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Abstract

Food sharing is vital for a large number of species, either solitary or social, and is of particular importance within highly
integrated societies, such as in colonial organisms and in social insects. Nevertheless, the mechanisms that govern the
distribution of food inside a complex organizational system remain unknown.

Using scintigraphy, a method developed for medical imaging, we were able to describe the dynamics of food-flow inside an
ant colony. We monitored the sharing process of a radio-labelled sucrose solution inside a nest of Formica fusca. Our results
show that, from the very first load that enters the nest, food present within the colony acts as negative feedback to entering
food. After one hour of the experiments, 70% of the final harvest has already entered the nest. The total foraged quantity is
almost four times smaller than the expected storage capacity. A finer study of the spatial distribution of food shows that
although all ants have been fed rapidly (within 30 minutes), a small area representing on average 8% of the radioactive
surface holds more than 25% of the stored food. Even in rather homogeneous nests, we observed a strong concentration of
food in few workers. Examining the position of these workers inside the nest, we found heavily loaded ants in the centre of
the aggregate. The position of the centre of this high-intensity radioactive surface remained stable for the three consecutive
hours of the experiments.

We demonstrate that the colony simultaneously managed to rapidly feed all workers (200 ants fed within 30 minutes) and
build up food stocks to prevent food shortage, something that occurs rather often in changing environments. Though we
expected the colony to forage to its maximum capacity, the flow of food entering the colony is finely tuned to the colony’s
needs. Indeed the food-flow decreases proportionally to the food that has already been harvested, liberating the work-force
for other tasks.
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Introduction

Spatial information plays an essential role in the dynamics of

biological or artificial systems. Many studies have been dedicated

to network dynamics [1] and the patterns of diffusion in ecological

systems [2] or in unicellular populations [3]. In contrast, the

dynamics and spatial organisation of highly integrated societies,

such as social insects, are poorly understood. The spatial

components of a society define its’ social stucture, and vice versa,

via a network of feedback loops.

Incorporating division of labour and complex communication

pathways, communities of social insects are a prime example of

social organisation. For example, foragers have to harvest, often

cooperatively, the food requirements of the whole nest. A chain of

demand, principally derived from the larvae and the queen,

regulates foraging activity according to the colony’s needs [4,5].

The spatial distribution of individuals in the colony has long been

overlooked, despite the fact that it clearly affects social activity,

communication, and various regulation pathways. Intuitively, the

activity of the colony also affects their spatial organization.

Several studies have demonstrated a relationship between task

specialization and position inside the nest [6,7] which, according

to some authors, might be the consequence of a response to a

gradient or heterogeneity [8–10]. Nevertheless, we cannot ignore

the aggregation phenomenon [11] and the organisation occurring

within and between aggregates. This aggregation process can also

be observed for resources: e.g. combs inside a hive are organized

so that pollen cells (the principal food source for the larvae) are at

the periphery of the brood combs whereas honey combs are

external [7,12]. This spatial aggregation of food reserves is

naturally the result of worker ant behaviour.

The direct exchange of food (as opposed to separate feeding

from a common food source) is widespread among animal species

from unicellular organisms to mammals, and is often considered to

be a means of information exchange e.g. in presocial insects

[13,14], in spiders [15], in vampire bats [16] and birds [17].

However, in animal societies, the importance of food exchanges

has reached its pinnacle in the colonial organisms and in social

insects [18–20].

Food exchanges are at the basis of social organisation and

fundamental to the division of labour in societies. For social insect

species that rely principally on liquid food, foragers ingest food at

the source, store it in their ‘social stomach’ and bring it back to the

nest [21,22]. The weight that can be stored in the social stomach is
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comparable to the weight of the ant itself [23]. Once in the

midgut, food can be either digested or regurgitated to another

worker by trophallaxis; defined as the transfer of fluids among

members of a society through mouth-to-mouth (stomodeal) or

anus-to-mouth (proctodeal) feeding [24]. Because of its importance

in social organization, some authors support the hypothesis that

trophallaxis is one of the key factors necessary for the evolution of

eusociality [25–29]. Beyond its main feeding role, food exchanges

reinforce social cohesion and trophallaxis is a communication

channel [30,31]. According to the gestalt theory [32], trophallaxis

facilitates rapid homogenization of the cuticlar hydrocarbons that

are the basis of colonial odour [33,34]. Various pheromones may

also be exchanged during trophallaxis [35,36]. In termites and

cockroaches, proctodeal trophallaxis is crucial for replacing the gut

endosymbionts that are lost at every molt [13].

