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Abstract: Maltese honey has been produced, marketed, and sold as an exclusive local gourmet food
product for countless years. Yet, thus far, no study has evaluated the individuality of this local food
product. The evaluation of the parameters and properties which characterise the provenance and
floral source of honey have been the subject of various studies worldwide, owing to the price and
potential beneficial properties of this food product. Models analysing the potential of attenuated total
reflection mid-infrared (ATR-FT-MIR) spectroscopy in discriminating and classifying local honey
from that of foreign origin were investigated using 21 Maltese honey samples and 49 honey samples
collected from abroad (Sicily, Greece, Sweden, Italy, France, Estonia and other samples of mixed
geographical origin). Through a combination of spectroscopic techniques, spectral transformations,
variable selection and partial least squares discriminant analysis (PLS-DA), chemometric models
which successfully classified the provenance of local and non-local honey were developed. The results
of these models were also corroborated with other classification and pattern recognition techniques,
such as linear discriminate analysis (LDA), support vector machines (SVM) and feed-forward artificial
neural networks (FF-ANN).
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1. Introduction

There is a considerable number of apiaries in Malta and Gozo, producing honey which is sought
by locals and tourists alike, and valued for its unique taste and characteristics. At the moment, there is
a sizable number of beekeepers selling Maltese honey directly or through local markets. However,
the vast amount of honey being sold is raising suspicion that there might be cases of fraud, where
the honey is either being mislabelled as Maltese honey, or else adulterated with sugar syrup and/or
non-local honey.

The sugars fructose and glucose account for about 85% of honey solids, given that floral nectar is
the source of honey sugars. Glucose and fructose are reported to be the only monosaccharides in honey,
with an average concentration of 38% w/w for fructose and 31% w/w for glucose [1,2]. Oligosaccharides
represent about 10% of the total honey weight [3] and are composed of several units, generally two to six
units of glucose and fructose, with glycosidic linkages in different positions. Siddiqui [2] characterised
14 disaccharides and 11 trisaccharides, while Doner [4] showed that there is satisfactory evidence
for the presence of 10–13 disaccharides and 8–9 trisaccharides. More recent studies have shown that
25 trisaccharides and 10 tetrasaccharides have been found in honey samples from Spain and New
Zealand [5]. The composition of oligosaccharides in honey is related to the floral source, however, it is
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difficult to specify one sugar as a floral marker for honey. It has been suggested that the ratio of certain
sugars, along with other parameters, can be used to differentiate between honeys [6].

There is a considerable number of apiaries in Malta and Gozo, producing honey which is sought
by locals and tourists alike, and valued for its unique taste and characteristics. Malta has a long history
with honey. Some claim that the name of the island is derived from the Greek word “Mελίτη” (Melite)
meaning ‘honey-sweet’, and furthermore, ancient bee hives dating to the time when the Romans
occupied Malta (c. 200 BC) have been found. However, in recent times, there have been several
concerns about the authenticity of Maltese honey being sold at local markets. At the moment, there are
a sizable number of beekeepers selling Maltese honey directly or through local markets. However,
the vast amount of honey being sold is raising suspicion that there might be cases of fraud, where
the honey is either being mislabelled as Maltese honey or else adulterated with sugar syrup and/or
non-local honey. Maltese honey is mostly collected by the Maltese honeybee Apis mellifera ruttneri,
which is indigenous and endemic to the Maltese islands [7,8]. However, in recent years, this endemic
species has become under threat, due to the importation of foreign queen bees from Sicily. While there
is no published evidence on the effect of the mixing of the two honeybees, Apis mellifera ruttneri and
Apis mellifera sicula, on the chemical and physical properties of Maltese honey, there are still significant
threats to the local bee community and beekeepers. Firstly, there is the risk of the loss in biodiversity
due to the wiping out of the indigenous honeybee, and furthermore, there is also a risk to the general
public, due to the possible aggressive behaviour of the resulting hybrids.

Published literature on Maltese honey is lacking, and up till now, no in-depth chemical profiling has been
performed on Maltese honey; in fact, the literature is mainly based on physicochemical parameters. These
studies include HMF content, diastase and proline levels, and total phenolic content [9–11]. More recently,
a comprehensive study with regards to a number of physicochemical parameters and sugar composition
has also been published [11]. Furthermore, little or no comparison has been performed with regards to
the physicochemical and chemical properties of Maltese honey with honey samples from other regions of
the world.

