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Most cancers have lost a critical DNA damage response (DDR) pathway during tumor

evolution. These alterations provide a useful explanation for the initial sensitivity of tumors

to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed

repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive

efforts are being made to develop novel targeted therapies exploiting such an HDR

defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example

of this approach. Despite the success of PARP inhibitors, the presence of primary or

acquired therapy resistance remains a major challenge in clinical oncology. To move the

field of precision medicine forward, we need to understand the precise mechanisms

causing therapy resistance. Using preclinical models, various mechanisms underlying

chemotherapy resistance have been identified. Restoration of HDR seems to be a

prevalent mechanism but this does not explain resistance in all cases. Interestingly,

some factors involved in DNA damage response (DDR) have independent functions in

replication fork (RF) biology and their loss causes RF instability and therapy sensitivity.

However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs

and acquired drug resistance. In this review we discuss the recent advances in the field

of RF biology and its potential implications for chemotherapy response in DDR-defective

cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in

maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to

novel tools that, combined with a better understanding of drug resistance mechanisms,

may constitute a great advance in personalized diagnosis and therapeutic strategies for

patients with HDR-deficient tumors.

Keywords: DNA replication, replication fork, chemotherapy, drug resistance, DNA damage response, DNA damage

tolerance, PARP inhibitors, BRCA1/2

DNA DAMAGE RESPONSE-TARGETED CANCER THERAPY AND
RESISTANCE

Damage to DNA occurs naturally in cells during cellular metabolism, or after exposure to external
agents such as ultraviolet light, ionizing irradiation (IR), or genotoxic chemicals (1). While
healthy cells are able to repair the DNA lesions, cells that have defects in the DNA damage
response (DDR) pathway do not repair the lesions as efficiently, resulting in genome instability
and potentially the development of cancer (2). Instructive examples of malignancies with defects
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in the DDR are ovarian and breast cancers with mutations in
genes of the homologous recombination (HR) pathway, such
as BRCA1 and BRCA2 (3–7). The HR pathway is one of the
three major cellular pathways that repair DNA double strand
breaks (DSBs) (8–10). Whereas, the other pathways, classical
non-homologous end-joining (NHEJ) and theta-mediated end
joining (TMEJ) do not require a template for repair and tend to
be error-prone, HR occurs after DNA replication and uses the
undamaged sister chromatid as a template for error-free repair of
DSBs [reviewed in (9, 11)].

Although DDR alterations cause mutagenesis and malignant
transformation, they also provide a therapeutic opportunity
that can be explored by DNA damage-inducing therapies (12,
13). In fact, alterations in the DDR even provide a useful
explanation for the initial drug sensitivity. Most cancers have
lost a critical DDR pathway during cancer evolution (14, 15).
Patients therefore respond to clinical interventions that cause
DNA damage, e.g., chemotherapy using DNA crosslinkers and
radiotherapy. Whereas, the normal cells of the body can still
cope with the damage, the tumor cells that lack proper DNA
repair cannot and die. Accordingly, HR-deficient cancers (e.g.,
due to BRCA1/2 mutations) are often sensitive to classical
DNA-crosslinking agents such as platinum-based drugs (13, 16).
However, these agents are associated with significant side effects
due to the damage of normal tissues (17).

An alternative to this conventional therapy is a more targeted
type of treatment that is based on the synthetic lethality concept:
the mutation in one of two genes is harmless for the cells but the
simultaneous inactivation of those two genes is lethal (18, 19).
Because tumors that have lost a certain DDR pathway rely more
on other DNA repair mechanisms, selectively inhibiting these
alternative pathways gives an opportunity to induce synthetic
lethality in these tumor cells. In contrast, the normal cells still
have all DDR pathways available and can cope with the damage
induced by the treatment.

A successful example of this concept is the approval of
poly(ADP)ribose polymerase (PARP) inhibitors (PARPi) to
target BRCA1/2-deficient ovarian and breast cancers (20, 21),
with relatively moderate side effects [reviewed in (22, 23)].
Several PARP enzymes, and in particular its founding member
PARP1, are important in coordinating responses to DNA damage
(24, 25). PARP1 is quickly recruited to single-stranded DNA
(ssDNA) sites upon damage and catabolizes the formation of
branched PAR polymers, which then serve as a scaffold for the
recruitment of downstream repair factors (26).When the lesion is
removed, poly(ADP-ribose) glycohydrolase (PARG) removes the
PAR chains and PARP1 is released from DNA, together with the
other involved proteins. PARPi inhibit the PARylation reaction
and trap PARP to DNA, delaying the repair of the damage. It
is thought that accumulation of SSBs in the absence of PAR
synthesis and physical trapping of PARP1 on DNA eventually
lead to RF collapse and DSBs (8, 27, 28). Since PARP1 also
senses unligated Okazaki fragments during DNA replication and
facilitates their repair, the synthetic lethality may also origin from
replication-associated single-stranded DNA gaps (29). Recently,
another model for PARPi-induced genotoxicity was presented,
where PARPi deregulates restart of transiently stalled forks (see

“Replication fork reversal and its players” below), elevating
the fork progression rate above a tolerable threshold in the
presence of DNA damage (30–32). However, the relevance of
the mechanisms mentioned above in different model systems
and different therapy contexts remains to be better understood.
Importantly, since HR is required for error-free DSB repair
following replication, BRCA1/2-deficient tumor cells lacking HR
activity are not able to tolerate the damage induced by PARPi and
they eventually die, whereas normal cells can cope with PARPi
treatment (27).

Despite the clinical benefits of PARPi, most patients with
disseminated BRCA1/2-mutated cancer still die because their
tumors either show upfront resistance or develop secondary
resistance (33). Thus, drug resistance remains a major challenge
in targeting DDR pathways.

Mechanisms of resistance to PARPi in HR-deficient tumors
have been studied extensively in preclinical models [reviewed
in (34)]. Residual hypomorphic activity or reactivation of
BRCA1/2 function by secondary mutations, is one of the
major mechanisms found in patients (5, 35–39). Moreover,
the restoration of HR independently of BRCA1 function (via
the downregulation of factors involved in blocking DNA
end resection and promoting NHEJ) is also prominent in
animal models (40–54) and we expect that this also occurs in
humans. Additional mechanisms discovered are related to the
upregulation of the drug efflux transporter ABCB1/P-gp (55,
56), the loss of the drug target via downregulation of PARP1
in BRCA1/2-proficient cells (57), PARP1 point mutations that
abrogate PARPi-induced trapping (58), or the partial restoration
of PARylation activity via the loss of PARG, the functional
antagonizer of PARP1 (59).

More recently, attention has been brought to the contribution
of replication fork (RF) integrity to genome stability and drug
response (60, 61). Interestingly, besides their role in DNA repair,
BRCA1/2 are also important to protect stalled RFs, allowing the
resolution of replication intermediates while preventing excessive
nucleolytic degradation (62–64). This dual role of BRCA1/2 in
DNA repair and RF protection makes BRCA1/2-deficient cells
highly sensitive to DNA damaging agents and drugs affecting
replication (see more details in the section “Fork stability as
a resistance mechanism in BRCA-deficient tumors”). Besides
BRCA1/2, other DNA repair factors such as RNF8, RNF168,
53BP1, and RAD51 are present at RFs and play a role in their
dynamics (65–70). In agreement with this, several studies have
demonstrated that restored stability of RF in BRCA1/2-deficient
cells achieved via re-activation of BRCA1/2 or additional loss
of other factors regulating RF processing, confers resistance to
PARPi and platinum drugs (62, 63, 71–73) [reviewed in (60, 61)].

Hence, various well-known mediators of DSB repair have
independent functions in RF biology. Since their defect is linked
to increased anti-cancer therapy sensitivity, it raises the question
whether the defective RF metabolism is the main determinant of
anti-cancer therapy response or, at least, a major contributor.

Given the increasing implications of RF homeostasis for
cancer therapy, we focus our attention in this review to RF
remodeling and the different methods currently used to study RF
constitution and dynamics. Next, we discuss crucial molecular
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players of these processes and the relation of PARP and PARPi
with the RF remodeling “metabolism.” In addition, we discuss the
role of fork stability and restart in cancer drug resistance and the
biological role of DDT pathways in the maintenance of genome
integrity and cancer. Moreover, we will suggest some practical
applications of this knowledge in the clinic, in terms of diagnosis
and prognosis, predicting personalized treatment responses, and
for the development of new therapeutic strategies.