Despite the central role of trophallaxis, food-flow and spatial

organization of food reserves within a colony, these subjects have

been little studied. To date, most work in this area has focussed on

the flow of food in fire ants Solenopsis invicta in relation to its possible

contribution to pest control. These studies mainly focussed on the

final distribution of food in the nest [37–42], on the global

distribution of food [43,44] and on the quantities received by

different groups [45,46]. These studies used dyes [47,48] or

radioactive markers [40,41,43,46,49] to track food, but the

measures of flow (i.e. the quantity of food received as a function

of time) were made on a limited group of individuals removed

from the colony. These methodologies are invasive and do not

yield information on the dynamics of the spatial distribution of the

food. The lack of spatio-temporal studies is mainly due to the

absence of a methodology that allows accurate monitoring of food-

flow.

We present here, to our knowledge for the first time, a spatio-

temporal study of the distribution of food in ant nests. Using a

novel approach based on medical imagery (scintigraphy), we

investigate the global dynamics and kinetics of food-flow in a

spatial framework. We evaluate some of the quantitative rules

which affect food-flow, such as how the harvested quantity

regulates food-flow in the nest or how food aggregation evolves in

Formica fusca nests.

Methods

1. Biological model
Formica fusca L. is a widespread species in palearctic regions,

present in a large number of habitats e.g. meadows, forests and

urban areas. Colonies number between 500 and 2000 workers,

and are weakly polygynous [50]. Workers measure from 4.5 to

7.5 mm, castes are temporal (age-based). Formica fusca has an

opportunistic diet and exploits honeydew produced by aphids

[51,52]. As a polydomous species, the colony occupies at least two

spatially separated nests [53]. Our set-up could be seen as a

‘‘model’’ of such nest. The experimental constraints force us to

work in certain conditions (small nests) we have therefore chosen

to work with a polydomous species.

2. Collections
Four mother colonies were harvested in Ermenonville (France)

in August 2006. After two months of hibernation at 5uC, we

formed nine groups each of 200 randomly-chosen workers (two

groups from each of three first mother colonies and three groups

from the fourth colony). We choose at first to avoid brood and

study the food-flow in the ‘‘simplest’’ context.

Each group is, henceforth, referred to as a colony. Colonies

were housed in plexiglass nests. The nest area was covered with a

red filter (Rosco color filter, e-colour #19: Fire). The inner surface

of the nest measured 10610 cm and had a height of 2 mm. This

height was sufficient for the workers to move freely, while

hindering the formation of multi-layered aggregates. A thin

gypsum layer cast at one end of the nest was watered daily to

keep the nest moist. The gallery leading to the food source

measured 3620 cm, and its inner walls (3 cm high) were coated

with FluonH to prevent foragers from escaping. Colonies were

maintained in the laboratory at 2362uC, with a twelve hour

photoperiod. Food supplies were ad libitum 1 M sucrose solution

and a half mealworm (about 100 mg, Tenebrio molitor) twice a week.

Six days prior to the experiment, food was removed [54], so the

ants only had access to water.

3. Food Source and scintigraphy
In order to investigate workers’ spatial organisation, we filmed

each experiment with a webcam (1 picture/2 seconds). This

allowed us to record the location of returning foragers.

To monitor the food-flow in the nest, we used a medical

imagery technique, scintigraphy, which permits the monitoring of

radioactive elements. A radioactive marker (technetium-99m) was

mixed to a 0.5 M sucrose solution supplied to the ants.

