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Introduction 

viruses are a common cause of infection and may lead 
to many kinds of disease. Viral clearance is an impor- 
tant factor for the survival of the host, and one of the 
most important events in clearing a viral infection is the 
host immune response. Normally, the immune system 
recognizes a virus as a foreign molecule in the context 
of major histocompatibility complex (MIX) antigens and 
mounts an immune response. Humoral and cellular arms 
of this response neutralize free viruses and destroy in- 
fected cells leading to the recovery of the host. Neverthe- 
less, virus-induced immune responses themselves may re- 
sult in immunopathologic responses that initiate disease. 
Many questions concerning virus-immune sytem interac- 
tions are not yet resolved, although the immunovirology 
field has expanded enormously during the last year. This 
short report cannot detail all the known and documented 
possibilities as to how the immune system interacts with 
viruses; here only a few will be discussed. We will sur- 
vey some published studies about the three-dimensional 
structure of viruses and antibody binding, that are vety 
important in understanding how the humoral immune 
system can recognize viruses. Furthermore, we will de- 
scribe some T cell reactions to various viruses and their 
relationship to MHC antigens. Finally, we will comment 
on some viruses which have important implications to- 
ward understanding autoimmune diseases. 

Three-dimensional structures 

The three-dimensional structures of some viral antigen 
epitopes have been resolved. These studies have aided 
our understanding of how the immune system can ret- 
%nize and interact with viruses. The structure of a mono- 
clonal antibody (mAb) Fab fragment bound to influenza 
virus neuraminidase is a salient example [ 11. Colman 
et al. [l] demonstrated that one of the antigenic epi- 
tapes is localized on surface loops of the neuraminidase 
molecule. Sequence changes within these loops dimin- 
ished or abolished antibody-binding, confirming the cor- 
rect localization of this antigenic determinant. Three-di- 

mensional structure studies of influenza virus hemagglu- 
tinin (IX&) [2] have added to the understanding of virus 
receptors and virus neutralization. The receptor-binding 
site of influenza virus HA forms a pocket surrounded by 
the antibody-binding sites. The close localization of these 
antibody-binding sites to the receptor-binding site sug- 
gests that antibody can neutralize influenza virus by steri- 
tally blocking receptor-binding sites. 
Other investigators, using neuualization escape mutants, 
have studied the localization of biological important epi- 
tapes. Escape mutants are virus variants selected in the 
presence of neutralizing mAb. These variants do not 
bind the neutralizing mAb and thus escape neutraliza- 
tion. Normally the epitope of the neutralizing mAb has 
been previously determined. In most cases, single amino 
acid sequence changes in the mutants versus the orig- 
inal wild type virus can be demonstrated with amino 
acid or nucleic acid sequencing. Sixty-three antigenic po- 
liovirus (Sabin) mutants, which escape the neutraliza- 
tion of 15 different mAbs, were selected and character- 
ized to study interactions between the viral surface struc- 
tures and humoral antibodies [3]. Localization of the 
amino acid changes were determined within the three 
dimensional structure of these viral mutants. Most muta- 
tions were located within prominent protein structures, 
i.e. highly exposed regions on the viral surface. In ad- 
dition, less exposed mutations affected local conforma- 
tions, thus altering the antigenic epitopes. Page et al. [3] 
have presented an interesting mechanism by which an- 
mal viruses can escape immune surveillance and neutral- 
ization. This is through decorations of a virus surface with 
loops and pockets that could be partially modified with 
out disrupting structures necessary for virus integrity. 

T cell reactions 

Cytotoxic T lymphocytes (CTL) as well as T helper/ in- 
ducer cells are critical in the immune destruction of virus- 
infected cells and virus clearance from the infected host, 
and so play an important role in immune response to 
virus infection. Cytotoxic T cells express Lytz on their sur- 
face and recognize their peptide regions in the presence 
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of MHC class I molecules. T helper cells carry 13T4 deter- 
minant on their surface and recognize antigens presented 
with MI-K class II molecules. SpeciIic T cell subpopula- 
tions can be depleted using speciiic rnAb to detemine the 
function of these cells. / 

