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Abstract
Post-traumatic stress disorder (PTSD) is characterized by altered functional connectivity of

the amygdala complexes at rest. However, amygdala complex connectivity during con-

scious and subconscious threat processing remains to be elucidated. Here, we investigate

specific connectivity of the centromedial amygdala (CMA) and basolateral amygdala (BLA)

during conscious and subconscious processing of trauma-relatedwords among individuals

with PTSD (n = 26) as compared to non-trauma-exposed controls (n = 20). Psycho-physio-
logical interaction analyses were performed using the right and left amygdala complexes as

regions of interest during conscious and subconscious traumaword processing. These

analyses revealed a differential, context-dependent responses by each amygdala seed dur-

ing trauma processing in PTSD. Specifically, relative to controls, during subconscious pro-

cessing, individuals with PTSD demonstrated increased connectivity of the CMAwith the

superior frontal gyrus, accompanied by a pattern of decreased connectivity between the

BLA and the superior colliculus. During conscious processing, relative to controls, individu-

als with PTSD showed increased connectivity between the CMA and the pulvinar. These

findings demonstrate alterations in amygdala subregion functional connectivity in PTSD

and highlight the disruption of the innate alarmnetwork during both conscious and subcon-

scious trauma processing in this disorder.
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Introduction
Altered threat processing and alertingmechanisms are central to the pathophysiology of post-
traumatic stress disorder (PTSD). Previous studies investigating the neural correlates underly-
ing threat responses have emphasized functional connectivity alterations between the
amygdala and the medial prefrontal cortex (mPFC) during symptom provocation [1], fear pro-
cessing [2] and at rest [3], suggesting aberrant emotion regulatory capacity in PTSD. Moreover,
the functional connectivity of the amygdala with the insula, a neural region associated with
consciousness and self-awareness, appears altered in PTSD, showing differential context-
dependent results. Here, recent studies revealed increased connectivity between these regions
during resting state [4,5] that contrasts with decreased connectivity during threat-related pro-
cessing [6].
One key limitation of the majority of previous studies examining amygdala connectivity in

PTSD subjects is the limited analysis of the amygdala as whole, despite knowledge that the
amygdala complex is composed of distinct subdivisions, including the centromedial amygdala
(CMA) and the basolateral amygdala (BLA) nuclei that are known to have diverse functions
and differential functional connectivity with other brain regions [7–9]. The CMA, including
the central and medial nuclei, contains GABAergic neurons [10] and, through increased atten-
tion and motor readiness, facilitates behavioral responses to emotion via projections to the
brainstem, hypothalamus (regulating cortisol release), basal forebrain [11], and striatal regions
[8,12,13]. By contrast, the BLA comprises the lateral, basolateral, basomedial, and basoventral
nuclei and through its thalamic projections functions to integrate sensory inputs with cortical
association areas [14] in order to facilitate learning (i.e., fear conditioning; [7,9]). In one pre-
liminary study informed by emerging evidence for the distinct functional roles of the CMA
and BLA in threat processing [15–17], Brown et al. (2013) [7] showed increased connectivity
between the BLA and the prefrontal cortical regions involved in emotion regulation in PTSD
subjects as compared to trauma-exposed controls at rest. Moreover, dissociative (depersonali-
zation and derealization) symptoms in PTSD correlated with increased connectivity between
both the CMA and the BLA with prefrontal regions and with regions involved in body aware-
ness and proprioception at rest (precuneus and dorsal posterior cingulum) [17]. Despite these
provocative findings, the functional connectivity of amygdala subregions during exposure to
trauma-related stimuli at the conscious and subconscious level has yet to be fully explored.
The present study seeks to address this central gap in our understanding of threat-related