Technetium-99m is a by-product of the fission of Uranium-235

and has a short half-life (6 h 02) and rapidly eliminated (within 3

days in humans[55,56]).The tracer emits low-energy gamma

photons that are recorded by a gamma camera.

Scintigraphy measures the radioactivity within each surface

element (pixel) according to its spatial coordinates (x, y) over time.

One pixel corresponds to an area of 4.5 mm 64.5 mm. The nest

(10610 cm) is covered by 494 pixels. The distribution of signal

intensity across the pixels corresponds to the distribution of food

within the nest at each time point of the experiment. The intensity

is mesured by the number of counts (number of gamma photons

recorded) for an interval of time (in our case, 30 seconds). A

concentration of 3 mCi technetium-99m was used, based on prior

studies using radioactivity [42,45] and the sensitivity of the gamma

camera. Monitoring of radioactivity within the nest commenced

when the labelled sucrose was placed in the experimental setup

and continued for a period of three consecutive hours.

Technetium99-m proved to be an appropriate tracer: its half-life

is sufficiently short to allow repeated experiments within a short

time frame, and sufficiently long for the full dynamics of the food

distribution within the nest to be monitored.

The volume of labelled sucrose used was 1 ml since, in test

experiments, we observed that this quantity was never completely

consumed during the experimental period. At least four nests were

monitored simultaneously and each colony was tested only once a

week. Six colonies were experimented upon twice and three were

used only once overall.

4. Quantification of the radioactive intensity
Treatment of the data obtained by scintigraphy. The

radioactive decay between the beginning and end of a 30-second

exposure was negligible; the initial radioactive intensity diminishes

by only 1%. Therefore, the quantity of emitted photons during a

single exposure can be considered constant. Over the course of a

three-hour experiment, however, the radioactive decay is not

negligible. Therefore, we used the radioactive decay equation to

correct the collected data. The fitting of the food-flow was based

on time intervals of 4 minutes.

Quantification of the radioactive intensity. In order to

interpret a given radioactive intensity as a volume of sucrose

solution, we made two types of measurement. First, we measured

the radioactive signal of a forager returning to the nest. By
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overlapping the pictures obtained with the webcam and the ones

obtained by scintigraphy, we could localize a forager returning to

the nest and determine its radioactive signal. We carried out these

individual measurements for 33 workers chosen randomly from all

replicates. In a second step, we measured the volumes ingested by

foragers using the method described by Mailleux et al. [23]. We

approximated the ingested volume (Vingested) by subtracting the

abdomen volume before ingestion (V) from that after ingestion (V9),

assuming the abdomen to be an ellipsoid of revolution (equation

1):

Vingested~V ’{V~
4pl’h’2

3
{

4plh2

3
ð1Þ

where l (l9) is half the length of the abdomen and h (h9) is half the

height of the abdomen before (and after) ingestion. Volume is

measured in microlitres, and distance measurements (l, h) in

millimeters.

Volume and radioactivity. For Lasius niger, Mailleux et al.

[23] have shown that the fraction of ants (F) that have come in

contact with a food source and that continue to drink after having

ingested a volume V is given by the following equation:

F~
1

1ze{g V{Vcð Þ : ð2Þ

Vc, the desired volume, is the threshold value and is close to the

average volume ingested by workers. g is a parameter modulating

the drinking behaviour.

Spatial repartition of the food. To have a better insight of

the process of food sharing, we focussed on the spatial distribution

of the radioactive intensities and its evolution during the

experiment. We chose to study three complementary parameters

(inspired by [10]):

1. Centre of gravity: we measured the centre of gravity of the

radiocative surface for each exposure and calculated the

distance between the centre of gravity of two successive pictures

(two minute intervals). This gave a measure of the spatial

stability of the food inside the nest. We also determined the

intensity of pixels as a function of the distance from the centre

of gravity.

2. 25-pixel square: for each exposure (two minute intervals) a

square of 565 pixels was positioned so that it covered the zone

where radioactivity is maximal.