Infrared (IR) spectroscopy is a technique used frequently in food analysis for authentication,
quantification and detection of adulteration [12], and has been favoured as a rapid, non-destructive,
cheap and reagent free technique in the food industry [13,14]. In combination with chemometrics, IR
spectroscopy was successfully applied for the determination of different attributes and adulterants [15]
in several food samples, including juice analysis [16]; alcoholic beverages [7,17–19] must and wine
analysis [9,20,21], polymethoxylated flavone of orange oil residues [22], organic acids and carbohydrates
determination in fruits [23], and characterisation of olive oil and olive pulp [24,25].

Near-infrared (NIR) and mid-infrared (MIR) methods, coupled with signal processing and chemometric
techniques, have been extensively developed in recent years, for quality control and the authentication of
honey samples [26], including numerous attenuated total reflection mid-infrared (ATR-FT-MIR) methods.
Several methods have been developed for the detection of sugar syrups in honey, particularly using partial
least squares discriminant analysis (PLS-DA) [20,27–33], and through the use of principle component
analysis (PCA), linear discriminate analysis (LDA) and artificial neural networks (ANN) [34]. PLS regression
and principal component regression (PCR) have also been use in conjunction with ATR-FT-MIR spectroscopy
for the quantification of sugars in honey; namely, glucose, fructose, sucrose, and maltose, melezitose and
turanose [35–39].

ATR-FT-MIR methods have also been successfully employed in conjunction with chemometric
methods, including PCA and LDA, for differentiation of botanical origin [36–42]. Hennessy et al. [40], used
several signal processing methods on MIR spectra of Corsican and non-Corsican honey, in conjunction
with FDA (factorial discriminant analysis) and PLS analysis for classification. NIR spectroscopy and signal
processing methods were also shown to be essential tools in conjunction with SIMCA (soft independent
modelling of class analogy) and PLS for the geographical classification of Irish, Mexican, and Spanish,
Argentinean, Czech, Hungarian, and Irish honey samples [41,42]. These studies all employ the use of
spectral transformations prior to multivariate analysis. Spectral transformations are especially important
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when applied to IR data, in order to remove spectral artefacts such as baseline shifts and multicollinearity
and can also reveal ‘hidden’ information by emphasising small spectral variations. The aim of this
research is the analysis of Maltese and foreign honey by ATR-FT-MIR, alongside several data treatment
and pattern recognition techniques. The study also aims to identify which spectral transformation or
combination of them are more adequate for their discrimination.

2. Materials and Methods

2.1. Honey Samples

A total of 70 samples were collected and 21 local samples were directly collected from Maltese
and Gozitan beekeepers post honey harvest, between the period of 2015 and 2016. Further details
are presented in the Supplementary Materials Figure S1 and Table S1. Overall, 49 foreign samples
were collected from different Mediterranean countries directly from various international beekeepers
associations. Furthermore, foreign samples sold from local supermarkets were also included. All samples
were kept in the dark at 20 ◦C until analysis.

2.2. FTIR Method

Prior to scanning, honey samples were homogenized after heating to 30 ◦C for one hour, followed
by stirring. A Shimadzu IR-Affinity 1 equipped with a Silver Gate Zn/Se ATR was used for spectral
acquisition. The instrument was set to acquire 32 scans per spectrum at a resolution of 4 cm−1 in the
range of 4000−550 cm−1. In order to obtain a spectrum with a high signal to noise ratio and to reduce
the error in the baseline, the instrument was blanked before each sample and each spectrum was run
in triplicate. The mean of these replicates was then used in the following data analysis procedures.

2.3. Chemometric Analysis

Initial data treatment included first removing the region between 2800 and 1800 cm−1 in which no
peaks arise. The honey sample matrix contains a negligible amount of chemicals which have active
bands in this region [29]. The spectra were also trimmed at the ends to a range of 740–3600 cm−1,
in order to remove regions which contained a significant amount of noise and no relevant chemical
data (Figure 1). The spectra obtained were subjected to different spectroscopic signal processing
techniques which were evaluated and compared. These include subtraction of a linear baseline,
multiplicative scatter correction (MSC), orthogonal signal correction (OSC), standard normal variate
(SNV), and first and second derivative Savitzky–Golay transformations. The effect of the different
spectral transformations on the final classification outcomes was compared to those obtained without
any signal processing.