THE TOOL-BOX TO STUDY RF
STRUCTURE, COMPOSITION AND
DYNAMICS

To investigate RF biology, high-resolution, quantitative
molecular tools are necessary, in particular for the study of
protein interactions at RFs during unperturbed S-phase or
replication stress. Because each method has it strengths and
pitfalls, a combination of several methods is useful to obtain a
complete picture of the hypothesis to be tested. Before focusing
on the mechanisms of RF biology in the context of cancer
therapy, we provide a brief outline of the most commonly
used techniques.

Electron Microscopy (EM)
Electron microscopes use a beam of accelerated electrons as
a source of illumination. Since the wavelength of electrons
can be up to 100,000 times shorter than that of visible light
photons, electron microscopes have a much higher resolution
than light microscopes and are ideal to visualize small structures.
Actually, EM is the only method that allows direct observation
and quantification of DNA replication intermediates. Several
structures, such as reversed forks, Holliday junctions and even
the distinction between single-stranded DNA (ssDNA) and
double-stranded DNA (dsDNA) have been observed using this
method (74).

Briefly, living cells are exposed to tri-methyl-psoralen (TMP)
and irradiated with 365–366 nm monochromatic light to cross-
link DNA. This crosslinking step preserves DNA replication
intermediate (RI) structures during the subsequent extraction
and enrichment procedures. Genomic DNA is then extracted
and, in an optional step, RI are enriched by binding, washing
and elution in a benzoylated-naphthoylated DEAE (BND)
cellulose column, since this resin has high affinity to ssDNA
(which is always present at RFs). Afterwards, the DNA
sample is concentrated in size-exclusion columns and spread
in the presence of the cationic detergent benzyl-dimethyl-
alkylammonium chloride (BAC). This monolayer of DNA is
absorbed to carbon-coated grids and stained with uranyl acetate.
Finally, the individual DNA molecules can be visualized after the
grids undergo flat angle rotary shadowing with platinum (74)
(Figure 1A).

The high resolving power of EM (in the range of 30–50
base-pairs) allows the visualization of the fine architecture of
DNA structures, such as reversed forks, and, combined with
drug treatment or genetic manipulations, can reveal any kind
of DNA alterations caused by these perturbations. Moreover,

because nucleosomal DNA is not accessible to the crosslinking
reagent psoralen, the final, deproteinized DNA will appear as
ssDNA bubbles that represent the nucleosome position in vivo,
providing valuable information on the chromatin organization
on replicating DNA (74) (Figure 1A). Despite the enormous
benefits of EM, it is a relatively laborious technique, it requires
specialized, expensive equipment and it is a static method that
only provides a snapshot of the RIs at a given time-point
(Table 1).

DNA Fiber Assay
In this procedure, ongoing replication events are
sequentially labeled with two thymidine analogs [commonly
iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU)] and,
after cell lysis, individual DNA molecules are stretched into
fibers using the combing (75, 76) or the spreading technique
(represented in Figure 1B) (77). The two modified nucleotides
are then detected by two-color immunofluorescence and
visualized in a fluorescence microscope (Figure 1B).

Unlike EM, the visualization of individual RFs using the
DNA fiber assay provides a better understanding of the
dynamic behavior of RFs, based on several parameters, such
as: the speed of ongoing RFs, the number of newly initiated
forks, the distance between replication origins, the frequency
of fork stalling/collapse, for instance, upon induction of
replication stress (78, 79). Therefore, the combination of different
experimental variables, such as the duration of labeling with
thymidine analogs, the existence (or not) and extent of chase after
labeling, as well the exposure to different genotoxic agents, gives a
global picture of the fluctuating alterations in RFs. Combinations
of EM and DNA fiber methods offer optimized conditions to
elucidate mechanistic aspects of the cellular responses to specific
types of replication stress (80).

The scale of the detected DNA fibers is 1µm = 2–4Kb,
which means that only RF degradation of at least 2 kb can be
directly observed, whereas smaller losses are undetected, making
this a technique relatively low in resolution, when compared to
others (61) (Table 1). Even though the “simple” DNA fiber assay
does not provide information on the location of the RFs in the
genome, it can be combined with a DNA probe (Fluorescence
in situHybridization-FISH) specific for a certain genomic region
(81). Due to the limited sensitivity of immunofluorescence, the
detection of proteins at RFs is not feasible with this method
(Table 1).

Isolation of Proteins on Nascent DNA
(iPOND)
As its name indicates, iPOND is an approach focused on
the detection of proteins associated with nascent DNA. In
this method, cells are incubated with the thymidine analog 5-
Ethynyl-2′-deoxyuridine (EdU) to label newly replicated DNA.
After cross-linking of proteins and DNA with formaldehyde,
the click reaction in performed to link biotin to EdU (82).
After cell lysis and sonication to shear chromatin, proteins in
close proximity to biotin and EdU-labeled DNA are purified
with streptavidin-coated agarose beads. These isolated proteins
are then resolved by Western blotting or mass spectrometry
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FIGURE 1 | Overview of techniques frequently used to study replication fork biology. Various methodologies, including electron microscopy (A), single molecule DNA

fiber assay, using the spreading technique (B), iPOND (C), and SIRF (D), are being used to study replication fork-associated processes. Combining these techniques

allowed many research groups to identify novel factors associated with replication forks and their role in replication fork dynamics and replication stress responses.

Ab, antibody; BAC, benzyl-dimethyl- alkylammonium chloride; BND, benzoylated-naphthoylated DEAE; CldU, chlorodeoxyuridine; EdU, 5-Ethynyl-2′-deoxyuridine;

IdU, iododeoxyuridine; iPOND, isolation of proteins on nascent DNA; PLA, proximity ligation assay; Pt/C, Platinum/carbon; RF, Replication fork; RIs, replication

intermediates; SIRF, in situ analysis of protein interactions at DNA replication forks; TMP, tri-methyl-psoralen.
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TABLE 1 | Summary of the advantages and disadvantages of the different techniques used to study replication fork biology.

Technique Advantages Disadvantages

Electron microscopy ◦ Direct visualization and quantification of fork structures

◦ High resolution: 30–50 base pairs

◦ Static method

◦ Laborious and requires specialized and expensive technique

and equipment

DNA fiber assay ◦ Single molecule resolution

◦ Can measure several parameters: rate of fork elongation,

inter-origin distances, frequency of origin firing, and frequency of

fork collapse

◦ Allows monitoring the dynamics of replication perturbation for a

prolonged period of time

◦ Relatively low resolution (only length differences corresponding to

at least 2–4Kb of DNA can be observed)

◦ Inter-observer variability of the image analysis

iPOND ◦ Improved sensitivity (compared to IF)

◦ Combined with pulse-chase methods provides high spatial and

temporal resolution of protein dynamics.

◦ Allows analysis of posttranslational modifications

◦ Compatible with unbiased screening approaches.

◦ Coupling with SILAC/mass spectrometry: highly quantitative

and unbiased

◦ Laborious

◦ Large amount of starting material required

◦ Limited quantification potential

◦ Does not consider heterogeneity of cell populations

◦ SILAC/mass spectrometry: requires high-cost specialized

equipment with limited access

SIRF ◦ Single cell resolution

◦ Allows analysis of heterogeneous cell populations (location and

type)

◦ Readily quantifiable

◦ Sensitive (very little starting cell material)

◦ Does not require special equipment

◦ Not all epitopes at the forks may be accessible to antibodies

◦ Limited to distances no >∼40 nm

IF, immunofluorescence; iPOND, Isolation of proteins on nascent DNA; SILAC, stable isotope labeling with amino acids in cell culture; SIRF, in situ analysis of protein interactions at DNA

replication forks.

(69) (Figure 1C). Besides allowing the identification of proteins
at active RFs, this technique also enables the investigation of
proteins recruited to stalled and collapsed forks, depending on
the addition of different replication stress-inducing agents to
the cells (69).

Compared to immunofluorescence, iPOND is amore sensitive
technique and also enables the analysis of posttranslational
modifications. Additionally, combined with pulse-chase
experiments, it offers a high spatial and temporal resolution of
protein dynamics at replicating DNA. Another advantage of
iPOND is the possibility to combine it with unbiased screening
approaches by coupling iPOND to mass spectrometry (Table 1).
Hence, this methodology is very useful to identify new proteins
present at active and perturbed RFs (69).

Despite its relative high sensitivity, iPOND lacks an
amplification step, which means that large amounts of starting
material are needed to achieve sufficient protein for detection
(82). It is also a laborious and not very trivial technique, requiring
specialized technical skills. Other drawbacks of this tool are its
limited quantitative potential and the fact that it analyses cells as
a whole population, not considering individual cell heterogeneity
(Table 1).

One extension of mass spectrometry-coupled iPOND is the
combination with stable isotope labeling with amino acids in cell
culture (SILAC). For this purpose, two different cell populations
are grown in a medium containing either normal amino acids or
amino acids labeled with stable non-radioactive heavy isotopes.