3. Minimum surface representing 50% of the radioactivity: for

each exposure (2 min intervals) we defined the smallest zone of

contiguous pixels containing at least 50% of the total

radioactivity present in the nest.

Radioactive contamination of the substrate. We did not

manipulate the ants during our series of experiments. Therefore,

we were not able to directly measure the radioactive background

of the empty nest after the experiment. We carried out separate

measurements in order to confirm that contamination of the

substrate was negligible. The number of pixels recorded as

radioactive at minute 15 represents only 1067% (mean6SD,

n = 15) of the total number of pixels contaminated since the start of

an experiment, indicating that the pixels that a radioactive ant

moves across do not retain a detectable radioactive signal.

Results

1. Imagery
Figure 1 illustrates the typical evolution of an experiment: the

top row shows the pictures obtained from scintigraphy monitoring,

and the lower row shows the matching webcam pictures. As seen

in the scintigraphy pictures, radioactivity spreads very quickly

within the colony. The radioactive signal is weak until half an hour

after the beginning of the experiment and grows in intensity

thereafter. The webcam pictures show a stable spatial distribution

of the individuals: the aggregate remains rather compact during

the whole experiment even though (in this case) its position

changes.

2. Volume and radioactivity
The experimental volumes that foragers carry, measured with

scintigraphy and with ellipsoid approximation, conform to the

theorical distribution of ingested volumes (equation (2) least square

fitting, see Table 1). Both measurements give similar values for g
and Vc. The ratio between the two critical volumes (Vc) obtained and

the ratio between the two mean volumes (Vm) is similar for both

methods (1.92 and 1.89, respectively). This ratio gives us the

intensity of the radioactive signal for 1 mm3 of ingested solution.

3. Dynamics of food-flow
Evolution of the radioactive intensity. All experiments,

including the average curve, showed the same trend (fig. 2): some

experiments were characterized by a shorter/longer delay before

the radioactivity rapidly increased; after one hour, an average of

80%69% (m6SD, n = 15) of the total amount of foraged

Figure 1. Images of the radioactivity and ants as food enters the nest. Example of pictures obtained during the three hours of observation.
First row: pictures obtained by scintigraphy, second row; pictures obtained with the webcam. Nest entrance located at the bottom.
doi:10.1371/journal.pone.0005919.g001

Dynamics of Food in Ants’ Nest

PLoS ONE | www.plosone.org 3 June 2009 | Volume 4 | Issue 6 | e5919



radioactive labelled sucrose solution had entered the nest. All

experiments presented a well-defined plateau (one-way ANOVA

with the simple contrast method F14,1470 = 31.3 for time .114.5;

p.0.05). The plateau values are normally distributed

(Kolmogorov-Smirnov test, D = 0.09, p.0.10, n = 15).

We used the radioactive signal intensity to quantify food-flow.

The total average quantity brought back to the nest equals

4466226 mm3 (n = 15). The total harvested quantities are

normally distributed (Kolmogorov-Smirnov test, D = 0.09,

p.0.10, n = 15).

Considering the average load per forager (see Table 1)

7.8065.40 mm3, a total of approximatively 57 journeys accounts

for the total quantity of food present in the nest at the end of the

experiment. This is less than the capacity of the colony, if we

consider that all workers can hold as much food as a forager.

Modelling of the food-flow. Our results suggest that the

quantity of harvested food at time t acts as a negative feedback on

the food-flow entering the colony, per unit time. The experimental

curves (fig. 2 and 3) show that the harvested quantity reaches a

plateau value, which we refer to as the ‘‘colony-desired harvested

volume’’ (K).

Let F(t) be the entering food-flow. The quantity of harvested

food as a function of time can be written:

Q(t)~

ðt

0

W tð Þdt: ð3Þ

If Q(t) acts as negative feedback on the entering food-flow, we

can relate the flow to the harvested quantity as follows:

W tð Þ~a 1{q tð Þl
� �

ð4Þ

with

q tð Þ~ Q tð Þ
K

: ð5Þ

q(t) is the harvested quantity expressed as a fraction of the desired

volume, K being the carrying capacity of the colony and corresponding

to the total harvested food. a corresponds to the maximal food-flow.

