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ABSTRACT: Illuminating synthetic pathways is essential for
producing valuable chemicals, such as bioactive molecules. Chemical
and biological syntheses are crucial, and their integration often leads
to more efficient and sustainable pathways. Despite the rapid
development of retrosynthesis models, few of them consider both
chemical and biological syntheses, hindering the pathway design for
high-value chemicals. Here, we propose BioNavi by innovating
multitask learning and reaction templates into the deep learning-
driven model to design hybrid synthesis pathways in a more
interpretable manner. BioNavi outperforms existing approaches on
different data sets, achieving a 75% hit rate in replicating reported
biosynthetic pathways and displaying superior ability in designing
hybrid synthesis pathways. Additional case studies further illustrate
the potential application of BioNavi in a de novo pathway design. The enhanced web server (http://biopathnavi.qmclab.com/
bionavi/) simplifies input operations and implements step-by-step exploration according to user experience. We show that BioNavi
is a handy navigator for designing synthetic pathways for various chemicals.
KEYWORDS: retrosynthesis, hybrid synthesis, deep learning, chemo-enzymatic synthesis, reaction pathway

■ INTRODUCTION
Producing high-value-added chemicals from biobased building
blocks such as CO2, fermentable sugars, and primary
metabolites from microorganisms has caught much attention
due to increasing concerns about resource shortages and
climate change.1 Inspired by nature, biological synthesis,
encompassing biosynthesis and biocatalysis, utilizes enzymes
to catalyze reactions for the production of complex natural
products or their analogs,2,3 such as catharanthine4 and
jasmonates5 (Figure 1A). Although enzymatic reactions can
be efficient and environmentally friendly,6 they cannot be
responsible for the industrial production of all chemicals due to
the limited enzymes or technical issues.1 Another comple-
mentary approach is chemical synthesis, where enzymes can be
replaced with inorganic catalysts or under extreme conditions
such as high temperature and pressure. Chemical synthesis also
expands the chemical space of molecules in more flexible ways,
while the control of regio- and stereoselectivity for complex
structures is still challenging.7 Merging biological and chemical
synthesis, such as semisynthesis, can provide facile access to
complex structures, especially natural products.8,9 Early
examples can be traced back to the synthesis of D-mannitol
with combined enzyme and metal catalysts,10 as well as later
examples such as the hybrid organic-biocatalytic synthesis of
highly oxidized diterpenes11 and the hybrid synthesis of non-
natural antiviral agents.12 Thus, it is promising to consider
both biological and chemical synthesis when designing
synthetic routes for high-value-added chemicals.13

Currently, retrosynthesis planning tools that predict path-
ways for chemicals are developing rapidly, especially those
based on machine/deep learning methods.14−16 In general, as
shown in Figure 1B, retrosynthesis planning consists of a
single-step prediction model and a multistep search engine.17

For a given target molecule, potential precursors are generated
by a single-step model and then fed back into the model to
produce precursors for the next step. This procedure is
repeated iteratively until a termination condition is triggered
(e.g., when the precursors are readily available or when the
specified number of iterations is reached). Since multiple
precursors are generated in one step, a scoring method is
usually used to rank the precursor candidates to obtain reliable
paths in the shortest time. To efficiently explore the search
space in multistep pathway prediction, many searching
techniques, such as Monte Carlo Tree Search18 and
Retro*,19 have been used to find the optimal precursors with
minimal time costs for each iteration step. Most single-step
models are developed based on various reaction databases, for
example, USPTO20 and BRENDA,21 which can be divided into
template-based18,22−24 and template-free25−29 approaches.
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Template-based approaches use reaction templates extracted
from databases to make predictions. These predictions are
generated by applying optimal templates, which are deter-
mined through methods such as structure similarity23 or deep
learning-based scoring18 to the target compounds. While
template-free approaches predict precursors by utilizing a deep
learning model trained directly from the reaction pairs.30