Several spectral transformations were applied prior to statistical analysis using the Unscrambler X
(CAMO A/S, Oslo, Norway). Smoothing was the first transformation applied to the IR spectra. There
are a variety of smoothing algorithms which can be applied to spectra, including moving average,
Gaussian, median and Savitzky-Golay. The spectrum with maximum smoothness and minimum
distortion from the original signal was selected, thus, a compromise between noise reduction and
retention of information was evaluated. This was also further confirmed by PLS-DA analysis, which
showed that the best improvement and highest explained variance out of all smoothed spectra was
obtained when using a median filter with a gap size of three.

MSC, OSC, detrending, deresolving, SNV, along with a combination of SNV and detrending filters
were then applied to the smoothed spectral data, in order to determine their effect on the misclassification
rate and the RMSE error. Furthermore, first and second Savitzky-Golay derivative transformations were
applied to the spectra in the region with a gap size of 7 points and a polynomial order of two.
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Figure 1. (A) IR Spectra of all tested samples (continuous red lines represent local samples and dashed
blue lines represent foreign samples); regions which were not used in this study are shaded in grey. (B)
Expansion of the fingerprint region highlighting the major peaks identified in this study.

Principal component analysis (PCA) was carried out on the data, in order to hint at possible
outliers or any possible clustering of the Maltese samples present within the data set. The supervised
chemometric treatment was performed using PLS-DA, in order to classify the geographical origin with
regards to Maltese and non-Maltese samples. The former samples were assigned a dummy variable of
1, while the latter were assigned a value of 0. Samples with a predicted value of >0.5 were thus labelled
as foreign, while the remaining samples were labelled as local. PLS-DA analysis was carried out on
the whole data set, using leave one out cross-validation (LOOCV), after which PLS-DA was repeated
using excluded rows validation (ERV), with the exclusion of one third of the samples from each class
to assess for model overfitting. The RMSE for the model was calculated as shown below, in order to
further assess the accuracy of the model. Where ypred corresponds the value between 0 and 1 generated
by the model, whilst yref corresponds to the dummy variable to which the honey was assigned.

RMSE =

√√√√ n∑
i=1

(
ypred − yref

)2

n

The optimum model for each transformation was chosen after an assessment of the PLS-DA model
parameters. The classification accuracy of the LOOCV and ERV models, explained as X and Y variance,
RMSE and number of factors were used to evaluate the performance of the chemometric models.
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2.3.1. Variable Selection

Once the optimum number of factors is determined, the data points which had a VIP (variable
importance in projection) >0.8 were then used to develop subsequent PLS-DA models. The VIP score is
a measure of a variable’s importance in the PLS model. It represents the contribution of a variable to the
PLS model and is determined through a weighted sum of the squared correlations between the model
components and the original variable. A value of less than 0.8 is typically considered to be a small VIP,
and thus, a candidate for deletion from the model [43]. VIP scores are useful in understanding X space
predictor variables that best explain y variance. VIP scores give an estimate of the contribution of a
given predictor to a PLS regression model [44].

Furthermore, stepwise linear canonical discriminant analysis (SLC-DA), as implemented within
JMP, was also used, in order to reduce the number of variables used in PLS-DA models. A stepwise
analysis allows for the manual selection of variables used to build the linear model up to a maximum
number of entries (n–1), where n is the number of samples in the sample set. The model containing the
most discriminant variables was selected on the basis of a low F-ratio and a high p-Value.

2.3.2. Statistical Analysis

Feed-forward artificial neural networks (FF-ANN), support vector machines (SVM) and linear
discriminant analysis (LDA) were implemented as a further corroboration and validation to the PLS-DA
models. FF-ANN, LDA and SVM analysis were carried using a Python script and the ‘scikit-learn’
Machine Learning toolbox for Python [45]. FF-ANN models were implemented on data without
variable selection, whilst SVM and LDA classification methods were applied on data with SLC-DA
model selection.