processing in PTSD. PTSD patients are often triggered by stimuli of which they have no con-
scious awareness, where altered patterns of neural activity underlying subconscious processing
of fearful or trauma-related material are thought to contribute to this symptom presentation
[18–21]. Here, aberrant alertingmechanisms in PTSD have been associated with altered neural
activity within key regions of the innate alarm system (a network of areas involved in rapid
alerting to threat, including the brainstem, amygdala, pulvinar, and mPFC, see [22]), and
increased brainstem-amygdala connectivity [20,23–26]. To date, only two studies have investi-
gated functional connectivity during subconscious threat processing in PTSD, revealing aber-
rant amygdala functional connectivity within the default mode network (comprising prefrontal
and posterior regions [27]) and altered amygdala-mPFC connectivity [24]. Strikingly, Bryant
and colleagues (2008) [24] explored whole amygdala functional connectivity during subcon-
scious fear processing and found differential interhemispheric effects, with increased right
amygdala-left mPFC coupling and decreased left amygdala-right mPFC coupling when com-
paring PTSD subjects to controls. Taken together, these findings reviewed here point towards
the need for further investigation of functional connectivity of the CMA and BLA at both the
conscious and subconscious levels of awareness.
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Accordingly, the present study examines the differential contribution of subdivisions to
brain connectivity during conscious and subconscious processing of personalized trauma-
related words in PTSD. In line with emerging reports, we expected to find differential func-
tional connectivity between the BLA and CMAwith the mPFC, parietal and insular cortex as a
function of conscious and subconscious levels of awareness in PTSD. Finally, we sought to
define the role of each specific amygdala subregion within the innate alarm circuit in PTSD,
particularly with reference to brainstem-amygdala connectivity [26] during subconscious and
conscious threat processing.

Methods

Participants
Twenty-six civilians with a primary diagnosis of PTSD and twenty non trauma-exposed con-
trols were recruited through community advertisement to participate in the study. This sample
has been described in two previous studies [27,28]. All participants were administered the Cli-
nician Administered PTSD Scale (CAPS) to diagnose PTSD (cut-off score> 50) [29], the
ChildhoodTrauma Questionnaire–Short Form (CTQ) [30], the Structured Clinical Interview
for DSM-IV Axis I disorders (SCID-I) [31], and the Multiscale Dissociative Inventory (MDI)
[32]. Whereas twenty-three out of 26 individuals (88.46%) with PTSD had experienced child-
hood interpersonal trauma, 3 out of 26 (11.54%) individuals with PTSD had experienced a per-
sonal life threat or were witnesses to a violent death. Demographic and psychological
characteritics are summarized in Table 1. Exclusion criteria were bipolar disorder, a lifetime
diagnosis of psychosis, substance or alcohol use disorder within the last six months, serious
medical conditions or neurologic illness, a history of head injury with a loss of consciousness,
and fMRI incompatibility. All participants were right handed. Controls did not meet any cur-
rent or lifetime criteria for psychiatric disorders, and PTSD patients were medication free for at
least six weeks prior to participating in the study. Approval was obtained from the Health Sci-
ences Research Ethics Board of Western University, Canada, and all participants received a
detailed description of the study protocols and provided informed written consent.

FMRI Protocol
The protocol used for presenting subconscious (subliminal) and conscious (supraliminal) sti-
muli during fMRI investigations followed previously published methods [27,33,34]. Briefly, sti-
muli included personalized trauma-related and neutral words provided by the participants
during the assessment stage. Whereas trauma-related stimuli referred to words subjectively
perceived as direct cues for trauma in PTSD patients (or for a stressful experience in controls),
neutral cues were words that did not elicit any strong reaction (either positive or negative). All
words were matched for letter/syllable length (examples of words used is available in S1 Table).
A block design was used, which included five blocks for each stimulus. Each block consisted of
eight repetitions of the stimulus separated by jittered inter-stimulus intervals (823–1823 msec
in the subliminal condition, 500–1500 msec during the supraliminal condition). All stimuli
were presented both subliminally (16 msec backward-masked for 161 msec; [22,35–40]) and
supraliminally (500 msec; [33,34,39]) over two consecutive sessions, respectively, counterbal-
anced between-subjects (see Fig 1 for a graphical depiction of the experimental design). A
2-minute rest period separated the two sessions. Participants were instructed to view passively
the stimuli presented using E-Prime software 2.0 (2007, Psychology Software Tools) and dis-
played via an external video projector (Sharp DLP XG-PH70X-N) and a mirror system. Stimuli
duration was verified using a PIN diode with a 40 kHz A/D converter. A button press task (let-
ter recognition; 4500 msec) was added between blocks, in order to control for continued
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attention of participants, and a 30-second rest period at the beginning of each run was used as
an implicit baseline for subsequent analyses.