Recently, inspired by the concept of “synthon”, semitemplate-
based were proposed,31,32 where the target molecule is first
broken into “synthon” and then the “synthon” is completed in
the reactant.
However, most approaches leverage only either chemical or

biological reactions for pathway planning, which limits their
ability to design hybrid synthetic pathways. Recently, Levin et
al.33 merged enzymatic and nonenzymatic reaction templates
with computational synthetic planning (integrated into the
ASKCOS platform), identifying more efficient and shorter
routes for the production of dronabinol and arformoterol.
Sankaranarayanan and Jensen34 planned chemoenzymatic
pathways by identifying the enzymatic steps from the chemical
synthetic pathways suggested by ASKCOS. Nevertheless,
predefined reaction templates cannot capture the reaction
patterns beyond the database. More importantly, the reaction
templates rely on either manual extraction by human experts

(which is time-consuming) or automated generation by tools
like RDChiral35 (which faces challenges in balancing specificity
and generality). Deep learning-based language models trained
from reaction pairs can output reactants from an input product
in an end-to-end manner without templates. In our previous
work,26 the constructed deep learning-based bioretrosynthesis
tool, BioNavi-NP, outperformed the template-based methods
in the biosynthetic pathway prediction of natural products,
despite the existence of missing fragments and unreasonable
reactions.

Herein, we promote BioNavi-NP to address the above issues
and extend its application to the biobased hybrid synthesis
prediction for high-value-added chemicals (Figure 1C). All
chemical and biological reactions used in the model training
are collected from public databases. The atom−atom
mapping36 strategy is introduced to extract the principal
components from the original reactions, by which the cofactors
can be removed and all necessary reactants are kept for a
specific product (Methods). Then, a multitask learning strategy
(weighted training) is conducted to balance the accuracy of
chemical and biological reaction prediction. To automatically
indicate the reaction type during pathway search, an additional
label (representing a chemical or biological reaction) is output
along with the reactants (multilabel prediction). Furthermore,

Figure 1. (A) Production of chemicals from simple building blocks by chemical synthesis and biosynthesis. (B) General workflow for the
retrosynthesis planning. (C) Overview of data collection and model construction of BioNavi; yellow and green colors indicate the processes of
chemical synthesis and biological synthesis, respectively.
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reaction templates are employed to estimate the reaction
feasibility, making the deep learning model interpretable and
reliable for pathway ranking and enzyme selection. The web
server has also been optimized and named BioNavi, which is
deployed at http://biopathnavi.qmclab.com/bionavi/. Case
studies demonstrate that BioNavi not only improves
significantly in the biosynthetic pathway prediction for natural
products but also exhibits the potential for chemical synthesis
prediction, making it a promising tool for hybrid synthesis
pathway design.

■ RESULTS

Single-Step Prediction
All reactions extracted from the public databases were filtered
by removing unbalanced reactions and duplicates. A total of
75,012 enzymatic and 889,557 nonenzymatic reactants−
product pairs were generated from the reactions after atom−
atom mapping, which were divided into biological and
chemical synthesis data sets, respectively (see Methods).
Meanwhile, 6027 and 119,632 enzymatic and nonenzymatic
reaction templates were extracted. The transformer model was
used for single-step prediction, where the product was input
and the reactants were output. It is reported that natural
products and synthetic molecules exhibit different properties
and are located in different chemical spaces,37 so we speculate
that the enzymatic and nonenzymatic reactions also capture
different chemical patterns. This can be supported by the
distribution of the chemical space of reactions and their
components, where most of the data points from the biological

data set are clustered in distinct regions (Figure 2A,B). The
model can be biased if trained directly from data sets with an
imbalanced size. Therefore, we weighted different corpus (i.e.,
the biological and chemical synthesis data sets) when training
the Transformer models.

Figure 2C shows that the model does not perform well on
the chemical synthesis set (1.3%) if trained only with the
biological set, and vice versa (17.6%). As the proportion of
chemical reaction pairs increases, the accuracy of the chemical
synthesis set improves, while the accuracy of biological
synthesis first significantly increases and then decreases. This
can be due to the size of the biological data set that limits the
model performance, which indicates the importance of data
augmentation for bioretrosynthesis prediction.25,26 Consider-
ing the model performance on both data sets, weight 1 on the
biological synthesis data set and weight 4 on the chemical
synthesis data set were selected to train the single-step model
(69.8 and 70.0% for biological and chemical synthesis data sets,
respectively). Four models with different training hyper-
parameters were selected as the model ensemble as our
previous work did, which improved the performance with top-
10 accuracy achieving 73.0 and 71.6% for biological and
chemical synthesis data sets, respectively (Figure 2D).
Multistep Pathway Search