The role of the T cells in lymphocytic clioriomeningitis 
virus (ICMV) infection was examined by depleting ei- 
ther I3T4 + T cells or Lyt2 + T cells [4]. Mice depleted 
of their Lytz + T cells produced virtually no LCMV-spe- 
cihc CTL and were resistant to the immunopathologic dis- 
ease after intracerebral inoculation with LChiV. However, 
mice treated only with anti-$T* antibodies, i.e. mAb to 
T helper cells, were fully susceptible to the LCMV im- 
munopathologic disease. Their CTL response was about 
lo-fold lower than in control mice. In another study: 
Ahmed et UC [5] examined the requirement of the bT4 i 
+ T helper cells for the induction of a LCMV-specific CTL 
response. As above, depletion of Lyt2 + T cells abolished 
the LCMVspeciiic CTL response and the ability to clear 
virus. However, depletion of T helper cells had only a 
minimal effect on the CTL response. The antiviral anti- 
body response was markedly suppressed in these ani- 
mals. These observations indicate that an anti-ICMV-spe 
cilic CTL response can be generated even if there is a 
paucity of T helper cells. A lack of T helper cells appear 
to have a more severe effect on the humoral response 
than on the cellular immune response. These studies also 
support the contention that CTL plays an active role in 
controlling viral infections. 

An additional model for studying viral T cell interactions 
is influenza virus infection of mice [6]. Zneuenza virus is 
known to undergo antigenic shift and drift. In this way 
virus may infect individuals immune to the previous strain 
of influenza virus. Nevertheless, T helper cells stimulated 
by influenza virus HA show a broader pattern of recog- 
nition than antibodies [7], which can then form a basis 
of a memory response to a new iniluenza virus infection. 
T helper cell clones are able to provide help in vitro to 
B cells for antibody production. Additionally, Iightman et 
al. [8] demonstrated that Lyt2 + cells are more efficient 
in viral clearance than $T* + T cells. Lyt2 + cytotoxic T 
cells protected mice against lethal infection by inll~errza 
virus and were also able to limit virus spread. 

Pathologic and protective immune responses can be 
adoptively transferred by lymphocytes 191 Transferred 
Lytz + T cells cleared respiratory syncytial virus (RSV) 
from acutely infected mouse lung more effectively than 
did 5T4 + T cells by an antibody-independent mech- 
anism [lo]. However, delayed transfer at 14 days after 
infection with primed L3Tq + T cells cleared lung RSV, 
which correlates with specific anti-RSV antibody produc- 
tion. These results indicate that two independent im- 
mune mechanisms are capable of RSV clearance: (1) an 
antibody-independent mechanism during the early stage 
of the infection, and (2) a L3Tq + T ceKtriggered anti- 
body mechanism later in the infection. 

Some of the antigenic determinants recognized by cellu- 
lar immune response have been well characterized [ 111. 
A sequence of 10 amino acids from the Epstein-Barr 

virus-encoded membrane protein could be used to in- 
duce Epstein-Barr virus-specific CTL, This peptide is lo- 
cated within the plasma membrane of B lymphocytes 
transformed by the Epstein-Barr virus. 

MHC molecules 

All T cell reactions are known to be MHC dependent. 
MHC molecules are cell surface proteins determining the 
specificity of the cellular immune response. Antibody can 
bind to free virus, whereas T cell receptors recognize for- 
eign antigens only when they are associated with a MHC 
molecule. The three-dimensional structure of the class I 
MHC antigen from human cells has been visualized as a 
large groove containing putative processed foreign pep- 
tide [ 121. Wuses have the ability to induce the expres- 
sion of MHC class I surface antigens. Neurotropic coro- 
navirus infection [13] leads to MHC class I expression 
on the cell surface of oligodendrocytes and astrocytes. 
Suzumura et aA [13] were able to induce MHC expres- 
sion by the addition of supernatant fluid in tissue culture 
without transfering virus, suggesting that infected astro- 
cytes release soluble factors that mediate the expression 
of class I MHC antigens. In another system, MHC class I 
antigens were demonstrated on hepatocyte membranes 
during chronic hepatitis B virus infection [ 141. 

Class II MHC antigens are expressed on the surface of 
macrophages and B lymphocytes. They are responsible 
for antigen presentation on antigen-presenting cells [ 153. 
Helper ‘I’ cells recognize foreign peptides only in asso- 
ciation with class II MHC molecules. Observations in cy- 
tomegalovirus infection [ 161 suggest that all three human 
class II families (DR, DQ and DP) are involved in T helper 
cell-dependent cytomegalovirus recognition. 