The entering food-flow is proportional to the number of

foragers and to the quantity that can be ingested by a forager,

while the negative feedback acts on the number of active foragers

Table 1. Parameters obtained of the volumes ingested by foragers.

Conditions : g Vc Vm6SD r2 SD F number of replicates

Radioactivity (2 sec intervals) 0.31 12.7 15.067.6 0.97 0.32 F1,32 = 615.5 33

Volume (mm3) 0.35 6.7 7.865.4 0.97 0.20 F1,24 = 362.6 25

Parameters of the probability of ingesting food obtained with the two methods radioactivity and volume measurements. g is the parameter modulating the drinking
behaviour, Vc the critical volume and Vm the mean ingested volume (least square fitting).
doi:10.1371/journal.pone.0005919.t001

Figure 2. Entering food flow. Evolution of the average radioactivity for the three hours of experiment (number of counts per 30 seconds). Mean
values (¤), standard deviation (bars) (n = 15).
doi:10.1371/journal.pone.0005919.g002
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[4,57]. When l is large, the regulation of the entering food follows

an all-or-nothing rule, i.e. food enters the nest at a constant

(maximal) rate until reserves have been met, at which point it

ceases. Conversely, when l = 1, regulation is directly proportional

to the quantity of food in the nest. Fitting of the food-flow with

equation (4) gives us l = 1.05 (95% confidence bounds: 0.60 and

1.50, r2 = 0.89, F14,74 = 598.7, SD = 0.89) and a = 0.027 (95%

confidence bounds: 0.0207 and 0.03255).

Taking l = 1, it follows from equations (4) and (5) that

dq tð Þ
dt

~a 1{q tð Þð Þ ð6Þ

Equation (6) states that the food-flow depends on the total

quantity of food that has been ingested or stored by the colony (K)

and on the quantity of food already present in the colony (q).

Following integration of (6), we obtain:

q tð Þ~1{e{at ð7Þ

Thus, the quantity of food present inside the nest (q) follows and

inverse exponential function, which implies that the food-flow (dq/

dt) follows an exponential function (fig. 3). All experimental curves

can be approximated by equation (7) (r2.0.80 for all 15

experiments) There is no correlation between the final signal

intensity and the value of a (Spearman r = 0.42, p = 0.09, n = 15).

4. Dynamics of the contaminated surface
We observe a rapid increase in the number of radioactive pixels.

Within 25 minutes of initiating the experiment, the plateau value is

reached (one-way ANOVA with the simple contrast method

F14,1335 = 2.49 for t.25 minutes, p.0.05) which suggests that all

contaminable pixels and, therefore ants, are radioactive (fig. 4).

The mean number of contaminated pixels is 377.3672.5, equal to

an area of 7634 mm2. This area could be covered by an aggregate

of 200 ants, according to the aggregate-surface fit defined by

Depickère et al [11]:

S ~ 286 A0:62 ð8Þ

where S is the surface of an aggregate in mm2 and A, the number

of ants. The constant value of 286 was calculated on the basis of

the value found for L. niger (i.e. 204) by Depickère et al. [11] and

corrected by a factor of 1.4, which corresponds to the difference in

size between L. niger and our biological model, F. fusca.

Figure 3. Fitting of the food flow. Evolution of the radioactive
intensity during the three hours of observation. Normalized theoretical
values (&), normalized mean experimental values (n = 15) (¤). Standard
deviation see Figure 2.
doi:10.1371/journal.pone.0005919.g003

Figure 4. Contaminated surface. Evolution of the quantity of activated pixels during the trhee hours of experiment (n = 15). Mean values(¤) and
standard deviation (bars).
doi:10.1371/journal.pone.0005919.g004
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The number of contaminated pixels reaches its plateau value

(t = 25 minutes, fig. 4) before the flow of food stops (t = 115

minutes, fig. 3). At the end of the experiment, 69.6613.8%

(m6SD, n = 15) of the total number of pixels covering the whole

nest were activated. Because the surface covered by the

radioactivity equals the surface occupied by an aggregate of 200

ants, we can surmise that ants rapidly receive radioactive food as it

enters the nest. Subsequently, as more food enters the nest the

mean intensity of contaminated pixels increases, indicating that

food stocks are being accumulated.