The ability of multistep pathway prediction was evaluated on
two data sets containing natural products and drugs (mainly
synthetic compounds, see Methods). The target compounds in
the natural products data set are the same as those used in our
previous work;26 however, the pathways contain more

Figure 2. t-SNE distribution of reaction fingerprints (A) and molecule fingerprints (B) from different data sets. (C) Top-10 accuracy on test set
with different training weights. (D) Top accuracy of the ensemble model on the test set.
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branches and components since all necessary components are
kept for products based on atom−atom mapping in this work
(Figure S1). Compared to other bioretrosynthesis approaches,
the results show that BioNavi can generate pathways
connecting the target structures and building blocks for 97%
(success rate) of the natural products, achieving the highest hit
rate for the reported pathways (75%, Table 1). For drugs,

BioNavi also performed the best, with a success rate of 76.4%,
demonstrating its robustness. Although BioNavi requires a
longer time to make predictions, it is acceptable for each
molecule to take around 10 min on average. The predicted
solutions can be used to estimate pathway diversity, which is
also important to pathway reconstruction and design.
Compared with other models, BioNavi tends to produce
more alternatives for both natural and synthetic molecules. To
further investigate the diversity of the pathway collections, the
Simpson concentration index,38 commonly used in ecology to
measure species diversity, was introduced (see Methods).
Figure 3 A and B show the diversity distribution of pathways
from natural products and drug data sets. For natural products,
the prediction of RetroPathRL and BioNavi exhibits higher
diversity than the other methods. For drugs, the diversity of the
four approaches is similar, with BioNavi being slightly better
than the others. In the results of the natural products and drugs
data sets, 3093 (out of 10,984, 28.2%) and 684 (out of 3870,
17.7%) reactions, respectively, are not covered by the
templates. Coverage failure does not necessarily mean poor
feasibility but indicates that these reactions need to be
evaluated seriously. More importantly, this highlights the
advantage of deep learning models for the exploration of the
reaction space beyond the reaction templates.
Since BioNavi and ASKCOS are designed for hybrid

synthesis pathway prediction, further analysis and comparison
are performed based on their outputs. For BioNavi, there are
reactions belonging to both chemical and biological categories
since the top 10 results are output in single-step predictions,
where the same reactants can be paired with different reaction
types. In the natural products data set, it is not surprising that a

minority of the reactions (6.4%, Figure 3C) and pathways
(2.4%, Figure 3D) are chemical since currently chemical
synthesis is not widely used in natural product synthesis. In the
results of ASKCOS, the proportions of chemical reactions
(50.8%) and pathways (29.8%) are slightly higher than those
of biological reactions (49.2 and 27.3%, respectively). It should
be noted that 64.7% of the pathways predicted by BioNavi are
hybrid, which is higher than that of ASKCOS (42.9%). In the
drug data set, chemical reactions and pathways are the majority
for both BioNavi and ASKCOS predictions. Again, BioNavi
outputs more hybrid pathways than ASKCOS. Sankaranar-
ayanan et al.34 proposed a complementary algorithm (refer to
as ASKCOS-CE in this work) for performing multistep
chemoenzymatic retrosynthesis based on the chemical syn-
thesis results of ASKCOS, which can identify more biocatalytic
steps. Herein, the algorithm was directly applied to the
reaction networks generated by ASKCOS, which discovered
more potential hybrid synthesis pathways, especially for drugs.
The results demonstrate the adaptability of BioNavi in
selecting reaction types and its ability to design hybrid
synthesis pathways for both natural products and synthetic
compounds.
Case Studies