Autoinimunity 

Viruses have long been proposed to stimulate autoim 
mune response. Often during a virus infection antibod 
ies to self proteins can be detected. Virus infections can 
initiate a non-specific general polyclonal reaction of the 
immune system. Some of the resulting immune responses 
may be directed against self antigens. Some viruses ran- 
domly infect B cells, which are then induced to diifer- 
entiate and secrete antibody. Another possibility is au- 
toimmunization with tissue proteins released from virus- 
infected cells leading to autoantibodies or generation 
and expansion of self reactive T cell clones. A third way 
of inducing autoimmune diseases is through molecular 
mimicry. The prediction is that the common determi- 
nant between a virus protein and a host epitope be at 
a disease-inducing site. The cross-reacting immune re- 
sponse may then increase the initial damage caused by 
the virus infection. 
Recently, molecular mimicry could be demonstrated us- 
ing mAb and even direct protein and nucleic acid se- 
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quence comparisons. Sequence homology between the 
LJl small nuclear ribonucleoprotein (RNP)-associated au- 
toantigen and the p3OP8 protein of type C retrovirus has 
been described [ 171. These proteins also show immuno- 
logical cross-reactlviry. In addition, the authors were able 
to demonstrate antibody production to Ul RNP after im 
munizatlon with the murine leukemia virus ~30% pro- 
tein. This suggests the importance of retrovirus in the 
initiation of autoimmunity, which may lead to rheumatic 
and connective tissue diseases. 
Another disease which has autoimmune potential is hu- 
man infectious mononucleosis. Infection with Epstein- 
Barr virus can lead to infectious mononucleosis that is 
characterized by a particularly high incidence of autoanti- 
bodies. Studies of immunoglobulin (1g)M antibodies pro- 
duced during acute infectious mononucleosis indicated 
that these antibodies recognized at least 10 cellular pro- 
teins [ 181. All these autoantibodles were highly cross-re- 
active with each other. The binding could be inhibited 
by synthetic peptides consisting of the glycine-alanlne re- 
peatlng region of the Epstein-Barr virus nuclear antigen. 
Interestingly, sequence comparisons between the cross- 
reactive epitopes showed some variability indicating that 
not only the prlrnary sequence but also the conformation 
was an important factor in defining the epitope. 
Immunopathic myocarditis in mice is a good model for 
autoantibody production and disease [19]. Coxsackie B 
virus infection is associated with autoantibodies directed 
against cardiac myosin. Here mice susceptible to im- 
munopathic myocardltis produced autoantibodies of the 
IgG class specific for cardiac myosin. These heart-spe 
c&z autoantibodies are associated with myocarditls. Fur- 
ther autoantibodies of the IgM class that cross-react with 
heart, skeletal muscle and brain myosin were also found. 
The non-susceptible mouse strains produced only IBM 
and similar antibodies were present in non-infected mice, 
indicating that these IgM antibodies, in contrast to the IgG 
antibodies, may not have any clinical significance. 
The type of virus-induced autoimmunlty does not only 
depend on the virus strain but also on the host ge- 
netic composition. Myocarditis after Coxsackie B virus 
infection is not only dependent on the production of 
autoantibodies but also on cellular immune responses 
[ 201. In z&o depletion of 4T4 + (T helper cells) and/or 
Lytz + (cytotoxic/suppressor T cells) prevents myocardi- 
tis. In addition, the results suggest that cardiac injury in 
Balb/C mice is Lytz + T cell-dependent, in DBA/2 mice 
is 4T.4 + T cell-dependent and in A mice both L3Tq + 
and Lyt2 + T cells are involved. 
Immunological cross-reactivity can also be observed on 
the T cell level. A virus-induced CTL response can cross- 
react with host tissue. Human CTL response to measles 
virus that cross-react with myelin basic protein were gen- 
erated [21]. The killing of these CTL could be enhanced 
by culturing these T cells with myelin basic protein dur- 
ing the killing assay. These measles-specific CTL had the 
ability to kill target cells coated overnight with myelin ba- 
sic protein. Conversely, CTL generated by culturing the 
effector cells with myelin basic protein for 6 days could 
kill myelin basic protein coated target cells and measles 

virus infected target cells. These results suggest a func- 
tional cross-reaction between myelin basic protein and 
measles virus in humans. 
Class II MI-K restricted T cell lines from rats with suba- 
cute measles encephalitis that initiate central nervous sys 
tern disease have been characterized [93. Myelin basic 
protein specific T cells obtained after infection did not 
response to measles virus infected cells and also measles 
virus specific T cells did not interact with myelin basic 
protein. Furthermore, adoptive transfer of these myelin 
basic protein speciftc T cells induced experimental al- 
lergic encephalomyelitis (EAE) in susceptible syngeneic 
rats. These results demonstrate that autoimmune reac- 
tions can arise in susceptible rats after measles virus in- 
fection without the necessity of cross-reaction at the T 
cell level. These results may be due to generation and 
expansion of central nervous system reactive T cells in- 
duced by virus infection. 
Further studies of the interactions between various 
viruses and the immune system will provide additional 
insight into how the immune cells recognize virus, virus- 
infected or altered cells and/or their products. Such ob- 
servations and findings will allow new avenues for the 
development of virus-specific therapies and vaccines as 
well as treatments for autolmmune disease. 
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