SVM models have no limit on the number of variables which can be used in a model. Nonetheless,
SVM models require a computationally intensive grid search and thus analysis were performed on
SLC-DA selected variables. Models for LDA were also performed on the SLC-DA selected variable,
as this classification technique is usually limited to small number of variables, which must be less than
the number of samples in each class. On the other hand, FF-ANN models are suited for modelling data
with a large number of variables, and thus were used to model data with no variable selection. In all
cases the models were validated both using ERV in a similar fashion to PLS-DA models.

The aforementioned statistical analysis and variable selection steps were also carried out on the
fingerprint region (760–1400 cm−1), in order to determine the effect of using this portion of the spectrum
only on the prediction rate and RMSE of the models.

3. Results and Discussion

3.1. Geographical Classification Using ATR-FT-MIR

Monosaccharides, water, and other sugars are the main components in honey, thus, most of the
spectral peaks observed in honey IR spectra appertain to vibrational modes exhibited from sugars and
water [23]. Water in honey shows up as a very distinct broad peak between 3500−3000 cm−1 in the
honey IR spectrum (Figure 1). Additionally, a peak is observed between 3000−2800 cm−1, which arises
from vibrational modes of carbohydrates [32], carboxylic acids [46] and amino acids [29]. The region
between 1700−1600 cm−1 shows the vibrational modes from water [47], carbohydrates [32] and the
amide I band [48]. The peaks within the fingerprint region (1500−700 cm−1) are attributed to various
vibrational modes of carbohydrates and ketones. The vibrations that occur between 1200 and 1300 cm−1

are attributed to the presence of –C–O bonds, whilst that at 1750 cm−1 accounts for the carboxylic acid
functionalities (C=O) of various carbohydrates. The bands observed in the range between 1150 and
995 cm−1 are attributed to the stretching and bending vibrations of C–O, C–H and C–OH vibrations
arising from carbohydrates. [34,36].

The first data handling stage involved the removal of the region between 2700 cm−1 and 1800 cm−1,
as it contained no IR bands which are expected to show up from the honey sample matrix; for simplicity’s
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sake, this region will be referred to as the ‘whole spectrum’ henceforth. The median filter transformation
was particularly effective in removing any noise generated by the ATR-FTIR while leaving any slight
spectral variations intact. Further spectral transformations were then applied to median filter smoothed
MIR spectra, since the application of some spectral transformations such as derivative transformations
tended to accentuate any noise present.

A visual inspection of the MIR spectra (Figure 1) and the resulting spectral transformations revealed
no regions which offer discrimination between Maltese and non-Maltese samples. Furthermore, PCA
identified no outliers within the dataset for the untreated spectra, or when the spectra were subjected to
spectral transformations. Through PCA, no samples were observed to cluster according to geographical
origin. This result is not unexpected, since the honey samples being tested do not differ only by
geographical origin, since other sources of variability, such as botanical origin, were present. PCA
analysis is presented in Supplementary Materials Figures S2 and S3.

3.1.1. PLS-DA and Variable Selection

PLS-DA was used as the primary statistical model for sample classification and the prediction
of Maltese and non-Maltese samples (Table 1). In the majority of the cross validated PLS models on
the ‘whole’ MIR spectra (Table 1), no samples were misclassified, except for the second derivative
transformation model, which exhibited an accuracy of 98.6%. The RMSEs for all the LOOCV models
were considerably low, wherein the RMSE will effectively describe the average distances of the predicted
sample towards the dummy classification system used.

Table 1. Results from partial least squares discriminant analysis (PLS-DA) models applied to spectral
transformations of attenuated total reflection mid-infrared (ATR-FT-MIR) spectra and variable selection
procedures. (MF = Median Filter, 1st = Savitzky–Golay first derivative, 2nd = Savitzky–Golay second
derivative, DR = De-resolve, DT = De-trend, MSC = Multiplicative Scatter Correction, OSC = Orthogonal
Signal Correction, QN = Quantile Normalise, SNV = Standard Normal Variate, SNVDT = combination
of SNV and DT transformations #F = number of latent factors extracted from the PLS model).