We first investigated the synthetic pathway of the top-1 small-
molecule drug nirmatrelvir, which is an anti-COVID-19 agent.
As previously described by Pfizer41 (Figure 4A), nirmatrelvir
was synthesized by two key intermediates, A5 and A6. A6 was
obtained by amine ester exchange from A7, followed by the
removal of Boc. A5 was obtained through condensation (A2),
hydrolysis, and Boc removal of A1 (N-Boc-protected A3) and
then condensation with A4. Although BioNavi did not trace
back to the predefined building blocks, one of the predicted
pathways (ranked third) is consistent with the reported
pathway, in which the reported reagents and key intermediates
are reproduced (Figure 4A, the complete result can be found in
Figure S2). What is different is that the synthesis order was A5,
where building block A3 was condensed with A4 first and then
A2 in the reported pathway. This can be the alternate pathway
since it is shorter than the reported one. Another difference is
the N-protection strategy (A7 and A8) in which Boc and Cbz
are used in reported and predicted pathways, both of which are
commonly used in chemical synthesis.

Except for the non-natural molecule, jomthonic acid A
(JAA), a natural product first isolated from the culture broth of
a soil-derived actinomycete of the genus Streptomyces42 was
then tested. JAA is an interesting modified amino acid that
contains rare structural features and shows antidiabetic and
antiatherogenic activities. Although JAA is a natural product,
chemical reactions widely exist in the top 10 synthetic
pathways (Figure S3). In the top-ranked (1st and second)
pathways, JAA is synthesized from three biobased building
blocks by a hybrid pathway. This is almost the same as the
chemoenzymatic pathway reported by a recent work,43 where
three building blocks (B1, B3, and B5) were used, and an
aromatic amino acid aminotransferase was developed for the
preparation of β-branched aromatic α-amino acids (B2) with
high diastereo- and enantioselectivity (Figure 4B).

The above cases demonstrate the pathway navigation ability
of BioNavi in autonomously predicting precursors and the
reaction types for the target molecule. Alternatively, users can
also freely choose to output pathways that only include
biological or chemical synthesis. Taking syringic acid (SA) as

Table 1. Performance of BioNavi and Other Approaches on
Different Datasetsa

natural products data set (368)

success
rate (%)

hit rate of
pathways (%)

avg.
solutionb

average time
(minutes)

RetroPathRL 59.8 3.8 6.1 4.4c

RetroBioCat 33.2 1.1 9.4 2.5
RXN4Chemd 42.7 2.7 3.2 0.8
BioNavi-NP 89.4 48.1 9.3 2.9
ASKCOS 36.4 18.8 8.7 3.3
BioNavi 97.0 75.0 9.5 4.4

top retail sales drugs data set (110)

success rate (%) avg. solution average time (minutes)

LocalRetro 49.1 9.3 1.6
R-SMILES 75.4 9.6 6.5
ASKCOS 57.1 9.0 3.4
BioNavi 76.4 9.7 10.9

aThe best-performing method for each metric is shown in bold. bA
maximum of 10 pathways were considered for all approaches. cThe
runtime of RetroPathRL was controlled by a user-defined parameter,
which was set to 5 min in this work. dAbbreviated representation of
RXN for the Chemistry method.
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an example, we investigated if BioNavi can be used for
biosynthetic pathway design by limiting the precursor
prediction to biological reactions. SA is a phenolic compound
of natural origin and exhibits various biological activities such
as antioxidant, anti-inflammatory, anticancer, and antidia-
betic.44 As shown in Figure 4C, SA can be derived from the
shikimic acid pathway through a series of metabolites like
phenylalanine (C2), cinnamic acid (C3), and sinapinic acid
(C4). To explore the biosynthesis of SA, BioNavi was used to
predict the synthetic pathways, with reactions being limited to
biological ones and the building block being limited to 3-
dehydroshikimate (C1), which is the key intermediate
upstream of the shikimic acid pathway. A total of five pathways
were obtained (Figure S4); the top 3 pathways start from the
reduction of 3-dehydroshikimate and then a few steps of
oxidation and methylation (Figure 4C). Considering that the
biosynthesis from 3-dehydroshikimate to phenylalanine
requires another 7 steps,45 the predicted pathways extremely
simplify the synthesis of SA (3 vs 15). It should be noted that
the reported SA synthetic pathway from phenylalanine can also
be reproduced by manually selecting the “right” precursor in
every single step (Figure S5) and most of the precursors are
ranked near the top except for the penultimate step (ranked
eighth). This indicates that, in addition to relying on the top
routes provided by the model, the selection of precursors based
on expert experience is also worth noting. That is why we

provide a convenient one-step prediction module for users to
utilize (as described in the Web server section).