This way, the abundance of specific proteins can be directly
compared and quantified between the two samples (69).

An alternative protocol for iPOND, named aniPOND
(accelerated native iPOND) has also been developed. The
major advantages of aniPOND compared to the earlier
described iPOND are the milder lysis conditions that
preserve better the DNA-protein complexes, the absence
of the formaldehyde crosslinking step that may interfere
with downstream analysis, and an improved protein
yield (83).

In situ Analysis of Protein Interactions at
DNA Replication Forks (SIRF)
SIRF is a technology that fuses iPOND and a modified version
of the proximity ligation assay (PLA), used to detect proteins in
close proximity to others (84). In this method, like in iPOND,
EdU is incorporated into replicating DNA and then biotinylated
using the click chemistry (85). Afterwards cells are incubated with
primary antibodies against biotin and the protein of interest and
detection follows the principles of PLA: two secondary antibodies
conjugated with oligonucleotides are added to the cells and bind
to the primary antibodies. When the secondary antibodies (and
consequently EdU-labeled DNA and the protein of interest) are
in close proximity (<40 nm), the two oligonucleotides can anneal
to each other and form a circular DNA structure that serves
as a template for a PCR-based amplification reaction (rolling
circle amplification). These amplified DNA circles are then
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FIGURE 2 | RAD51-mediated RF reversal (A) and an overview of replication fork restart mechanisms (B). (A) At stalled replication forks, ssDNA tracks are protected

and coated with RPA. The DNA recombinase RAD51 replaces RPA and binds to DNA, contributing to the remodeling of the stalled fork into a reversed fork (4-way)

structure. Besides RAD51, there are other replication fork remodelers, mentioned in the main text, but for simplicity only RAD51 is represented in this figure.

(B) PARP1-mediated suppression of RECQ1 helicase is an important regulator of a premature restart of reversed forks (upper panel). Because of the least amount of

processing involved, RECQ1-mediated pathway represents the first-choice restart mechanism of reversed forks. DNA2/WRN-driven restart involves regulated

processing of the regressed arms and uses HDR to resolve the replication intermediate (middle panel). Reversed forks that could not be restarted in S phase are

processed by MUS81 endonuclease later in mitosis and DSB break is formed in the process. The collapsed fork is then rescued by POLD3-driven D-loop formation

and synthesis re-initiation (lower panel). PCNA, proliferating cell nuclear antigen; RPA, replication protein A.

detected by sequence-specific DNA fluorescent probes, allowing
the visualization and quantification of signal that corresponds
to the sites of interaction between active RFs and the protein
of interest (85) (Figure 1D). Besides SIRF using EdU to label
nascent DNA, mapping proteins at forks can also be assessed by
the standard PLA method between any given protein and PCNA
(or other fork components).

The combination of this efficient and sensitive tool with other
immunofluorescence parameters, such as cell cycle or cell identity
markers, enables the analysis of heterogeneous cell populations
with a single cell resolution. Additionally, it can be performed in
any standard molecular biology laboratory, as it does not require
special equipment (85). Pitfalls of SIRF are the fact that only

interactions closer than 40 nm can be visualized and that some
epitopes at RFs may not be accessible to antibodies (85) (Table 1).

REPLICATION FORK REVERSAL AND ITS
PLAYERS

Remodeling of RFs involves unwinding of newly synthesized
strands and annealing of nascent and parental strands. In this
process, the standard three-way junction forks are converted into
four-way junction structures. Since annealing of nascent DNA
strands form regressed arms at the fork, this remodeling event is
called RF reversal (Figure 2A). This was shown to be an effective
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mechanism allowing cells to cope with replication stress and to
maintain genome integrity (70). Interestingly, recent work of
Mutreja et al. (86) has demonstrated that replication fork reversal
can be regulated globally and may represent a “safety brake”
to prevent potential collisions of ongoing unaffected forks with
DNA lesions ahead of them. The authors also demonstrated that
this global fork slowing and reversal requires ATR-dependent
signaling (86).

The initial step of fork reversal is associated with the
accumulation of ssDNA at challenged RFs. This can occur either
by physical uncoupling of the polymerase and replicative helicase
or by controlled nucleolytic digestion of nascent DNA in certain
contexts, such as in response to inter-strand crosslinks (ICLs)
or increased torsional stress (70, 87). Uncovered ssDNA at
the affected fork is promptly recognized by a highly abundant
Replication protein A (RPA). The high affinity of RPA toward
ssDNA allows a dynamic cellular response to a variety of
replication stress-inducing agents of both endogenous and
exogenous origin (88–90).

The interaction of RPA with ssDNA is highly dynamic and
involves repeated dissociation and re-association of RPA subunits
due to conformational changes. Dynamic interaction of RPA
with both DNA and other proteins allows RPA to carry out
various functions and is crucial for maintaining the stability of
the fork affected by replication stress (Figure 2A). First, coating
of ssDNA with RPA removes secondary structures (91, 92). RPA
nucleofilaments then attract checkpoint signalization proteins
such as ATR and its interactor ATRIP (ATR-interacting protein)
to initiate a global cellular response to replication stress (89, 93).
Furthermore, RPA nucleofilaments help recruit and regulate the
activity of various DNA repair proteins required for stabilization
and recovery of the challenged fork (94, 95). All these functions
are essential for preventing RF collapse and maintenance of
chromosomal integrity (91).

RAD51 recombinase is well-known for catalyzing strand-
invasion in HR repair of DNA double-strand breaks. Loading
to ssDNA at double-strand breaks is highly dependent on
its interaction with BRCA2. However, RAD51 also plays an
important role in regulating RF reversal (Figure 2A) (70).
Interestingly, these two functions are genetically separated,
since its recruitment to stalled forks and its enzymatic activity
promoting fork reversal are BRCA2-independent (96, 97).
Dungrawala et al. (98) identified a ssDNA-binding protein,
RADX, to be enriched at RFs and to antagonize the accumulation
of RAD51 and RF reversal. Nevertheless, how the recruitment
of RAD51 to stalled forks is regulated remains largely elusive.
Due to impaired fork reversal, cells depleted of RAD51
do not show reduced RF progression following genotoxic
treatments, leading to hypersensitivity to a wide-range of
genotoxic agents and increased frequency of chromosome
breakage (70).

Several remodelers have been shown to associate with stalled
RFs and drive their reversal, such as SMARCAL1, ZRANB3,
and HLTF (94, 99, 100). Interestingly, a common feature of
all three is the lack of a 3′-ssDNA unwinding activity typical
for helicases. Instead, upon recruitment to stalled forks, their

critical role in remodeling of challenged RFs is facilitated
by their ATP-dependent dsDNA translocase activity, allowing
the formation of regressed arms by unwinding of newly
synthesized strands and annealing of nascent and parental
strands (99, 101).

SMARCAL1 is a multi-domain protein of the SNF2 family of
ATPases (102). It associates with the active replisome complex
and drives the remodeling of stalled forks by branch migration
and fork regression. SMARCAL1-mediated remodeling has been
shown to prevent an alternative repair mechanism involving the
initial formation of double-strand breaks by MUS81 cleavage of
the stalled fork (94).

Another member of the SNF2 family of remodelers is
the ZRANB3 translocase. Upon induction of replication
stress, ZBRANB3 associates with polyubiquitinated PCNA
to facilitate RF reversal and replication slowdown (100).
Ciccia et al. (103) showed that ZRANB3 activity is also
required for resolution of recombination intermediates and
efficient restart of arrested forks. In mammalian cells, siRNA-
mediated downregulation of ZRANB3 leads to increased
frequency of sister chromatid exchange and sensitivity of
the cells to treatments interfering with replication, such as
hydroxyurea (HU), camptothecin (CPT), cisplatin, and UV
irradiation (103).

HLTF, the last member of the SNF2-family known to be
required for fork remodeling so far, was originally identified
as a human homolog of the yeast template-switching protein
Rad5 (104). The ancient and conserved HIRAN domain was
shown to be crucial for the interaction of HLTF with 3′-ssDNA
at RFs (105). Similar to Rad5 in yeast, HLTF also possesses a
E3-ubiquitin ligase-containing RING domain, which facilitates
the K-63-linked polyubiquitination of PCNA (104). HLTF RING
mutants were shown to fail in promoting efficient fork reversal,
likely due to impaired recruitment of the downstream remodeler
ZBRANB3 and other factors that require polyubiquitinated
PCNA for efficient association with stalled RFs (100, 106).

The interplay between various fork remodeling factors seems
to be highly complex and is not fully understood yet.