The distribution of pixel intensity provides an initial insight into

food sharing among ants. This distribution can be approximated

by an exponential rule P(Ip)<exp(2b?Ip) (for all 15 experiments: at

t = 30 minutes, 60 minutes and 180 minutes, least square fitting,

r2.0.9, p,0.001, F15,184.110,4, SD,1.09), where b is the inverse

of the mean intensity per pixel and remains constant (<0.03) up to

30 minutes after the start of an experiment. This distribution

suggests high variability in pixel intensities and, therefore, in

worker loadings; i.e. a small number of pixels (25%,50 ants)

represent a high proportion (80%) of the radioactivity. The surface

of contiguous pixels holding minimum 50% of the radioactivity

reaches a plateau value after 30 min (fig. 5) and represented an

average of 1767% of the contaminated pixels.

5. Spatial distribution of the food
Concentration of the food. The relative radioactivity

contained in the 25-pixel square also rapidly reaches its plateau

value after 30 minutes of experimentation (one-way ANOVA with

the simple contrast method F14,1335 = 1.25, p.0.10). At the end of

the three consecutive experimental hours, the square contains a

total of 26.767% (m6SD, n = 15) of the radioactivity present inside

the nest, whereas it only covers 7.361.3% of the contaminated

surface. The results obtained from both indices (i.e. the minimum

surface with 50% of the radioactivity and the 25-pixel square) are

consistent with each other.

The mean distance between two centres of successive pictures

rapidly decreases (fig. 6). After 25 minutes, the distance between

the centre of two successive pictures is smaller than the mean

distance between two random points of a square corresponding to

the nest area (after 25 minutes, one sample t test, t75 = 68,

p,0.0001, n = 77). We can therefore assert that the position of the

zone of highest radioactive concentration is stable and that this

stability arises quite early in the experiment.

Centralisation of the food. We calculated the radioactive

intensity as a function of the distance to the centre of gravity. The

distribution of the radioactive density per pixel fits the following

equation, whether or not the flow of food entering the colony

ceased (fig. 7a):

Im dcð Þ~
ICM

kmzdm
c

ð9Þ

Where ICM is the relative intensity of the centre of gravity, dc is

the distance to the centre of gravity, and k is the distance at which

the radioctivity equals half the radioactivity of the centre of

gravity. For m.2, there is a marked decrease of radioactivity as we

move away from the centre of gravity whereas, with smaller values

of m, the plateau zone where radioactivity equals that of the centre

of gravity is longer (fig. 7a, b).

The evolution of the distribution shows a concentration and a

centralisation of the food inside the nest (fig. 7c). This distribution

follows the same principle throughout. The exponent is smaller

(m<2.5) at the beginning of the experiment which means that, as

food enters the nest, food gets more concentrated around the

centre of gravity (m<4 at the end of the experiment, table 2).

During the course of the entire experiment, the density of the

centre of gravity of the radioactive surface remains constant

(calculated every 20 minutes: Kruskal-Wallis test, H14 = 4.45,

n = 15, p = 0.81).

Figure 5. Food concentration: fraction of the surface holding 50% of the radioactivity. Evolution (minutes) of the relative average surface
holding minimum 50% of the total radioactivity (n = 15). Mean values(¤) and standard deviation (bars).
doi:10.1371/journal.pone.0005919.g005
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Discussion

The non-invasive method used in this study allows us to obtain

reliable dynamic data on food distribution within ant nests,

without having to handle colonies during the whole experiment. It

allows a precise determination of harvested quantities, something

traffic flow or behavioural indices provide with a lower confidence

[58]. The radioactive method accurately detects one microlitre of

the glucose solution and is well suited for individual measures. The

correspondence between radioactive intensity and ingested volume

enables quantitative validation of the method. Individual mesures

of ingested volume match the threshold hypothesis decribed by

Mailleux et al. [59].