The predicted SA biosynthesis pathways were constructed
using Saccharomyces cerevisiae to verify the feasibility of the
predictions (Figure S6). The pathway 1 (C1−C7−C9) is the
shortest, where C1 can convert to C7 directly. Although
BioNavi did not identify the enzyme of this step, and it is not
verified in this work, it is reported that a bifunctional enzyme
can catalyze it.46 For pathway 2 (C1−C6−C7−C9), 3-
dehydroshikimate dehydratase (3DSD) was first integrated
and overexpressed in S. cerevisiae to construct the proto-
catechuic acid (C6) biosynthetic pathway (Le01 strain, Figure
4D). Then, the p-hydroxybenzoate hydroxylase (PobA) and
caffeate O-methyltransferase (COMT) were sequentially
integrated into the Le01 strain (L02 strain and L03 strain,
respectively), leading to the biosynthesis of gallic acid (C7)
(Figure 4E). Unfortunately, SA was not detected in the L03
strain (Figure S7), indicating that the COMT did not work.
Previous studies realized the conversion from C6 to C8 with
OMT from Homo sapiens47 or mutated OMTs from Medicago
sativa,48 reminding us that additional efforts to find the
adaptive enzymes are needed for the heterologous biosynthesis
of SA. Nevertheless, BioNavi is a great inspiration tool for
pathway construction with excellent pathway exploration
ability. In summary, the case studies demonstrate that BioNavi
can be used for synthetic pathway design and reconstruction

Figure 3. Pathway diversity distribution of natural products data set (A) and top drugs data set (B). 1 represents the highest diversity, and 0
represents the lowest diversity. The proportion of reactions (C) and pathways (D) in outputs using different approaches on different data sets.
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for both natural and non-natural molecules in a chemo-
enzymatic manner.
Web Server

The BioNavi web server (http://biopathnavi.qmclab.com/
bionavi/) provides a better user experience compared to
BioNavi-NP (Figure 5). Some user-defined parameters (e.g.,
expansion time and max depth) are no longer required as they
would be automatically set as the best value according to the
target molecule. Every reaction in the pathway network will be
checked to see if it can be reproduced by the reaction
templates (see Methods), and then the template and most
similar reference reaction will be displayed on the web page,
which can be used to search for potential enzymes. Meanwhile,
the interfaces of two tools (Selenzyme49 and E-zyme 250) used
in BioNavi-NP are preserved for enzyme selection. For
chemical synthesis reactions, a deep learning-based condition
prediction tool (Parrot51) was also integrated into the web
server, by which the catalysts, solvents, and reagents can be
predicted for each reaction. To allow users to score the
precursors and determine the search direction based on their
own experience, a step-by-step mode was provided to
complement the original pathway navigation module (Figure
5C). This gives users more options to improve the poor
performance of the scoring method in some cases and to adapt
the search direction to various building blocks.

■ DISCUSSION
We showcase here the development of the hybrid retrosyn-
thesis planning approach (BioNavi) by leveraging the
advantages of deep learning and reaction templates. In
particular, the atom−atom mapping strategy is used to improve
the data quality, thus enhancing the precursor prediction
accuracy. Multitask learning is introduced to balance the
prediction of chemical and biological synthesis. Furthermore,
integrating reaction templates into the scoring evaluation
makes the prediction more interpretable and guides the
enzyme selection. Extensive tests demonstrate that BioNavi
not only consistently and comprehensively outperforms
current approaches in predicting the biosynthetic pathways
of natural products but also can be utilized to seek the
chemical, biological, or even hybrid pathways with higher
diversity for any molecule. Besides, the revamped web server
makes BioNavi easier and more adaptive for navigating the
potent synthetic pathways for target compounds, promoting
efficient production of high-value-added chemicals.