Deficiencies in SMARCAL1, ZRANB3, or HLTF lead to
enhanced replication stress, collapse of stalled RFs and
chromosomal instability, which sensitizes these cells to a wide
range of replication stress-inducing agents (99, 100, 107).
Lower expression or truncating gene mutations of SMARCAL1,
ZRANB3, and HLTF have also been linked to susceptibility
to various types of cancer (108–113). Recently, Puccetti et al.
(114) identified non-redundant functions of SMARCAL1 and
ZRANB3 in alleviation of Myc oncogene-induced replication
stress. The authors also showed that both alleles of SMARCAL1
and ZRANB3 are required for fork stabilization in Myc-
overexpressing primary cells (114). However, SMARCAL1-,
ZRANB3-, and HLTF-mediated fork remodeling also possess a
threat to genome integrity in cells lacking functional BRCA1/2
by providing a substrate for unregulated extensive degradation of
the regressed arms (72, 96, 97, 106). An overview of the factors
described in this and the following chapters can be found in
Table 2.
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TABLE 2 | Overview of several key players involved in RF metabolism.

Factor Enzymatic activity Function in RF remodeling/

chemoresistance and clinical evidence

References

RAD51 Recombinase RF reversal/depletion restores RF stability in BRCA-deficient

cells in vitro.

(70)

RAD54 DNA translocase Regulation of RF reversal and restoration through branch

migration.

(115)

SMARCAL1 (SWI/SNF-related

matrix-associated actin-dependent

regulator of chromatin subfamily A-like

protein 1)

ATP-dependent annealing helicase

(translocase)

RF reversal/depletion restores RF stability and confers

chemo-, PARPi-resistance in BRCA-deficient cells in vitro.

Low mRNA associated with reduced survival in

BRCA1-mutant breast cancer.

(96, 106)

ZRANB3 (Zinc finger Ran-binding

domain-containing protein 3)

ATP-dependent annealing helicase

and endonuclease (translocase)

RF reversal/depletion restores RF stability in

BRCA1/2-deficient cells in vitro.

(97, 100, 106)

HLTF (Helicase-like transcription factor) ATP-dependent annealing helicase

(translocase)/E3 ubiquitin ligase

RF reversal/depletion restores RF stability in

BRCA1/2-deficient cells in vitro.

(106)

FBH1 (F-box DNA helicase 1) DNA helicase/translocase RF reversal (116)

BLM (Bloom syndrome protein) ATP-dependent DNA helicase RF reversal and restart (117, 118)

RECQL5 (RecQ protein-like 5) ATP-dependent DNA helicase RF reversal (119)

FANCM (Fanconi anemia group M protein) ATP-dependent translocase RF reversal, restart and protection of stalled forks (120–122)

RADX (RPA-related, RAD51-antagonist on

X-chromosome)

ssDNA-binding protein Antagonizing RF reversal/depletion restores RF stability and

confers chemo- and PARPi-resistance in BRCA2-deficient

cells in vitro.

(98)

CtIP (CTBP-interacting protein) 5′ flap endonuclease RF processing, restart of stalled forks (72, 123)

MRE11 (Meiotic recombination 11) 3′->5′ exonuclease and

endonuclease

RF processing/inhibition restores RF stability in

BRCA1/2-deficient cells in vitro.

(63, 72, 97,

124)

RAD52 Recruitment of MRE11 to stalled RFs and fork degradation in

BRCA2-deficient cells/depletion or inhibition restores RF

stability in BRCA2-defective cells in vitro.

(97)

PTIP (PAXIP1—PAX-interacting protein 1) RF processing via recruitment of MRE11/loss restores RF

stability in vitro. Poor prognosis in BRCA1/2 mutant ovarian

cancer.

(62)

PARP1 (Poly (ADP-ribose) polymerase 1) Poly-ADP-ribosyltransferase Recruitment of MRE11 to stalled RF, fork reversal, regulation

of fork restart/deletion restores RF stability in

BRCA1/2-deficient cells in vitro. Deficiency reduces

tumor-free survival in Brca2−/− mouse model.

(62, 125)

EXO1 (Exonuclease 1) 5′->3′ exonuclease, 5′ structure

specific DNA endonuclease, 5′->3′

RNase H

Further RF processing initiated by CtIP and MRE11/depletion

restores RF stability in BRCA1/2-deficient cells in vitro.

(72)

RECQ1 (ATP-dependent DNA helicase Q1) ATP-dependent DNA helicase RF restart via branch migration (30)

WRN (Werner syndrome ATP-dependent

helicase)

ATP-dependent DNA helicase, 5′->3′

exonuclease

RF processing and HR-mediated restart of stalled forks (126)

DNA2 (DNA replication ATP-dependent

helicase/nuclease)

ssDNA-dependent ATPase, 5′->3′

helicase, 5′->3′ endonuclease

RF processing and HR-mediated restart of stalled forks (127)

MUS81 (Methyl methanesulfonate and

ultraviolet-sensitive gene clone 81)

Crossover junction endonuclease RF fork processing and restart/Impaired recruitment via EZH2

inhibition or depletion restores RF stability in BRCA2-deficient

cells in vitro. Low expression associated with poor prognosis

in BRCA2-mutated tumors.

(73)

CHD4

(Chromodomain-helicase-DNA-binding

protein 4)

Chromatin remodeler RF processing via chromatin accessibility/depletion restores

RF stability in BRCA-deficient cells and confers

chemoresistance in vitro. Poor prognosis in BRCA2 mutant

ovarian cancer.

(62, 71)

EZH2 (Enhancer of zeste homolog 2) Chromatin modifier (Histone-lysine

N-methyltransferase)

RF processing and restart via H3K27 trimethylation and

MUS81 recruitment/depletion restores RF stability and

confers chemoresistance in BRCA2-deficient cells. Low

expression associated with poor prognosis in

BRCA2-mutated tumors.

(73)
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MECHANISMS OF FORK RESTART

The ability to restart stalled RFs is essential to avoid excessive
accumulation of replication intermediates, which are prone to
aberrant processing and if not resolved properly, may cause
chromosome segregation defects later in mitosis (128–130).
To carry out this task, eukaryotic cells have evolved various
mechanisms to process stalled replication intermediates and to
restart affected RFs (Figure 2B, Table 2). Conversion of reversed
forks back to standard three-way DNA junctions is a process
essential for restoration of replication and successful duplication
of the genome. In eukaryotes, failure in restarting severely
damaged forks can be, to a certain extent, buffered by firing
of dormant replication origins. However, systemic dysregulation
of the process e.g., by genetic alterations or drug interventions
significantly elevates chromosomal instability (131, 132).

RECQ1 is the most abundant member of the RecQ family
of helicases in human cells (133, 134). However, its specific
role in replication was not known for a long time. Thangavel
et al. (134) showed that RECQ1 associates with replication
origins in a cell cycle-dependent manner and that depletion
of RECQ1 suppresses the RF rate in unperturbed S phase.
Berti et al. (30) provided a mechanistic explanation for this
phenotype by identifying the role of RECQ1 in priming branch
migration at reversed forks and driving their restart (Figure 2B).
By combining electron microscopy with single-molecule DNA
fiber assay, Berti at al. (30) demonstrated a critical function
of the RECQ1 helicase in promoting RF restart following
topoisomerase 1 inhibition. Furthermore, the authors showed
that the activity of RECQ1 at the reversed RFs is negatively
regulated by PARP1, demonstrating a major role of PARylation
in preventing RECQ1-mediated restart of forks.

Germline mutations leading to loss of the helicase activity
of RECQ1 have been associated with increased susceptibility to
breast cancer (135, 136). Another study showed that embryonic
fibroblasts from mice lacking RECQ1 activity display increased
rates of spontaneous chromosomal breakage and aneuploidy
(132). Importantly, while genetic alterations reducing the activity
of RECQ1 have been shown to increase susceptibility to certain
types of cancer, overexpression of RECQ1 has been associated
with increased replication stress survival, drug resistance, and
overall poor prognosis in patients with multiple myeloma.
The authors also showed that reducing RECQ1 expression by
DNA methyltransferase inhibition sensitized multiple myeloma
cells to PARPi (137). Collectively, these findings highlight the
importance of RECQ1 in DNA metabolism and maintenance of
chromosomal integrity and may open opportunities for novel
targeted therapies (135, 136).