FMRI data acquisition
A 3.0 Tesla whole-bodyMRI scanner (Magnetom Tim Trio, SiemensMedical Solutions,
Erlangen, Germany) with a 32-channel phased array head coil was used for image acquisition.
T1-weighted anatomical images were acquired with 1 mm isotropic resolution (MP-RAGE,
TR / TE / TI = 2300 ms / 2.98 ms / 900 ms, flip angle = 9 degrees, FOV = 256 mm x 240 mm x
192 mm, acceleration factor = 4, total acquisition time = 3 min 12 s). Sixty four whole-brain,
2 mm thick imaging planes for BOLD fMRI were prescribed parallel to the AC-PC. Functional
images were acquired using a gradient-echo planar imaging (EPI) sequence with an interleaved
slice excitation order and a 2 mm isotropic spatial resolution (FOV = 192 mm x 192 mm, 94 x
94 matrix, TR / TE = 3000 ms / 20 ms, flip angle = 90 degree, acceleration factor = 4, 24 refer-
ence lines, 64 slices, 250 volumes).

Statistical Analyses
Participants' characteristics. Independent sample t-tests were used to investigate

between-group differences in age, CTQ score, MDI score, and reaction time during the button-
press task. Pearson's chi-square tests were performed for gender and employment status.

Table 1. Clinical and demographic information dividedby group.

Clinical and demographical characteristics PTSD group (n = 26) Comparison group (n = 20) t-test/χ2 (p)

Age (mean ± SD) years 38.79 ± 12.17 32.5 ± 11.58 0.088

Gender (F) frequency 15 10 0.604

Employed frequency 18 17 0.297

CAPS tot score (mean ± SD) 70.57 ± 11.86 0.94 ± 2.91 < 0.001**

MDI tot score (mean ± SD) 59.96 ± 21.26 33.7 ± 3.79 < 0.001**

CTQEmotional abuse score (mean ± SD) 14.48 ± 6.13 6.75 ± 3.09 < 0.001**

CTQPhysical abuse score (mean ± SD) 10.08 ± 6.39 5.65 ± 1.59 0.004**

CTQSexual abuse score (mean ± SD) 13.44 ± 7.75 5.25 ± 1.12 < 0.001**

CTQEmotional neglect score (mean ± SD) 13.52 ± 5.92 8.8 ± 4.17 0.004**

CTQPhysical neglect score (mean ± SD) 10.24 ± 4.70 6.8 ± 2.72 0.006**

AXIS I comorbidity (current [past]) frequency Major depressive disorder (8 [9]) - -

Dysthymic disorder (0 [3])

Panic disorder with agoraphobia (0[1])

Panic disorder without agoraphobia (1[1])

Agoraphobia without panic disorder (3)

Social phobia (4)

Specific phobia (2)

Obsessive-compulsive disorder (1[1])

Eating disorders (1[1])

Somatoform disorder (6)

Lifetime history of alcohol abuse or dependence [16]

Lifetime history of substance abuse or dependence [7]

CAPS, Clinical AdministeredPTSD Scale; CTQ, Child Trauma Questionnaire; MDI, Multiscale Dissociation Inventory; PTSD, Post-Traumatic Stress