The harvested quantities show a nearly linear increase before

reaching a plateau value. During this initial build-up phase that

lasts for about one hour, after which 80% of the total harvested

food has entered the nest, with 0.8 loaded foragers enter the nest

(or 6.4 mm3) per minute. Considering the average load per forager

(8 mm3), an average of 57 journeys is sufficient to attain colony

satiety. If we assume the individual storage capacity is equal to the

loading capacity of a forager, the total capacity of a colony of F.

fusca approaches 1600 mm3; a value far greater than the actual

harvested quantity. So, either the volume stocked by a worker is

less than the volume transported by a forager, or only a fraction of

the colony acts as storage. The results we have obtained are

consistent with those presented in the literature, harvesting stops

spontaneously after a couple of hours, even though the food source

is not depleted [5,21].

Our results show that the global kinetics of the food-flow

entering the colony is proportional to the available storage

volume, which decreases with the harvested quantity. The

difference between the experimental and the theoretical curve is

probably due to the effect of recruitment. This difference rapidly

becomes negligible. The regulation of the food-flow can be

explained by the regulation of the activity of the foragers. For a

forager, the probability per unit time to perform trophallaxis is

proportional to the number of receptive workers that remain or, in

other words, the available volume. Since a forager has to unload

its food before leaving the nest for another trip to the food source,

the time between two foraging trips increases as the available

volume decreases [57] until the forager ultimately remains in the

nest.

The response of a colony to starvation is classically described as

an all-or-nothing response: the stocks present in the colony must

be below a critical value for mass recruitement to occur and the

colony harvests at maximum capacity until a threshold volume is

reached. Indeed, mass recruitment only happens after a sufficiently

long starvation period [59]. The dynamics of the flow of food seem

to contradict this model. According to our observations, food

exploitation starts as soon as the reserve has decreased. The all-or-

nothing exploitation phenomenon may be due to the coupling of a

positive feedback [60] and a negative feedback due to the colony

stocks. This hypothesis is supported by the observations of

Mailleux et al. [59]: the recruiting behaviour of foragers does

not depend on the level of starvation of the colony; the negative

feedback only arises from the difficulty for a forager to find a

receiver. When foragers discover a food source and the available

volume is small, the amplifying mechanisms that characterize

recruitment dynamics do not work. In our experiments, due to the

proximity between nest and food source, foragers easily and

independently discover the food source. Therefore, food recruit-

ment does not play a key role and food-flow is thus mainly

controlled by the negative feedback. Similar negative feedbacks

are at work in honey bee colonies [12,61].

The contaminated surface varies very little between replicates.

The number of contaminated pixels rapidly reaches its plateau

value (at about 30 minutes), which matches the surface occupied

by 200 ants [11]. Thus, all individuals quickly receive food. Our

results are consistent with previous studies showing that the

majority of workers receive food within the first hour of foraging

[40,49].

Figure 6. Spatial stability: shift of the centre of gravity. Displacement (in pixels) of the centre of gravity as a function of the time (minute,
n = 15). Mean value (¤) and standard deviation (bars).
doi:10.1371/journal.pone.0005919.g006
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The maximum contaminated surface is reached twice as fast as

the harvested quantity reaches its plateau value. Nevertheless,

from the start, sharing of food among workers is heterogeneous.

The distribution of pixel intensities shows that the majority of the

workers receive small amounts of food, while a small number of

ants hold large amounts of food. In a more detailed spatial

analysis, we observe that, on average, 17% of the contaminated

surface contains more than 50% of the radioactivity. Moreover,

the radioactivity steeply decreases when the distance from the

centre of gravity increases, a tendency that strengthens as the food

flows into the nest and the stocks become concentrated. Due to

these indices of food sharing, we show that the patterns of spatial

concentration quickly stabilize (after 60 minutes). From the first

hour, the distribution of the food remains unchanged until the end

of the experiment. There is no diffusion, but re-concentration of

the food occurs after the first 30 minutes. So, even though our

nests are rather homogenous in composition and do not contain

larvae (an important cause of heterogenous distribution of reserves

Table 2. Distribution of the pixels’ density around the centre of gravity.