Another mechanism by which reversed RFs can be restarted
involves unwinding of nascent strands in regressed arms by the
ATP-dependent helicase activity of Werner syndrome protein
(WRN) and nucleolytic processing by DNA2 (Figure 2B).
Compared to other factors acting at stalled RFs, the role of
WRN is more complex due to its dual helicase and exonuclease
activities (126). Recruitment of WRN to reversed RFs and its
proper function is highly dependent on an orchestrated action of
ATM and ATR kinases. Interestingly, phosphorylation mediated

by ATM and ATR is required for different steps in the process
of stalled fork recovery. While ATR-mediated phosphorylation
of multiple residues at the C-terminus of WRN is required for
proper nuclear foci formation and co-localization with RPA,
ATM-mediated phosphorylation is essential for formation of
RAD51 nuclear foci, enabling proper recovery of collapsed forks
(138). Furthermore, both helicase and exonuclease activities
are required to limit MUS81-dependent breakage of forks
after HU-induced arrest (126). Rodriguez-Lopez et al. (139)
showed that normal progression RFs is affected in cells lacking
functional WRN protein. The authors observed asymmetric
progression of bi-directional forks diverging from the majority
of replication origins, suggesting an increased frequency of RF
stalling. Based on these data, the authors concluded that WRN
is either protecting RFs from collapse or promotes resolution of
replication intermediates at collapsed forks (139).

DNA2, likeWRN, possesses nucleolytic and helicase activities.
Together with exonuclease 1 (EXO1), DNA2 has been known for
its function in mediating processive DSB resection downstream
of the MRN complex and CtIP in eukaryotic cells. By nucleolytic
processing of 5′ ends and generating 3′ ssDNA overhangs at
DSBs, EXO1 and DNA2 carry out the initial step essential for
HR (140–142). Independently of its role in dsDNA break repair,
DNA2 has also been shown to assist WRN in controlling HR-
mediated restart of reversed RFs by resecting the regressed
arm following nucleotide depletion by HU (127). Importantly,
this function of DNA2 may play a major role in tolerance to
chronic replication stress, induced e.g., by oncogene activation,
commonly exhibited by cancer cells. Indeed, Peng et al. (143)
demonstrated that normal pancreatic ductal cells that were
transformed into cancer cells by activating K-RAS showed
overexpression of DNA2 in early stages of transformation.
Elevated levels of DNA2 mRNA were also found in a wide range
of cancer types, further demonstrating the importance of DNA2-
mediated recovery of stalled forks in replication stress tolerance
(143, 144).

The restart of reversed RFs via RECQ1- and DNA2/WRN-
dependent pathways allows the resolution of most of the reversed
RFs in S phase and is essential for maintenance of chromosomal
integrity in eukaryotic cells (30, 127). Nevertheless, more
processing is required in certain situations to prevent potentially
mutagenic genomic rearrangements arising from unresolved
complex replication intermediates (145). MUS81 is a cell-cycle
regulated, structure-specific endonuclease that preferentially
cleaves branched DNA substrates, such as replication or
recombination intermediates. Processing of the reversed forks by
MUS81 leads to formation of DSBs and subsequent recovery of
stalled forks via HR (Figure 2B). MUS81-dependent processing
of stalled forks was initially implicated in the resolution of
forks perturbed by nucleotide pool depletion (146). However,
other groups showed that processing of unusual replication
intermediates by MUS81 may also be responsible for oncogene-
induced genotoxicity, since depletion of MUS81 alleviated
chromosomal breakage and resulted in an increase of reversed
forks in human U2OS cells overexpressing the oncogenes Cyclin
E andCdc25A (147). Therefore, the outcome ofMUS81-mediated
DNA processing and DSB induction at stalled forks is highly
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FIGURE 3 | Replication fork stability or degradation in BRCA1/2-proficient and -deficient cells. (A) Reversed replication fork arms are protected from degradation by

RAD51 nucleofilaments stabilized by BRCA1 and BRCA2. In the absence of BRCA1/2 proteins RAD51 dissociates from ssDNA at the regressed arms, leaving the

nascent DNA susceptible to nucleolytic resection by exonucleases such as MRE11. (B) Overview of the factors shown to restore RF stability and confer

chemoresistance upon their loss in BRCA1- or BRCA2-deficient cells.

dependent on the genetic background and the context in which
the replication intermediates are formed.

FORK STABILITY AS A RESISTANCE
MECHANISM IN BRCA-DEFICIENT
TUMORS

BRCA1 and BRCA2 have well-known roles in the repair of
DNA DSBs by HR. BRCA1 is crucial for the resection of
DNA at DBS sites, creating two regions of ssDNA on either

side of the break. BRCA2, with the help of PALB2, localizes
the DNA recombinase RAD51 to the exposed ssDNA regions,
forming stable nucleoprotein filaments which invade the intact
homologous DNA double helix (148). Besides these, BRCA1/2
have many other cellular functions independent of their role
in HR. One of these is their function in the protection of
RFs under replication stress conditions by stabilizing RAD51
nucleofilaments and preventing excessive processing of forks
by nucleases (Figure 3A) (63, 64, 149). While RF reversal
has been shown to alleviate chromosomal instability upon
exposure to genotoxic treatments (70), it also provides an entry
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point for nascent DNA degradation in cells lacking BRCA1
or BRCA2 (72, 96, 97, 106). Step-wise processing of nascent
DNA at reversed forks by different nucleases has been shown
to drive fork degradation. The MRE11-dependent resection is
initiated by CtIP and then further extended by EXO1 (72). The
enzymatic inhibition of MRE11 by mirin or siRNA-mediated
depletion of EXO1 results in the protection of RFs in BRCA1/2-
deficient cells treated with HU. Interestingly, the combination
of MRE11 inhibition and EXO1 knockdown had a synergistic
effect on the stability of stalled forks, indicating a potentially
independent function of these nucleases in fork degradation (72).
However, other groups have observed a full restoration of fork
stability by MRE11 inhibition alone, pointing to MRE11 as the
nuclease responsible for most of the processing of regressed
arms in BRCA-deficient cells (62, 63). Furthermore, loss or
down-regulation of factors involved in chromatin recruitment
of MRE11 also restores fork stability and alleviates chromosome
breakage in HU-treated BRCA-deficient cells (62).

Ray Chaudhuri et al. (62) showed that recruitment of MRE11
to stalled RFs is impaired upon loss of PTIP, a member of
the MLL3/4 complex. The authors also demonstrated that Ptip
deficiency rescues lethality in Brca2-deficient mouse embryonic
stem cells. The restoration of RF stability promotes resistance of
BRCA2-deficient tumors to cisplatin and PARPi independently
of HR restoration. Interestingly, this function of PTIP at RFs
is independent of its interaction with 53BP1 in the canonical
DSB repair, since 53BP1/BRCA1-deficient B cells did not show
any protection of forks upon nucleotide depletion (62). Similarly,
loss of PARP1, which has been linked to regulation of MRE11-
dependent restart and recombination at stalled forks (150), also
restores RF stability and rescues lethality of Brca2 null mouse
embryonic stem cells (62). Another group demonstrated that
depletion of RAD52, similarly to loss of PARP1 or PTIP, leads
to reduced recruitment of MRE11 to chromatin and completely
abolishes RF degradation in BRCA2-defective cells (97).

A genome-wide short hairpin RNA (shRNA) screen
performed by Guillemente et al. (71) has identified the
chromatin remodeling factor CHD4 to promote cisplatin
resistance in BRCA2-mutated ovarian cancer cell line PEO-1
upon its downregulation. The depletion of CHD4 restored
normal cell cycle progression and alleviated chromosomal
aberrations upon cisplatin treatment (71). Mechanistically,
similar to the situation in PTIP-,PARP1-, or RAD52-deficient
cells, the phenotype of CHD4-depleted cells can be explained
by the reduced chromatin recruitment of MRE11 and an
increased RF stability in BRCA2-deficient cells upon replication
stalling (62).

Various epigenetic modifications may also play an important
role in RF remodeling and resolution of stalled RFs. Rondinelli
et al. (73) performed a gene expression analysis of chromatin
modifiers in HR-defective BRCA1/2-deficient tumors and found
the enhancer of zeste homolog 2 (EZH2) to score as the top
overexpressed chromatin modifier in various tumor types. The
authors showed that EZH2 localizes to RFs stalled by HU and
promotes recruitment of the MUS81 nuclease by mediating
trimethylation of H3K27 (73). MUS81-dependent processing of
stalled RFs has been shown to have a significant role in resolution

of replication intermediates and replication restart (145, 151). Lai
et al. proposed a new function of MUS81-dependent processing
in replication stress tolerance and survival of BRCA2-deficient
cells upon nucleotide depletion by HU. Lemacon et al. (72)
then provided a mechanistic explanation for this phenotype by
demonstrating that MUS81 resection at replication intermediates
drives POLD3-dependent fork rescue upon HU-induced fork
stalling. Interestingly, impaired MUS81 recruitment to RFs,
e.g., by enzymatic inhibition or siRNA-mediated knockdown
of EZH2, conferred RF stability and chemoresistance to PARPi
and cisplatin in BRCA2-, but not in BRCA1-deficient cells (73).
Consistent with these findings, low expression of EZH2/MUS81
have been found to correlate with chemoresistance and poor
therapy outcome in patients with BRCA2-mutated tumors (73).
However, it is not fully understood how MUS81 loss promotes
PARPi resistance in BRCA2-deficient cells. The treatment-
specific response of MUS81-depleted BRCA2-deficient cells to
HU and PARPi may be explained by the importance of PARP1
in RF slowing and regulation of restart (30). Inhibition of
PARP1 may promote RECQ1-dependent restart of reversed
forks, therefore depriving cells of a substrate for MUS81 (30, 152,
153). However, more research has to be done to fully understand
the context-specific synthetic lethal/viable interaction between
BRCA2 and MUS81 deficiency.

