
et al.,, 1994, 1998; Vanderschuren and Kalivas, 2000),
have also turned out to be unaffected in their absence
(Zweifel et al., 2008; Luo et al., 2010; Beutler et al., 2011).
Given that the degree of NMDAR-dependent plasticity in
dopamine neurons—expressed as increased AMPA re-
ceptor expression or current—induced by drugs of abuse
correlates with degree of behavioral sensitization ob-
served (Ungless et al., 2001; Borgland et al., 2004) and
that NMDAR-dependent plasticity is observed selectively
during periods of active learning of pavlovian conditioning
(Stuber et al., 2008), these results are especially unantic-
ipated. However, several studies have implicated NMDAR
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in non-dopaminergic cell types or brain regions as re-
sponsible for these phenomena (Luo et al., 2010; Beutler
et al., 2011; Parker et al., 2011).

Because they co-occur and share dopaminergic sub-
strates, locomotor sensitization to psychostimulants has
been linked with heightened or sensitized incentive sa-
lience attribution (Robinson and Berridge, 1993; Wyvell
and Berridge, 2001; Tindell et al., 2005; Olausson et al.,
2006; Ostlund et al., 2014), including sign-tracking behav-
ior (Doremus-Fitzwater and Spear, 2011). Supporting this
link, we observed that elimination of NMDA receptors on
dopamine neurons did not affect pavlovian sign tracking,
and previous studies using similar models have also
found locomotor sensitization is not dependent upon
NMDARs in dopamine neurons (Engblom et al., 2008;
Zweifel et al., 2008; Luo et al., 2010; Beutler et al., 2011).
Thus, while a host of neural mechanisms likely influence
the development of a sign-tracking conditional response
(Flagel et al., 2007, 2010; Lomanowska et al., 2011; Fitz-
patrick et al., 2013; Perez-Sepulveda et al., 2013; Haight
and Flagel, 2014), our data indicate that NMDAR activity
in dopamine neurons—along with its contribution to pha-
sic dopamine release—is not among these factors.

Previous work has demonstrated persistent elevations
in synaptic AMPA/NMDA ratios in dopamine neurons of
animals self-administering cocaine, while AMPA/NMDA
ratios were only transiently elevated in animals respond-
ing for food (Chen et al., 2008). NMDAR dynamics are
therefore susceptible to modulation by rewarding experi-
ences and reward modality. Thus, our observation that
the acquisition and performance of pavlovian conditional
responses were not different in mice lacking NMDAR in
dopamine neurons may depend on the specific experi-
mental conditions used here. We note, however, that
enhanced AMPA/NMDA ratios have been observed dur-
ing pavlovian conditioning for food (Stuber et al., 2008),
and in a similar mouse model of loss of NMDARs in
dopamine neurons, cue-based learning was impaired
(Zweifel et al., 2009). Conversely, the acquisition of a
pavlovian conditioned place preference for cocaine is
unaffected in knock-out mice (Engblom et al., 2008; Luo
et al., 2010; but see Zweifel et al., 2008). These data do
not support the simple idea that NMDAR are involved in
pavlovian responses to drugs but not food.

Sign tracking in mice

Sign-tracking behavior comparable to that observed to-
ward a lever-CS in rats has been difficult to reproduce in
C57BL/6J mice: mice either show no lever-CS-directed
behavior (Zweifel et al., 2009; Parker et al., 2011) or only
demonstrate conditional locomotion in the vicinity of the
lever-CS (Gore and Zweifel, 2013). Sign tracking in the
form of full lever actuations, however, has not been re-
ported previously.

Of interest was the considerable individual variation in
whether a sign-tracking or goal-tracking conditional re-
sponse emerged. Mice generally began with goal tracking
(presumably because of previous magazine training), but
20-25% then developed overt sign-tracking conditional
responses, some without any appreciable accompanying
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goal tracking (see summary bias score distribution, Figure
4), ultimately pressing the lever several hundred times per
session; others continued goal tracking, and others per-
formed both behaviors. Given that the mice studied here
are, at least within a genotype group, isogenic, this vari-
ation in response type suggests considerable influence of
(unmeasured) environmental or other nonheritable genetic
factors, as has been observed in rats (Lomanowska et al.,
2011).

While the sign-tracking conditional responses mea-
sured here appeared to be less common than in published
data on rat behavior, and its onset is likely delayed relative
to rats as well, video observation of testing chambers
indicated that the sign-tracking phenotype is very much
present in mice: those that engaged in this behavior did it
consistently and vigorously, engaging in the same rapid
biting, gnawing, and invigorated approach and contact
with the lever-CS reported in rats (Zener, 1937; Jenkins
and Moore, 1973; Boakes, 1977; Tomie, 1996; Flagel
et al., 2010). Behavior was many times observed to be
intensely focused toward the lever-CS, expressed as ste-
reotypic sniffing and various other interactions, which did
not necessarily result in a lever actuation; consequently, it
is likely that mice sign track more often than we or others
have reported. In addition, as has been repeatedly dem-
onstrated in the rat (Robinson and Flagel, 2009; Flagel
et al.,, 2011; Lomanowska et al., 2011), responding for
conditioned reinforcement was higher in mice that sign
tracked than in mice that goal tracked, indicating that
similar phenotypic covariations exist across both species.