Time (min.) ICM P K r2 SD F number of measures number of replicates

30 0.038 2.53 4.03 0.98 2.6?1025 735.7 66 15

60 0.040 3.76 5.07 0.99 8.5?1026 2102.7 66 15

180 0.043 3.97 5.07 0.99 8.4?1026 1904.4 66 15

Fitting with equation (9) of the distribution of the radioactive density as a function of the distance from the centre of gravity of the contaminated surface (least square
fitting test).
doi:10.1371/journal.pone.0005919.t002

Figure 7. Central concentration of the food: Spatial distribution of radiolabelled sucrose. A. Distribution of the radioactive density per
pixel as a function of the distance in pixel from the centre of gravity at 20 minutes (.), 60 minutes (6) and 180 minutes (#). B. Experimental values at
180 minutes (#) and fit (equation 9). C. Example of the two-dimensional distribution of the radiolabelled sugar in a 23623 pixels nest three hours
into the experiment, number of counts per pixel summed during 30 seconds. The nest entrance is located at the bottom
doi:10.1371/journal.pone.0005919.g007
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[62] and of workers [10,63,64]), stocks remain heterogeneously

distributed throughout the whole experiment. This implies that

foragers accumulate stocks as more food enters the nest.

Localization of the high food concentration zones also shows

considerable stability. The position of the centre of gravity and

high food density zone settles after 30 minutes of the experiment.

During the first minutes of the experiment, slight changes in

radioactivity have a significant impact on determining high-density

areas, e.g. the entrance of a forager or a load transfer by

trophallaxis might greatly affect the position of the high-density

zone and/or centre of gravity. Nevertheless, the aggregation

process seems to rapidly overcome the perturbation (i.e. food entry)

and individuals rapidly re-organize to reach what seems to be a

base activity level. Considering all possible factors that could

influence the measured parameters, it is quite striking that shifts in

the centre of gravity rapidly decrease and stabilize.

Many studies have dealt with inter-individual differences in

storage capacities/levels of ants [40,45,49]. Experimental results

demonstrate two complementary trends: homogeneous food

distribution between workers [42] or accumulation of large

quantities of food among specialized workers [40,44]. Our results

show that a small fraction of aggregated individuals accumulate

most of the food.

An important question is the relation between the distribution

among individuals and the heterogeneous spatial distribution of

stocks, as reported here. Like many other insects [14,65,66], ants

exhibit high aggregate-forming capacity. The individual probabil-

ity of moving decreases with the number of neighbours and is the

basis of such self-organized aggregation. Moreover, chemical

marking of the substrate by workers attracts ants back to the

original spot where they were aggregated, even after a perturba-

tion [67]. Our hypothesis is that the stock aggregations and their

spatial stability at three levels: whole radioactive aggregates, highly

radioactive surfaces, and their centres of gravity, are due to the

coupling between the gregarious behaviour of ants and individual

levels of storage. We assume that loaded individuals will have a

lower probability of moving and will, therefore, be at the centre of

the aggregate. To validate this hypothesis, we need to be able to

better differentiate the spatial distribution of individuals and

stocks. In further experiments, we will address this question by

applying a double radioactive-labelling method: one to monitor

the food-flow, the other to monitor the workers.

The length of trophallaxis chains, the mobility of individuals

and their specialization assures a rapid and effective distribution of

resources within the nest and reduce, for example, the queueing

delay [68]. It seems essential that we understand how these factors

combine and how they allow the colony to respond quickly to its

needs and, particularly, those of the brood [69] in a variable

environment.

Theoretical studies might help to identify the link between

mechanisms, spatial organization and the collective functioning.
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