Recently, the loss of RADX was identified as another
mechanism protecting aberrant processing at stalled forks in
BRCA2-deficient cells. RADX is an ssDNA binding protein that
acts as a negative regulator of RAD51 (98). Dungrawala et
al. (98) showed that inactivation of RADX enables excessive
accumulation of RAD51 at RFs, leading to lower rate of
replication elongation and formation of DSBs. However, in cells
lacking BRCA2, depletion of RADX was sufficient to compensate
for the decreased stability of RAD51 filaments and to rescue RF
stability. This translated into reduced sensitivity to HU, cisplatin,
CPT and PARPi.

Besides the proteins described above, several other factors
have also been shown to promote RF remodeling such as DNA
helicases FBH1, WRN, BLM, RECQL5, and DNA translocases
RAD54 and FANCM (Table 2). However, the relevance of these
proteins for replication fork metabolism in the context of
BRCA1/2 deficiency and chemoresistance remains to be studied
in more detail (115–117, 119, 120, 126). Collectively, genetic
alterations resulting in rewired fork protection in BRCA1/2-
deficient cells are highly complex and the interaction dynamics
between various remodelers, processing factors, and other DNA
repair factors remain to be further investigated. Furthermore,
while loss of certain factors, such as PTIP, PARP1 (62), or fork
remodelers SMARCAL1, HLTF, and ZRANB3 confer RF stability
in both BRCA1- and BRCA2-deficient backgrounds (106), loss
of CHD4, EZH2, and RADX only restore fork stability in cells
lacking BRCA2 (Figure 3B) (71, 73, 98). These findings suggest
that different pathways leading to restored fork stability may
exist in mammalian cells, even though they all lead to the
same endpoint: limited processing of stalled forks by nucleases
(60). Importantly, while preventing reversed fork degradation by
limiting nuclease access or activity (by loss of PTIP, CHD4, etc.)
is likely to support therapy survival in the clinics, the possible
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FIGURE 4 | Overview of the DDT pathways and their regulation by various post-translational modifications of PCNA. (A) During normal replication PCNA interacts with

the anti-recombinase PARI through SUMO modification to prevent potentially mutagenic recombination events in the absence of replication stress. (B) In response to

replication stress, PrimPol-mediated lesion skipping allows cells to re-initiate synthesis downstream of the lesion and prevent RF stalling, while leaving an ssDNA gap

behind. Alternatively, cells can employ one of three DDT pathways regulated by various modifications at K164 of PCNA. (C) Poly-ubiquitination in early S-phase

initiates a mechanistically complex, but error-free TS, which requires RAD51-mediated strand invasion and newly replicated sister chromatid for synthesis over the

damaged template. In contrast, mono-ubiquitination leads to the frequently mutagenic TLS in late S or G2/M phase. This process requires a step-wise exchange of

high-fidelity replicative polymerases for specialized low-fidelity non-processive polymerases to enable synthesis over the lesion (D). (E) The last DDT mechanism is

“salvage” HR repair which is commonly repressed by SUMOylation of PCNA and by the anti-recombinase PARI in order to prevent chromosome rearrangements

caused by hyper-recombination. The question marks indicate that the factors involved in the processes in human cells are not clearly defined. HR, homologous

recombination; PARI, PCNA-associated recombination inhibitor; SUMO, small ubiquitin-like modifier; TLS, translesion synthesis; Ub, ubiquitin.

impact of preventing formation of the reversed RF as a targeted
structure for degradation is more debated.

DNA DAMAGE TOLERANCE PATHWAYS

Another group of mechanisms allowing maintenance of genome
integrity, which can involve RF remodeling, are DDT pathways.
While the highly complex DDR network is essential for ensuring
genome integrity over generations, immediate activation of
the repair machinery at the damaged DNA may not be
beneficial in every scenario. Prolonged stalling of RFs induced
by DNA damage significantly increases the risk of fork

collapse and genome instability. To minimize the chances
of increased rates of fork collapse and formation of highly
cytotoxic DSBs, cells developed DDT pathways that enable DNA
synthesis beyond the damaged template, thereby completing
the DNA replication prior to damage repair. The bypassed
lesion is then removed later on by the specialized DNA repair
pathways in the process called post-replicative repair (154,
155). Four major DDT pathways enabling bypass of DNA
lesions have been described thus far: translesion synthesis (TLS),
DNA primase-polymerase (PrimPol) mediated re-priming,
template switching (TS) and the HR-mediated “salvage” pathway
(156, 157) (Figure 4).
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TLS is a mechanistically straightforward pathway compared
to the TS and HR salvage repair, and it only requires
the replacement of high-fidelity replicative polymerases by
specialized low-fidelity non-processive polymerases (158). Low-
fidelity of the TLS polymerases can be attributed to the lack
of proofreading activity and the more flexible structure of
the active site, which is able to accommodate modified bases
and allow base mismatches (159, 160). Exchange of a stalled
replicative polymerase for a TLS polymerase is a stepwise process
involving at least two switching events (161). In the first step,
the replicative polymerase is replaced by one of the insertion
TLS polymerases, such as POL κ, POL ι, POL η, or REV1 that
enable DNA synthesis over the DNA lesion. Then, either the
same or another extension TLS polymerase elongates the newly
synthesized DNA fragment to prevent detection of the lesion
by the proof-reading activity of the replicative DNA polymerase
(162, 163). This step is facilitated by the POL ζ complex of B-
family polymerases (REV3L, REV7, POLD2, POLD3 (164–167).
The last switching event restores a replicative DNA polymerase
on the DNA template and reinitiates normal DNA synthesis.
However, while the TLS is an easy, straightforward mechanism
allowing lesion bypass and preventing fork stalling, it is also
intrinsically error-prone. This is due to the higher frequency
of nucleotide misincorporation by the TLS polymerases on the
undamaged template, and due to the fact that synthesis over
certain lesions, such as abasic sites, is often mutagenic (159, 160).

Another DDT mechanism is facilitated by the TLS primase
PrimPol. PrimPol is a member of the archeo-eukaryotic primase
(AEP) superfamily and has been shown to enable the bypass of
various types of DNA lesions, either via its TLS activity or by
lesion skipping (157, 168–171). While TLS is characterized by
continuous DNA synthesis over the damaged template, lesion
skipping involves the re-initiation of DNA synthesis of the
leading strand de novo downstream of the replication block
on the undamaged template. Therefore, PrimPol-mediated re-
priming also represents a powerful RF remodeling-independent
restart mechanism for stalled forks (172–175). Unlike TLS,
lesion skipping results in the formation of a ssDNA gap behind
the site of re-initiation and it needs to be repaired post-
replicatively (170). PrimPol shares several properties with other
TLS polymerases; it lacks the 3′-5′ exonuclease proofreading
activity and exhibits low-fidelity and low-processivity DNA
synthesis (157, 176–178).

Interestingly, experimental data from yeast and human cells
indicate that DNA re-priming and stalled RF reversal are
mutually exclusive events (175, 179). Disturbing the balance
between fork reversal and re-priming may have a significant
impact on genome stabilitymaintenance, especially in the context
of anticancer therapy in BRCA1/2-mutated tumors. Recent work
of Quinet et al. demonstrated that the ATR-mediated increase
in expression of PrimPol and its recruitment to stalled RFs
abolishes the nascent DNA degradation in BRCA1/2-deficient
human cells treated with multiple doses of genotoxic agents,
such as UVC, HU and cisplatin. The authors also showed that
the PrimPol-mediated adaptive response is dependent on ATR
signaling. However, while elevated levels of Prim Pol lead to
stalled RF protection, it also resulted in accumulation of ssDNA

gaps in the genome (175). More research is required to fully
understand the dynamics between the two pathways and the
biological consequences of preventing RF degradation in BRCA-
mutated tumors at the expense of accumulation of ssDNA gaps
resulting from discontinuous replication.