Disorder

** p< .01

doi:10.1371/journal.pone.0163097.t001
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FMRI analyses. FMRI analyses were performed using SPM8 (Wellcome Trust Centre for
Neuroimaging, London, UK) implemented inMATLAB (R2013a; Mathworks Inc., Sherborn,
MA, USA). Pre-processing included realignment to the first image, coregistration of the ana-
tomical image to the mean functional image, normalization to MNI (Montreal Neurological
Institute) space (spatial resolution 2 x 2 x 2), and spatial smoothing with an 8 mm full width at
half maximum (FWHM) isotropic Gaussian Kernel.
In order to investigate trauma-related effective functional connectivity, we conducted

psychophysiological interactions (PPI) analyses [41]. PPI represents a reliable technique to
examine how neural activity in a specified seed region influences the activity in another area as
a function of the experimental context.
To investigate effective connectivity between the amygdala and brain areas involved in

threat processing, we defined four seed regions using SPM Anatomy toolbox [42,43], includ-
ing the left and right centromedial amygdala (CMA) and the left and right basolateral amyg-
dala (BLA). The centromedial amygdala (CMA) included the central nucleus and the medial
nucleus (volume left CMA = 138±31mm3, volume right CMA = 138±28mm3). By contrast,
the basolateral amygdala (BLA) encompassed the lateral nucleus, the basolateral, basomedial
and paralaminar nuclei (left BLA volume = 1063±214 mm3, right BLA volume = 1050
±219mm3). For each seed region we extracted the first eigenvariate of the BOLD time-series
in the GLM derived contrasts subliminal trauma-related> neutral words and supraliminal
trauma-related> neutral words for each subject. The PPI interaction terms were obtained by
multiplying the deconvolved time-series by the psychological variable (subliminal or supra-
liminal trauma-related> neutral word condition) and reconvolved with the hemodynamic
response function (HRF). The motion parameters were included as confounds in the design
matrix. The estimated interaction term parameters were then carried forward to the second
level to perform one-sample (within-group) and two-sample t-tests (between-groups) for
each seed-region.

Fig 1. Graphical depiction of the experimental design.Subliminal session is depictedon the left,
supraliminal sessionon the right. Above panels depict the block design.Below panels depict timing
windows and stimulus presentationwithinword blocks (the trauma-relatedword block in this case).Note:
ms: milliseconds; sec: seconds; stim: stimulus.

doi:10.1371/journal.pone.0163097.g001
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Whole brain analyses (voxelwise p< .05 FWE-corrected threshold) were followed by
Region of Interest (ROI) analyses. Here, three10 mm sphere radius ROIs were tested based on
previous literature examining subliminal fear processing [22] and functional connectivity of
amygdala subdivisions in PTSD [7] in order to investigate the brainstem-amygdala-cortical
innate alarm circuitry involved in sub- and supraliminal threat processing [bilateral superior
colliculus (SC; centered in -0.5, -21, -8, MNI; [22]), left pulvinar (centered in -16, -24, 10, MNI;
[22]); and right medial prefrontal cortex (centered in 14, 42, 42, MNI; [7]). All results were
considered significant whenmeeting the voxelwise p< .05 FWE-corrected threshold within
each ROI, adjusted for multiple comparisons (comprising 4 seed regions and 3 ROIs, yielding
p< .004 FWE-corrected).

Results

Participants
As has been reported previously [27], no significant differences emerged between PTSD partic-
ipants and controls on any demographic measure as well as on reaction times relative to the
button-press task. However, as expected, the PTSD group scored significantly higher on the
CAPS total, the CTQ scales, and the MDI total (see Table 1 for details) as compared to the con-
trol group.

Effective connectivity in PTSD as compared to controls during trauma
processing

Subliminal (subconscious) processing. Whole-brain analyses did not yield any signifi-
cant results. By contrast, ROI analyses showed increased connectivity between the right CMA
and the superior frontal gyrus (SFG) and decreased connectivity between the right BLA and
the right superior colliculus in the PTSD as compared to the control group. (Table 2; Fig 2A).

Supraliminal (conscious) processing. No significant results emerged from whole-brain
analyses. However, ROI analyses revealed that the PTSD group showed increased connectivity
between the left CMA and the left pulvinar in comparison to controls (Table 2; Fig 2B).