Nevertheless, there remains a considerable distance to
traverse from the pathway design to efficient production.
One of the challenges lies in the available reaction data. First,
most of the data-driven pathway planning tools (including
BioNavi) predominantly rely on experimentally validated
reactions (positive data) during model development. However,

Figure 4. Reported and predicted synthetic pathways of nirmatrelvir (A), jomthonic acid A (B), and SA (C). Selected ion chromatograms for
protocatechuic acid (D) and gallic acid (E) from LC−MS analysis. The parent strain is the unpublished protocatechuic acid (C6) biosynthesis
strain. 3DSD, 3-dehydroshikimate dehydratase; PobA, p-hydroxybenzoate hydroxylase; COMT, caffeate O-methyltransferase; and FAH1, ferulic
acid 5-hydroxylase 1.
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the reactions with low or no yield (negative data) are also
important for models to capture chemical patterns.52 It is
challenging to collect negative data while considering that the
reaction yield can be an option and that it will be helpful to the
pathway evaluation. Although many models have been
proposed to predict reaction yields,53 they are independent
of pathway planning tools, and future works can be focused on
the fusion of reaction yields in retrosynthesis prediction.54

Second, stereochemistry is often missing (partial or complete)
in existing reactions. Although the SMILES representation can
encode the stereochemistry of structures, the prerequisite is
that the data contain the correct stereochemistry. Especially for
biological reactions, where stereoselectivity is an important
feature, stereochemistry needs to be taken seriously in future
reaction database curation. Another challenge lies in the
condition selection (such as temperature, solvent, and
catalysts) for the reactions along the pathways. Substantial
efforts have been made to predict the reaction conditions or
chemical contexts with physical-based (such as quantum
chemistry) and data-driven (machine learning) models.55

Retrosynthesis planning models can benefit from the
recommendations of such tools. Enzyme engineering ap-
proaches are also necessary to improve the catalytic activity of
specific biological reactions. Recent computational approaches
such as fitness prediction56 and protein generation57 will also
accelerate the process of enzyme selection.

■ METHODS

Data Set
The biological reactions were collected from MetaCyc,58 KEGG,59

Rhea,60 and BRENDA,21 and chemical reactions were retrieved from
the USPTO20 data set. All reactions with an unbalanced number of
carbon atoms were removed, followed by atom−atom mapping with
RXNMapper.61 Then, reaction templates were extracted with the
RDChiral package,35 and the reactions sharing the same template

(reference reactions) will be collected. In most retrosynthesis
prediction scenarios, one can only provide the specific target
molecule, so the retrosynthesis model takes only one molecule as
input. Herein, the reactions with multiple products were first split into
multiple reactions that kept all substrates and only one of the products
(i.e., the reaction A + B ≫ C + D will be split into A + B ≫ C and A
+ B ≫ D). To simplify the influence of cofactors and coenzymes, only
the reactants containing carbon atoms with the same indexes as the
product were preserved (Figure S8). This allows us to keep all
necessary reactants consisting of the product while minimizing data
complexity. Finally, all reactants−product pairs were standardized by
calculating canonical SMILES with RDKit and then deduplicated. On
the side of reactants, a label indicating the reaction type was added to
the end of the SMILES with “|” as separation; for example, a biological
reaction was represented as “Cc1cnc2ccccc2c1|⟨B⟩ ≫ Cc1cc2ccccc2-
[nH]c1=O″, and a chemical reaction can be “Cc1ccc(F)cc1C#N|⟨C⟩
≫ Cc1ccc(F)cc1C#N”.

Computational Model
All data pairs were randomly split into training, validation, and test
data sets (8:1:1), and the products in the test set do not appear in the
training set. The Transformer model was trained with SMILES of the
product as input and reactants (along with a reaction-type label) as
the output. The corpora labeled with chemical and biological
reactions were loaded and trained with different weights to achieve
multitask learning. Different weights have been tested, and 4:1 was
selected for pathway evaluation. The weighted training was realized by
the OpenNMT framework on Nvidia RTX 3090 with hyper-
parameters listed in Table S1, and four models trained with different
random seeds constitute the ensemble model.