Another, genetically distinct DDT pathway, TS, is a
mechanistically more complex pathway for lesion bypass.
In contrast to TLS, it uses the homologous template for synthesis,
and therefore, facilitates an error-free synthesis over the damage
site. Similarly to HR DNA repair, the initial step requires the
stalled nascent strand to invade the newly replicated sister
chromatid and is facilitated by RAD51 (156, 180, 181). The
structure formed when the stalled nascent strand invades the
undamaged chromatid is called the sister chromatid junction
(SCJ). The undamaged template is then used to replicate DNA
over the lesion containing the parental strand. After the gap is
filled, SCJ is resolved back into two duplex DNA strands and the
lesion bypass process is completed (156).

The last known DDTmechanism called “salvage” HR pathway
is an alternative to the TS pathway. Like TS, salvage HR repair
also employs template switching to bypass the DNA lesion.
However, the major difference between the two pathways is that
salvage HR repair is hyper-recombinogenic and thus only serves
as the last resort of cells to replicate DNA over lesion if TLS and
TS fail (182–184).

A tight regulation of pathway choice between the DDT
mechanisms is important to limit the accumulation of mutations
in case of TLS. It also prevents aberrant recombination events
leading to potential genomic rearrangements and genome
instability in the case of the salvage HR pathway. The regulation
of the TLS, TS, and salvage HR pathways is facilitated by
post-translational modifications (PTM) of PCNA (see Figure 4),
which act as a molecular switch regulating pathway choice (185).
In contrast to other pathways, PrimPol-mediated lesion bypass
is not stimulated by PCNA and its PTMs. Instead, human
PrimPol may be directly recruited to the stalled RFs through
its interaction with the ssDNA-binding protein RPA (176). The
initial PCNA modification, which is induced upon contact of
a RF with the DNA lesion, is mono-ubiquitination at K164. In
yeast, this modification is carried out by the E2-E3 complex
Rad6-Rad18. In humans, however, several proteins seem to be
implicated and their dynamics is not fully understood yet (186).
Preferentially, the mono-ubiquitin mark would be extended to a
poly-ubiquitin chain in a UBC13-dependent manner to stimulate
ZRANB3-driven RF reversal and the error-free TS pathway in
early S-phase (100, 103, 187, 188). In human cells, at least two
E3 ubiquitin ligases can cooperate with UBC13 in promoting
PCNA polyubiquitination; HLTF and SHPRH (104). However,
their relative contribution to extending the mono-ubiquitin
mark on PCNA is not well-understood yet. The second DDT
pathway choice is the mutagenic TLS that has been shown to
occur in late S or G2/M phase of the cell cycle. This pathway
is initiated if the K164 mono-ubiquitin mark on PCNA is
not extended (156, 189). The last choice is the salvage HR
pathway, which is ubiquitin-independent. In yeast, the pathway
is actively suppressed during normal S phase by sumoylation of
PCNA at K164 and by the activity of the Srs2 anti-recombinase
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associated with SUMO-modified PCNA (190–192). In contrary
to ubiquitination, sumoylation of PCNA is cell-cycle dependent
and is strictly limited to S phase (193). Thus, HR-mediated lesion
bypass is limited to late S and G2/M phases and serves only
as the last resort for synthesis over the lesions that escaped
the TS and TLS pathways (187). In humans, the Srs2 ortholog
PARI (PCNA-associated recombination inhibitor) was shown
to interact with PCNA and restrict unscheduled HR at RFs
in vitro (194). However, the role of PCNA SUMOylation and its
regulation in human cells is still debated (190).

ALTERATIONS OF DDT PATHWAYS IN
CANCER

Defects in DNA replication or repair play amajor role in genomic
instability, one of the hallmarks of cancer. Given the importance
of DDT pathways in the resolution of replication stress by
preventing fork stalling and collapse, it is not surprising that
alterations in genes encoding TLS polymerases and other DDT
components have been associated with cancer development and
drug resistance (195). When analyzing samples from various
types of tumors, Albertella et al. found that about half of the
tumor samples studied showed more than a 2-fold increase
in expression of at least one specialized TLS DNA polymerase
(196). On the one hand, increased activity of TLS polymerases
may significantly contribute to mutagenicity and may increase
the chances of oncogenic transformation (197). On the other
hand, cancer cells with higher expression of these polymerases,
such as Pol β, may escape the cytotoxic effect of various
drugs, including alkylating agents, and hence significantly
contribute to chemoresistance (198–200). Interestingly, different
TLS polymerases were shown to be upregulated in different
types of tumors; upregulation of Pol theta (Pol θ, POLQ) was
shown to indicate poor outcome in breast cancer patients (201),
while elevated expression of Pol eta (Pol η, POLH) correlates
with decreased survival of patients with non-small cell lung
cancer (202) or metastatic gastric adenocarcinoma treated with
platinum drugs (203).

The ability of TLS polymerases to carry out replication over
DNA lesions induced by anti-cancer treatments and therefore
increase survival of cancer cells makes them attractive targets
for improving the efficacy of currently used chemotherapeutics.
Nevertheless, developing compounds highly selective toward
TLS polymerases has been very challenging, mainly due to
common substrates and some interaction partners shared by
TLS and replicative polymerases (e.g., PCNA). Moreover, while
several small molecule inhibitors of TLS components have
been discovered, none of them were shown to have activity in
vivo (204). Examples comprise previously described selective
inhibitors of REV7 (205), oxetanocin derivatives inhibiting Pol
η (206), or small molecule compounds blocking the interaction
between components of the Pol ζ complex (207). One example of
a small inhibitor shown to be active in vivo is a recently described
molecule JH-RE-06. The compound prevents mutagenic TLS by
blocking REV1-REV7 interaction and therefore, inhibiting the
recruitment of polymerase POL ζ. This was shown to suppress

TLS-mediated mutagenicity induced by cisplatin in vitro and to
sensitize tumors to cisplatin treatment in vivo (204).

Moreover, suppression of various TLS components has been
associated with an improved response to DNA damaging agents,
such as cisplatin in certain types of tumors. siRNA-mediated
knockdown of REV1 or REV3L (the essential subunit of POL
ζ) was shown to sensitize intrinsically resistant tumors to
chemotherapy or to reduce the frequency of acquired resistance
in relapsed tumors (208). Doles et al. (209) showed that in
addition to the pronounced sensitivity of REV3-deficient tumors
to cisplatin and improved survival of treated mice, REV3-
deficient cells also displayed lower amounts of cisplatin-induced
mutations potentially decreasing a risk for secondary mutations
leading to acquired resistance (209). Similarly, the suppression of
Rev1 was shown to decrease cisplatin- and cyclophosphamide-
induced mutagenesis in a mouse model for B-cell lymphoma
and to limit acquired cyclophosphamide resistance in vitro
(155). Moreover, DDT-defective PcnaK164R lymphoma and breast
cancer lines were also hypersensitive to cisplatin (210).

In summary, both DNA repair and DDT pathways are
important to prevent RF collapse and maintain genome integrity.
Therefore, defects in proteins involved in these processes can
lead to cancer and also affect the response of cells to different
genotoxic agents, which reflects on drug sensitivity or resistance
in the clinic. However, several aspects of the intricate relationship
between DDR and DDT, as well as their interaction at the RF are
still unclear and need to be further investigated.

FUTURE DIRECTIONS IN PREDICTING
THERAPY RESPONSE

The understanding of resistance mechanisms involving known
DDR factors and/or RF remodelers/processors, together with the
advance in biological in vitro and in vivo models for studying
cancer, should be implemented in the clinical practice in the
future for personalized diagnosis and for selecting an effective
treatment strategy. Classical clinical and histopathological
staging/grading will remain an import source of information.
Here, we expect that computational pathology and deep learning
algorithms will have a major impact to overcome the problem
of inter-observer variability. Recent studies in breast cancer
suggest that quantitative image analysis of histomorphometric
features of early stage ER+ breast cancer are useful to predict
patient survival independently (211, 212). Moreover, there are
great expectations that the multiomics analysis of tumor samples,
including next generation DNA/RNA sequencing, epigenomics,
proteomics, and metabolomics, will make a difference to predict
therapy response (Figure 5) [reviewed in (213–215)]. Indeed,
the combination of these approaches has already been useful in
exploring several aspects of the biological complexity of cancer
(216, 217). However, some challenges in this context include the
computational integration of such heterogeneous data and the
availability of adequate amounts of optimally collected tumor
tissue both before and during therapy.