Discussion
The results of the present study demonstrate clearly the contrasting roles played by the amyg-
dala subregions investigated (the CMA and the BLA) in threat processing. Here, we found dif-
ferential patterns of functional connectivity of these regions with cortical and subcortical
regions during trauma-related word processing in PTSD subjects as compared to controls.
Critically, these patterns of functional connectivity appeared to be moderated by the level of

Table 2. Functionalconnectivity of each amygdala subdivision during sub- and supraliminal trauma-relatedword processing.

Condition/seed Contrast Brain regions Hemisphere MNI coordinates k peak z score

x y z

Subliminal Trauma>NeutralWords
Right centromedial PTSD>CNTR superior frontal gyrus R 12 50 38 21 4.15

Right basolateral CNTR>PTSD superior colliculus R 4 -26 -6 22 4.00

Supraliminal Trauma>NeutralWords
Left centromedial PTSD>CNTR pulvinar L -18 -28 6 16 3.95

Note: all results are reportedwith voxelwise FWE-corrected threshold of p < .05, adjusted for multiple comparisons, within a priori identified ROIs. CNTR:
control group; k: cluster extent; PTSD: post-traumatic stress disorder group.

doi:10.1371/journal.pone.0163097.t002
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awareness of the threatening cues. Moreover, subcortical and cortical regions including the
innate alarm network (i.e., superior colliculus, pulvinar, and mPFC) emerged as differentially
functionally connected to the amygdala subdivisions. As this study did not include a trauma-
exposed control group, it is important to bear in mind that the findings discussed below could
also be interpreted as a result of trauma-exposure instead of specifically relating to the develop-
ment of PTSD (see also Limitations section).

Subliminal (subconscious) processing of trauma-relatedwords in PTSD
as compared to healthy controls
During subliminal processing, the right CMA showed increased connectivity with frontal
regions—specificallywith the medial SFG. It is therefore probable that this pattern of right
CMA connectivity underlies Bryant and colleagues' (2008) [24] previous findings of increased
coupling of the right amygdala with the mPFC during unconscious processing among PTSD
participants. Notably, Bryant and colleagues (2008) [24] suggested the amygdala has an overly
excitatory influence on the mPFC in PTSD, thus contributing to dysregulation of the fear net-
work. In addition, previous studies investigating white matter integrity in individuals with
PTSD suggested that diffusion alterations in the anatomical structures of prefrontal regions in
PTSD would accompany functional abnormalities, accounting for emotion under-modulation
and exaggerated threat reaction [44–46]. Our findings further support these suggestions.
It is also noteworthy that decreased functional connectivity of the BLA with the superior

colliculus (SC) was identified in PTSD subjects.Whereas the BLA is the primary site of sensory
input into the amygdala, allowing for affective evaluations of sensory information [9,14], the

Fig 2. On the left, a) Increased (PTSD>CNTR) and decreased (CNTR>PTSD) functionalconnectivity of the
amygdala complexes during processing of SUBLIMINAL (subconscious) trauma-relatedwords in PTSD as
compared to controls.On the right, b) Increased (PTSD>CNTR) functional connectivity of the amygdala
complexes duringprocessingof SUPRALIMINAL (conscious) trauma-relatedwords in PTSD as compared
to controls. Coordinates are reported in MNI. Color bar indicates t scores.Note: BLA: basolateral amygdala;
CMA: centromedial amygdala; CNTR: control group; L: left; PTSD: post-traumatic stress disorder group; R: right.