A score (P) output along with each precursor candidate can be
used to estimate the probability that the model will output the specific
candidate for the target molecule. Considering the intrinsic drawback
of the end-to-end approach to SMILES that minor changes in strings
can cause significant structural changes, the model sometimes makes
unreasonable predictions. We rerank the predicted candidates by
reproducing the reactions with templates, the score will be updated by
multiplying by a coefficient (range from 0 to 1) that is related to the
number of reference reactions (N) and the maximum similarity (s,

Figure 5. BioNavi input (A) and output (B) interfaces. (C) Details of the result panel of pathway planning. Any precursor or intermediate can be
expanded according to the score, enzyme information, or personal experience.
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calculated according to molecular fingerprint ECFP62) of the target
molecule, and products in reference reactions. Generally speaking, the
bigger N means a stronger generality of the reaction rule, indicating
the predicted reaction is more likely to occur. Meanwhile, the higher
the s, the more likely the predicted reaction is to occur under the same
conditions. Thus, the coefficient should increase with the increases in
N and s. We designed the coefficient as follows

l
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oooo

P N

s N
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P N
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1
, 0

=
=

+
+

>

If the predicted reaction cannot be reproduced by templates (i.e., N
= 0), it does not necessarily mean that the reaction is unreasonable; it
may be a new reaction outside of the template library. Therefore, we
only multiplied the original probability by a smaller coefficient (0.5,
since the coefficient is greater than 0.5 when N is greater than 0). For
reactions that can be reproduced, the reference reaction with
maximum similarity will be output and shown on the web page,
providing a reference for enzyme selection. After reranking, the
Retro* algorithm will estimate the synthesis cost from building blocks
to specific precursors with a pretrained value function as described in
the original work,19 and iteratively make single-step predictions until
the building blocks are reached. By default, 387 metabolites from
Escherichia coli (iML1515 model)63 and molecules with less than 4
carbon atoms were defined as biobased building blocks. On the
BioNavi web server, there is an option to select commercially available
or user-defined structures as building blocks.

Evaluation Test
The biosynthetic pathways of 368 natural products used in our
previous work26 were collected from the reprocessed biological data
set in this work, and the pathways have been verified by the public
databases. Three template-based (RetroPathRL,22 RetroBioCat23 and
ASKCOS33) and three template-free approaches (RXN for Chem-
istry,25 BioNavi-NP26 and BioNavi) were investigated on this data set
to evaluate the biosynthetic pathway exploration power for natural
products. Besides, 110 molecules from the top-100 small-molecule
drugs by sales in 202239 were also tested (some brand drugs contain
multiple major constituents; for example, Paxlovid contains
nirmatrelvir and ritonavir40). Since most of the drugs are non-natural
products and tend to be synthesized by chemical steps, template-
based (LocalRetro24) and template-free (R-SMILES28) chemical
retrosynthesis methods, along with ASKCOS and BioNavi, were used
to make predictions. For the natural products data set, the biobuilding
blocks were set as molecules with less than 4 carbon atoms and
another 387 metabolites, as mentioned above, while for the top drugs
data set, another 106,750 buyable molecules used in ASKCOS33 were
added to the building block list. Retro*19 was used for pathway
planning, with the expansion number being 10, iteration being 100,
and maximum pathway being 10 unless otherwise specified. For a
specific molecule, if one of the output pathways terminates with
predefined building blocks, it is labeled as “successful”, which is
related to the success rate. If one of the output pathways contains
exactly all components along the reported pathway, it is labeled as
“hit”, which is related to the pathway hit rate. Simpson
concentration38 indicates the probability that two individuals chosen
at random and independently from the population will be found to
belong to the same group. Herein, for a target molecule, if the model
outputs k pathways which include a collection of reactions, the
pathway diversity (D) is defined as the reciprocal of the probability
that two reactions chosen at random and independently from the
collection will be found to belong to the same pathway

( )
D 1

i
k n

N1

2
i

=
= (1)

N is the total number of reactions, and ni (i = 1, 2, 3, ..., k) is the
number of reactions for a specific pathway.