Limitations

Although previous studies have, we did not demonstrate
recombination of NR1 in dopamine neurons or measure
phasic dopamine release here, and, consequently, some
caution must be taken in the interpretation of the present
findings (Engblom et al., 2008; Zweifel et al., 2008, 2009,
2011; Luo et al., 2010; Parker et al., 2010). Additionally,
the finding of a DATcre X NRT1 interaction for instrumental
learning in the present study (i.e., both Cre recombinase
and two floxed NR1 alleles were required to observe
impairment) demonstrates that the model system func-
tions as expected, at least in the context of instrumental
reward learning.

Critically, as mentioned previously, the conditional in-
activation of NR1 blocks NMDAR currents, which reduces
phasic firing, but it also eliminates NMDAR-mediated syn-
aptic plasticity (Engblom et al., 2008; Zweifel et al., 2008;
Luo et al., 2010). This presents considerable difficulties
with respect to interpreting our results strictly from the
perspective of phasic dopamine release. Thus, although
this study is not equipped to fully rule out a role for phasic
dopamine release in conditional responses during pavlov-
ian approach, we can conclude that they do not rely upon
NMDAR-related plasticity in dopamine neurons or
NMDAR-mediated components phasic activity, irrespec-
tive of whether it takes the form of goal tracking or sign
tracking. More work is needed to fully ascribe the present
results to differences in phasic dopaminergic neuron ac-
tivity.
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Because the transgenic mouse model used here is a
constitutive knock-out, developmental alterations may
have influenced the observed results. ROSA26-LacZ re-
combination is observable in the DATcre mouse used
from E15 onward, and although no changes in DAT pro-
tein or D1 or D2 mRNA levels are observed (Backman
et al., 2006), AMPA currents appear to be upregulated in
a similar mouse line lacking NMDAR in dopamine neurons
(Engblom et al., 2008; Zweifel et al., 2008). Little other
work has been done regarding compensatory alterations
in this mouse model, therefore, this remains an interpre-
tational limitation.

Finally, our study lacked secondary confirmation of
results to increase the confidence ascribed to the null
results in the sign-tracking/goal-tracking experiment (e.g.,
a subthreshold dose of an NMDA antagonist to mimic the
30% loss of phasic release); future studies are needed to
address this limitation.

Conclusions

Here, we utilized a mouse model of compromised NMDA-
dependent dopamine activity to characterize multiple
components of reward-driven associative learning. Com-
plementing the temporal precision of the optogenetics
approaches, this approach allowed us to study the be-
havioral impact of putatively dampened endogenously
generated phasic dopamine signals and loss of NMDAR-
related synaptic plasticity. Our data revealed a clear role
of NMDA activity in dopamine neurons in the acquisition
of instrumental learning. We then tested causally, for the
first time, predictions about the role of phasic dopamine in
reward learning made by the incentive salience that con-
trast with those made by prediction error accounts.
Though dopamine voltammetry data indicated a relation-
ship between elevated CS-evoked dopamine activity and
sign-tracking behavior (Flagel et al., 2011), our results,
though not without notable interpretational limitations,
lend no support to the conclusion of a causal relationship:
the expression of conditional responses, regardless of
whether they took the form of goal tracking or sign track-
ing, was unaffected in a model of eliminated NMDAR
activity and putatively diminished NMDA-dependent pha-
sic dopamine release. Thus, conditional responses asso-
ciated with incentive salience attribution may not be under
direct influence of the magnitude of NMDAR-regulated
stimulus-evoked phasic release.

Therefore, our results are not fully consistent with the
incentive salience perspective of phasic dopamine. They
also are not necessarily uniformly consistent with a pre-
diction error account of dopamine because putatively
diminished phasic dopamine release did not affect pav-
lovian approach learning in any measured outcome. Thus,
our results may be more congruent with a multifaceted
conceptualization of dopaminergic transmission, wherein
the behavioral significance of phasic dopamine could shift
adaptively between prediction error, incentive salience
attribution, and other forms of behavioral invigoration and
flexibility, or combinations thereof, depending on the par-
ticular configuration of biological demands, internal goal
states, and motivators present in the environment. This

May/June 2015, 2(3) e0040-14.2015

New Research 15 of 18

view is consistent with traditional views of dopamine as a
neuromodulator, interacting with and adjusting ongoing
circuit activity in a manner that can give rise to a multi-
plicity of context-dependent behavioral phenomena.
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