doi:10.1371/journal.pone.0163097.g002
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SC is a midbrain structure found to integrate multisensory information. Hence, decreased
BLA-SC connectivity in PTSD would suggest a disruption of the integration between sensory
inputs and their affective evaluations, possibly disturbing learning processes (such as fear con-
ditioning). Alternatively, this findingmay be related to the control function carried out by the
SC in target selection for orienting quick behavioral responses (for a review see [47]). Here, dis-
rupted BLA-SC functional connectivity in PTSD points towards the SC as a crucial node for
immediate defensive responses occurring independent of higher-order emotion regulatory pro-
cesses involving the amygdala and mPFC, as exemplified by autonomic responses including
states of freezing or tonic immobility following threat [48]. Here, the individual would show a
fast defensive reaction (i.e., freezing or tonic immobility and heightened vigilance) to threaten-
ing stimuli without the need to resort to slower higher-order emotion regulatory processes
[49]. Both interpretations of BLA-SC connectivity, however, suggest altered innate alarm net-
work responding to threat in PTSD.
In summary, our findings highlight the differential functions of amygdala subregions in

PTSD during subliminal processing of threat. Specifically, increased functional connectivity of
the CMAwith the SFG during subconscious threat processing suggests the involvement of the
CMA in emotion regulatory processes. By contrast, the decreased connectivity of the BLA with
the superior colliculus in PTSD as compared to controls may contribute to disturbances in fear
learning processes, but may also represent a neural mechanism for quick defensive responses
occurring independently from regulatory limbic (amygdala) and cortical (cingulum and pre-
frontal cortex) regions (i.e., during fast responses to threat) in PTSD.

Supraliminal (conscious) processing of trauma-relatedwords in PTSD
as compared to healthy controls
During supraliminal processing, the left CMA showed increased connectivity with the pulvi-
nar, a subcortical region that is a key-node, in connectionwith the superior colliculus and the
amygdala, of the innate alarm system for quick defensive responses to potential threats [22]
and salience detection [50]. This finding suggests increased readiness in organizing behavioral
responses during the detection of salient cues in PTSD subjects as compared to controls during
supraliminal processing of threat-related stimuli.

Limitationsand Conclusions
Certain limitations of our study must be considered. Firstly, the present findings are based on a
small sample size; replication with a larger sample is therefore needed. Secondly, our study did
not include a trauma-exposed group without PTSD; future research should also compare
trauma-exposed and PTSD groups. Moreover, it will be important to examine potential differ-
ences between PTSD and its dissociative subtype; the present study did not afford enough
power to examine different phenotypes of the disorder. Finally, the cross-sectional nature of
this study precludes assumptions about whether the findings are a consequence of PTSD;
future studies are warranted to consider a longitudinal approach to address this matter.
These points notwithstanding, we conclude that our results provide further insight into the

pathways modulated by the amygdala within the innate alarm system in PTSD. As highlighted
by recent literature, the amygdala can be better understood if subdivided into distinct nuclei in
order to show the differential involvement of each subregion in the alerting system for quick
defensive responses. Moreover, our study design allowed us to distinguish which brain regions
and hemispheres are predominant during sub- versus supraliminal threat processing. During
subliminal processing, the right CMAwas shown to play a major role in influencing neural
activity in the prefrontal regions (SFG) as a function of threat processing. By contrast,
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supraliminal processing revealed that the left CMA is involved in modulating the subcortical
pathway (i.e., the pulvinar) for defensive responses to potential threats. Furthermore, our find-
ings clarify the significance of amygdala connectivity in PTSD, specifying, for example, which
amygdala subregions are involved in amygdala-prefrontal connectivity during subliminal pro-
cessing and how levels of stimulus awareness differentially influence the functional connectiv-
ity of the amygdala to other brain regions. Moreover, our findings support a right lateralization
of a fast subcortical route for rapid defensive responses to subliminal threat [51,52]. Finally, we
also observeddisrupted amygdala- superior colliculus functional connectivity in PTSD as com-
pared to controls that may be related to an alteration of the innate alarm network in fast defen-
sive responses occurring at a subconscious level.

Supporting Information
S1 Table. Example of personalizedtrauma-relatedwords and neutral words. Example of
personalized trauma-related (stress-related for controls) words and neutral words used for
stimulus presentation during the task in the fMRI scanner. As shown in the table, trauma-
related and neutral words were matched for letter/syllable length.
(DOCX)
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