Whole Spectrum Fingerprint Region

Variable
Selection

Pre-Treatment #F
LOOCV ERV

#F
LOOCV ERV

Accuracy % RMSE Accuracy % RMSE Accuracy % RMSE Accuracy % RMSE

None

MF 14 100.0 0.096 95.7 0.201 10 100.0 0.157 98.6 0.177
1st DSG 5 100.0 0.120 92.8 0.248 8 100.0 0.100 97.1 0.192
2nd DSG 4 98.6 0.166 95.7 0.261 6 100.0 0.184 97.1 0.257

DR 14 100.0 0.170 97.1 0.205 10 97.1 0.214 100.0 0.218
DT 9 100.0 0.199 92.8 0.258 10 100.0 0.123 98.6 0.123

MSC 12 100.0 0.101 95.7 0.211 11 100.0 0.101 98.6 0.170
OSC 13 100.0 0.110 95.7 0.197 9 100.0 0.186 100.0 0.193
QN 8 100.0 0.135 94.2 0.222 9 100.0 0.111 97.1 0.186
SNV 10 100.0 0.101 98.6 0.210 10 100.0 0.126 100.0 0.169

SNVDT 9 100.0 0.160 97.2 0.219 10 100.0 0.114 100.0 0.167

VIP

MF 15 100.0 0.047 100.0 0.111 12 100.0 0.106 97.1 0.171
1st DSG 6 100.0 0.089 97.1 0.168 10 100.0 0.069 97.1 0.181
2nd DSG 4 98.6 0.166 95.7 0.215 8 100.0 0.148 97.1 0.224

DR 14 100.0 0.167 98.6 0.193 11 97.1 0.204 100.0 0.220
DT 14 100.0 0.034 94.2 0.259 13 100.0 0.072 100.0 0.163

MSC 14 100.0 0.095 97.1 0.181 14 100.0 0.060 100.0 0.170
OSC 13 100.0 0.104 95.7 0.178 12 100.0 0.111 95.7 0.174
QN 13 100.0 0.025 95.7 0.187 10 100.0 0.091 97.1 0.180
SNV 10 100.0 0.176 98.6 0.183 10 100.0 0.125 100.0 0.164

SNVDT 12 100.0 0.073 94.2 0.227 10 100.0 0.111 100.0 0.163

SLCDA

MF 15 100.0 0.089 100.0 0.133 15 100.0 0.094 100.0 0.149
1st DSG 15 100.0 0.047 100.0 0.152 15 100.0 0.077 97.1 0.201
2nd DSG 14 100.0 0.048 97.1 0.163 15 100.0 0.100 98.6 0.155

DR 15 100.0 0.136 94.2 0.301 15 100.0 0.138 100.0 0.188
DT 15 100.0 0.041 98.6 0.122 15 100.0 0.064 100.0 0.148

MSC 15 100.0 0.089 100.0 0.128 15 100.0 0.076 100.0 0.139
OSC 15 100.0 0.102 100.0 0.144 15 100.0 0.109 98.6 0.141
QN 15 100.0 0.042 100.0 0.087 15 100.0 0.077 100.0 0.085
SNV 15 100.0 0.047 100.0 0.111 10 100.0 0.126 100.0 0.169

SNVDT 15 100.0 0.048 100.0 0.104 15 100.0 0.062 100.0 0.145
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ERV PLS-DA models exhibited a decrease in the % accuracy, accompanied with an increase in the
RMSE; this is expected, since the models relied on smaller number of samples. Ideally, well-calibrated
models should exhibit little or no change on moving from cross-validated models to excluded rows
validated models, whereas a significant drop in accuracy and an increase in the RMSE often suggests
that the model is over-fitted. An over-fitted model will not solely describe the systematic variation in a
model, but will also describe some of the random variation within the dataset and will give inaccurate
predictions. For most of the models (Table 1), the drop in prediction accuracy was not very large, since
most models show an accuracy >95%, which suggests that these models were well-calibrated.

The use of VIP scores for data reduction in PLS shows a notable improvement with regards to the
classification rate in both the cross validated and excluded rows models. Furthermore, a markedly
larger improvement was also observed when using SLC-DA for variable selection (Table 1), where all
the internally validated PLS-DA models exhibited no misclassifications and considerably lower RMSEs
than the PLS models without variable selection and VIP variable selection. An example of such a plot
of VIP and SLCDA scores for the media transformation is included in Figure 2b,c.