All approaches, except for RXN4Chem, were installed locally by the
source codes provided in the original publications for evaluation. The
API of RXN4Chem was accessed using a Python wrapper (https://
github.com/rxn4chemistry/rxn4chemistry). The structures used to
determine termination for all tools (also except for RXN4Chem,
which cannot be changed) were set as the building blocks described
above. For RetroPathRL, the configuration of “Golden Default” was
used with “time budgets” changed to 300. For BioNavi-NP, ASKCOS,
LocalRetro, and R-SMILES, the single-step models were paired with
Retro* for multistep pathway prediction, with the same parameters
set as BioNavi. For RetroBioCat, the top 10 pathways were kept. All
of the remaining parameters have retained the default settings. The
evaluation of locally installed approaches was performed on 1 Nvidia
RTX 3090 GPU and 2 AMD EPYC 7282 (16 cores) CPUs.

■ EXPERIMENTAL MATERIALS

Strain Growth Condition
Yeast strains were cultivated in YPD broth (Sangon Biotech., China)
with 20 g L-1 glucose as the carbon source. The URA3 marker-based
selection consist of a synthetic complete medium without uracil of
SC/-Ura Broth containing YNB, ammonium sulfate, and amino acids
(Coolaber Science & Tech., China) with 20 g L-1 glucose as the
carbon source. The solid agar plates were used 2% of Bacto Agar (BD
Biosciences, USA).
Reconstitution of Gallic Acid Biosynthesis in Yeast
The strains undergo high-level expression of heterologous genes by
the CRISPR/Cas9 system.64 The genetic integration of the expression
cassette was performed by fusion PCR65 for the upstream
homologous region of (XI-1 UP)�Promoter (TDH 3p)�yeast
codon usage optimized and synthesized 3DSD�Terminator
(CYC1t)�Downstream of homologous region (XI-1 DW) to
construct the Le01 strain. The Le02 strain was constructed by
integration of the Upstream homologous region (XII-1 UP)�
Terminator (TPS1t)�yeast codon usage optimized and synthesized
PobA�Promoter (CCW12p)�Downstream homologous region
(XII-1DW). The Le03 strain was constructed on the XII-1 integration
point, where both genes of PobA and COMT were simultaneously
overexpressed. The strain construction stratagem and schematic are
illustrated in Figure S6. The constructed cassette was then
transformed into the previously engineered parent strain of QL3566

by using the LiAc/SS carrier DNA/PEG method.67 All transformants
were grown at 30 °C on a SC/-Ura agar plate for select positive
transformants. The selected single colony was inoculated into a test
tube containing 1 mL of the SC/-Ura liquid medium supplemented
with 2% glucose and cultured for 2 days. The expression cassette
assembled using primer pairs was synthesized by Sangon Biotech.
(China) in Tables S2 and S3.
Yeast Fermentation
The selected single colony was inoculated in YPD medium as a seed
culture transferred into 100 mL of Erlenmeyer flasks, each flask
containing 20 mL of YPD medium. The inoculated cell density
(optical density of 600 nm wavelength, OD600) for consistency was
normalized to 0.2. The cell density of each sample was measured
using an Ultrospec 10 cell density meter (Biochrom, USA) with a 10
mm long cuvette (Fisher, USA). The flasks cultured in a shaking
incubator set at 30 °C and 200 rpm for 4 days. All strains were
inoculated into three biological replicates.
Metabolites Analysis by LC−MS
The LC−MS system was composed of Agilent 6470 with 6495 triple
quadrupole mass spectrometers (Agilent Technologies). Reverse
phase separation of metabolites was performed on a Phenomenex
Kinetex C18 column, particle size of 2.6 μm, 100 × 2.1 mm. The
metabolites were subjected through electrospray ionization to mass
spectroscopy on selected ion monitoring (SIM) by the negative mode.
The mobile phase consisted of 0.1% formic acid in water (solvent A)
and 0.1% formic acid in acetonitrile (solvent B). The solvent A linear
gradient of 5−95% of solvent B in solvent A over 12.0 min at a flow
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rate of 0.2 mL/min was used. The total analytical time was 15.0 min
per run, and 2 μL was injected into the LC system. The metabolites
used the negative ion mode [M − H]− for SIM of protocatechuic acid
153 m/z, gallic acid 169 m/z, and SA 197 m/z. The Agilent
MassHunter Quantitative (version 10.1) analysis software was used
for the ion current spectrum and mass fragment data processing.
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