The externally validated PLS-DA models also showed a significant improvement when SLCDA
is used, with most models showing no misclassifications. The PLS-DA model improvement can be
attributed to the large amount of variable reduction, from around 550 variables to around 20–40
variables, wherein the amount of redundant and collinear variables is reduced (Figure 2).Foods 2020, 9, x FOR PEER REVIEW 8 of 13 
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Figure 2. (a)SNVDTtransformedATR-FT-MIRspectraof fingerprint regionofallhoneysamples (continuousred
lines represent local samples and dashed blue lines represent foreign samples), (b) stepwise linear
canonical discriminant analysis (SLC-DA) canonical scores and (c) VIP scores (>0.8) obtained from the
variable selection procedures performed on the transformed spectra in (a).

Generally, there is a marked improvement when only the fingerprint region was used to develop
PLS-DA model (Table 1), when compared to models on the ‘whole’ spectra. A similar trend towards a
drop in the prediction accuracy for the excluded rows validation is also observed in this case. The OSC,
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SNV and a combination of SNV and detrending transformations generated PLS-DA models, which
correctly classify all the samples through external validated models, without any variable selection as
show in Figure 3. This highlighted the effectivity of these transformations when used in conjunction
with PLS-DA for the geographical profiling of Maltese and non-Maltese samples.

The removal of the variables which had VIP scores less than 0.8 on the fingerprint region generally
decreased the RMSE in the internally validated PLS-DA models, which maintained their classification
accuracy. The PLS-DA models using external validation were also shown to generally improve,
whereas the models using OSC and median filter transformations showed an increase in the number
of misclassifications. Moreover, PLS-DA models using the variables selected by SLC-DA (Table 1)
generally showed a marked improvement on the models using no variable selection and VIP variable
selection, except for the model using a de-resolve transformation.

Furthermore, apart from a higher accuracy and lower RMSE, PLS-DA models on spectral
transformations of the fingerprint region generally exhibited a higher % explained variance for the
predictor matrices when compared to the ‘whole’ spectra. This was generally true in the case of PLS-DA
models without variable selection and models which used VIP scores for variable selection. Nonetheless,
the performance of the PLS models using the SLC-DA variables was similar in both cases (Table 1). The lack
of improvement over using the fingerprint region versus the whole spectrum for analysis in the case of
SLC-DA, is due to the fact that SLC-DA is very effective at variable selection, thus removing any redundant
variables present in the region from 3600−2800 cm−1.

In light of these findings, it can be concluded that the fingerprint region is more suited for the
differentiation of local and foreign samples using PLS-DA analysis, since it carries more relevant
information and still gives very good classification accuracy without the need of variable selection.
Lastly, while the model parameters give a good indication of the performance of the PLS-DA models,
at this stage, they should not be used to single out the best performing transformation method for
classifying Maltese and non-Maltese honey using PLS-DA. This is because the samples only represent
a small set of local honey and an even smaller set of non-local honey, and thus different samples
might be better represented using different transformations. Nevertheless, the high classification rates
and low error values highlight the potential application of ATR-FT-MIR spectroscopy and spectral
transformations in combination with PLS-DA for the routine classification of local and foreign honey.
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Figure 3. (a) the PLS score plot obtained using SNVDT transformed ATR-FT-MIR complete spectra
under ERV. (b) Linear discriminate analysis performed on the extracted PLS scores. (N) Foreign honey
samples used in the training set (�); Maltese honey samples used in the training set (•); foreign honey
samples used in the validation set (x); Maltese honey samples used in the validation set. Maltese
samples are depicted in red, whilst the foreign samples are depicted in black.
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3.1.2. Other Models

Excluded row FF-ANN models (Table 2) on spectral transformations of the whole MIR spectra
showed a slight improvement in the classification rate when compared to their respective PLS-DA models.
Conversely, the excluded rows validated FF-ANN models performed on spectral transformations of
the fingerprint region showed an increase in the number of misclassifications for nearly all the spectral
transformations, except for models derived from MSC and SNV transformed spectra. This infers that
FF-ANN models were more effective at extracting information from the ‘whole’ spectra for classification
than from the fingerprint region. A similar trend was observed in the excluded rows SVM model results
(Table 3), where the classification rate was generally higher for SVM models of spectral transformation
on the ‘whole’ spectra than for spectral transformation in the fingerprint region; thus, the same inference
can be made.

Table 2. Summary of FF-ANN Model performance with no variable selection on the ‘whole’ spectrum
and on fingerprint region only.

Data Pre-Treatment
Method

Whole Fingerprint

Accuracy (%) RMSE Accuracy (%) RMSE

Median Filter 97.1 0.1299 97.1 0.1761
First Derivative (SG) 92.8 0.2429 95.7 0.1717

Second Derivative (SG) 95.7 0.2186 95.7 0.1915
Deresolve 100.0 0.0609 98.6 0.0791

Detrending 95.6 0.1648 97.1 0.1713
MSC 98.6 0.1019 98.6 0.1198
OSC 97.1 0.1604 97.1 0.1636

Quantile Normalise 95.7 0.1940 95.7 0.1958
SNV 98.6 0.1142 98.6 0.1175

SNVDT 98.6 0.0841 97.1 0.1427

Nevertheless, the high classification rates obtained by most excluded rows validated FF-ANN,
SVM and PLS-DA models, further corroborating the use of MIR spectra and spectral transformations
as a method for the classification of local and foreign samples. The PLS-DA model results were also
further corroborated by the LDA model results (Table 3), which showed no misclassifications in most
instances. In fact, LDA models commonly showed better classification rates than the corresponding
PLS-DA models. These results highlight the potential use of open source pattern recognition packages
for further development and implementation in chemometric applications.

Table 3. Summary of SVM and LDA Model performance with no variable selection on the ‘whole’
spectrum and on fingerprint region only.

Data Pre-Treatment
Method

Whole Fingerprint

LDA SVM LDA SVM

Accuracy (%) RMSE Accuracy (%) Accuracy (%) RMSE Accuracy (%)

Median Filter 100.0 0.0003 100.0 98.6 0.0842 98.6
First Derivative (SG) 100.0 0.0000 100.0 100.0 0.0128 97.1

Second Derivative
(SG) 100.0 0.0000 100.0 98.6 0.1095 92.8

Deresolve 98.6 0.1205 95.7 100.0 0.0658 98.6
Detrending 100.0 0.0000 100.0 100.0 0.0000 98.6

MSC 100.0 0.0003 100.0 100.0 0.0000 98.6
OSC 100.0 0.0125 100.0 100.0 0.0003 100.0

Quantile Normalise 100.0 0.0000 100.0 100.0 0.0000 98.6
SNV 100.0 0.0000 100.0 100.0 0.0000 100.0

SNVDT 100.0 0.0000 100.0 100.0 0.0000 98.6



Foods 2020, 9, 710 10 of 12

4. Conclusions

Most spectral transformations on ATR-FT-MIR data in combination with PLS-DA were shown
to be very effective in classifying local and non-local honey samples. Furthermore, the use of the
fingerprint region for classifying samples was shown to be more effective in PLS-DA models using no
variable selection and VIP variable selection. The use of SLC-DA for variable selection was also shown
to be significantly effective in decreasing the number of misclassifications, both when using the ‘whole’
spectrum and when using the fingerprint region.

FF-ANN, SVM and LDA models were shown to offer similar classification rates to PLS-DA models
and this thus corroborates the results obtained from the PLS-DA models and places confidence in
the use of ATR-FT-MIR methods in conjunction with spectral transformations, for the classification
of Maltese and foreign honey samples. These results highlight the potential of these methods to be
further developed, for the detection of adulteration and for more in-depth profiling and classification
of Maltese honey. Furthermore, the results obtained highlight the effectiveness of chemometric and
pattern recognition-based approaches, in order to quickly and reliably test the authenticity of honey
samples. These promising results should thus serve as an incentive for more research to be done
on developing a more extensive model, using other techniques such as fluorescence spectroscopy
and NMR.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/6/710/s1,
Figure S1: Map of Maltese islands highlight locality of honey samples in Table S1, Figure S2: Two component plot
from PCA on Median filtered data in the region between 760 and 1400 cm−1, Figure S3: Loading plot for the first
two component of PCA on Median filtered data in the region between 760 and 1400 cm−1, Table S1: Sample code,
locality and date of harvest for local samples.
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