Some novel computer tools are available for this type of
integrated analysis [reviewed in (214)] and include platforms
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FIGURE 5 | Future perspectives for predicting personalized therapy outcome. The use of patient samples for histology and multi-omics analysis will remain valuable

tools to characterize tumors. In addition, patient-derived 3D organoid/ex vivo cultures may provide additional material for functional testing, such as RAD51 foci

detection upon ionizing radiation, or DNA fiber analysis to probe for replication fork speed and/or stability. Together with the increasing knowledge of the importance of

DDT and RF remodeling in anticancer drug response, these additional tools may allow automated functional analyses coupled with NGS profiling of DDR genes in

patient-derived samples, providing the potential for designing personalized therapy strategies and predicting their outcomes in the future. DDR, DNA damage

response; FFPE, formalin-fixed, paraffin-embedded; gDNA, genomic DNA; IF, immunofluorescence; NGS, next-generation sequencing; RF, replication fork.
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that analyse miRNA and mRNA expression (dChip-GemiNi,
mirConnX, IntegraMiR), associate epigenomic with RNA
expression and clinical data (such asMENT,MethHC,Wanderer,
MethCNA) or integrate proteomic with several other types
of data from multiple studies (XCMS Online, CancerSysDB)
[reviewed in (214)].

The collection of data for multiomics analysis largely depends
on the availability of patient samples. Moreover, the use of liquid
biopsies and circulating tumor DNA for sequencing purposes
would be complementary. Regarding the analysis at the protein
level, the improvement in MS proteomics to reduce sample input
and increase sensitivity for low abundance proteins would also
help in this context.

The recent developments in the field of patient-derived 3D
organoid cultures enable the expansion of tumor cells acquired
by biopsy of different types of tumors (218–220). In vitro-
cultured organoid lines often preserve morphological features,
drug response profiles, as well as the heterogeneity of the original
tumor (221). Therefore, 3D organoids could be another source
of material for multi-omics approaches. However, it is important
to keep in mind that the predictive power of tumor organoid
cultures has clear limitations and is not 100% (222).

The ability to be rapidly expanded and genetically modified
makes 3D organoids in principle a versatile tool for downstream
functional testing of therapy response, including the study of
RF biology (Figure 5) (62, 222). Nevertheless, the predictive
power of 3D organoids has limitations that we still need to
understand to make a significant step toward personalized
medicine in clinical oncology (222). Ex vivo approaches to
study living tumor fragments may be another direction in
which RF biology in the context of anti-cancer therapy may be
studied further.

Genetic testing for germline mutations in BRCA1 and BRCA2
has been available since the 1990s (223). Moreover, advances
in next-generation sequencing (NGS) technology allowed for
systematic investigation of the mutational landscape in BRCA1-
and BRCA2-mutated tumors (224, 225). In addition, the
identification of other DNA repair genes associated with HR
deficiency opened the possibility for targeted therapy in those
patients, including PARP inhibitors (226). Despite the undoubted
significance of NGS data in predicting therapy success in patients
with defects in the HR DNA repair pathway, this approach
does not allow to study the role of epigenetics in modulating
expression of HR genes, including BRCA1 and BRCA2, nor
functional testing for residual or restored HR repair or RF
stability. Restoration of HR in BRCA1-deficient tumors by loss
of 53BP1 is frequently found in tumors that acquire PARPi
resistance (41, 50, 227). Similarly, loss of several other NHEJ
and HR regulators, such as RIF1, REV7, and HELB have
been shown to restore resection at DSB sites and promote
HR repair, leading to improved DDT, chromosomal integrity,
and consequently to acquired chemoresistance (44, 52, 53,
228). Restoration of damage-induced RAD51 foci formation
is a well-established marker of DNA end processing and HR
repair at DSBs. Therefore, implementing automated assays for
RAD51 foci formation in patient samples would provide an

important functional link to the complementary information
acquired with next-generation sequencing on genetic alterations
(Figure 5) (227).

As discussed above, the role of DDT pathways and DNA RF
metabolism in the context of therapy response and resistance has
gained a lot of attention in recent years. Various groups have
identified novel factors implicated in the metabolism of DNA
RFs and replication stress tolerance. Several of those factors,
including DNA2, EZH2, and MUS81, showed the potential
to be used as biomarkers for predicting response to DDR-
targeting therapies in BRCA-deficient tumors (72, 137, 143).
Nevertheless, similar to a functional HR restoration readout,
functional assays for testing DDT, RF remodelers and fork
stability would be needed to reliably phenotype tumor-derived
samples and to predict therapy success. Recently, a novel system
based on the formation of UVA-induced digoxygenin-tagged
trimethylpsoralen ICLs was described by Mutreja et al. (86).
Combined with the traditional DNA fiber spreading procedure,
this technique allows the detection of individual ICL lesions and
enables the study of cellular responses to ICL-inducing agents
at the single-molecule resolution (86). One of the limitations
of the DNA fiber technique currently used by many research
groups is the time-consuming process of preparation of slides
with the DNA spreads and the inter-observer variability of the
image analysis (Table 1). Developing a pipeline for automated
and standardized preparation of DNA fibers involving molecular
combing and analysis of selected replication parameters, such
as stability of stalled forks, rate of replication elongation, or
lesion bypass, may enable a more precise prediction of therapy
response in patients with DDR defects in their cancer. We hope
that combining multiomics data with automated RAD51 foci
formation and DNA RF analysis represents a powerful toolbox
for predicting therapy outcome in patients with tumors defective
in DDR pathways in the future (Figure 5).
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Maldonado D, et al. PRIMPOL-mediated adaptive response suppresses
replication fork reversal in BRCA-deficient cells. Mol Cell. (2019) 77:461–
474. doi: 10.1016/j.molcel.2019.10.008

176. Guilliam TA, Jozwiakowski SK, Ehlinger A, Barnes RP, Rudd
SG, Bailey LJ, et al. Human PrimPol is a highly error-
prone polymerase regulated by single-stranded DNA binding
proteins. Nucleic Acids Res. (2015) 43:1056–68. doi: 10.1093/nar/
gku1321

177. Keen BA, Jozwiakowski SK, Bailey LJ, Bianchi J, Doherty AJ. Molecular
dissection of the domain architecture and catalytic activities of human
PrimPol. Nucleic Acids Res. (2014) 42:5830–45. doi: 10.1093/nar/gku214

178. Zafar MK, Ketkar A, Lodeiro MF, Cameron CE, Eoff RL. Kinetic
analysis of human PrimPol DNA polymerase activity reveals a generally
error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-
oxo-2′-deoxyguanosine. Biochemistry. (2014) 53:6584–94. doi: 10.1021/
bi501024u

179. Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D. Error-free DNA
damage tolerance and sister chromatid proximity during DNA replication
rely on the Polα/Primase/Ctf4 complex. Mol Cell. (2015) 57:812–23.
doi: 10.1016/j.molcel.2014.12.038

180. Vanoli F, Fumasoni M, Szakal B, Maloisel L, Branzei D. Replication and
recombination factors contributing to recombination-dependent bypass
of DNA lesions by template switch. PLoS Genet. (2010) 6:e1001205.
doi: 10.1371/journal.pgen.1001205

181. Zhang H, Lawrence CW. The error-free component of the RAD6/RAD18
DNA damage tolerance pathway of budding yeast employs sister-
strand recombination. Proc Natl Acad Sci USA. (2005) 102:15954–9.
doi: 10.1073/pnas.0504586102

182. Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F,
Menolfi D, et al. DNA bending facilitates the error-free DNA damage
tolerance pathway and upholds genome integrity. EMBO J. (2014) 33:327–40.
doi: 10.1002/embj.201387425

183. Karras GI, Fumasoni M, Sienski G, Vanoli F, Branzei D, Jentsch
S. Noncanonical role of the 9-1-1 clamp in the error-free
DNA damage tolerance pathway. Mol Cell. (2013) 49:536–46.
doi: 10.1016/j.molcel.2012.11.016

184. Ortiz-Bazán MÁ, Gallo-Fernández M, Saugar I, Jiménez-Martín A, Vázquez
MV, Tercero JA. Rad5 plays a major role in the cellular response to
DNA damage during chromosome replication. Cell Rep. (2014) 9:460–8.
doi: 10.1016/j.celrep.2014.09.005

185. Moldovan G-L, Pfander B, Jentsch S. PCNA, the maestro of the replication
fork. Cell. (2007) 129:665–79. doi: 10.1016/j.cell.2007.05.003

186. Masuda Y, Masutani C. Spatiotemporal regulation of PCNA ubiquitination
in damage tolerance pathways. Crit Rev BiochemMol Biol. (2019) 54:418–42.
doi: 10.1080/10409238.2019.1687420

187. Branzei D, Szakal B. DNA damage tolerance by recombination:
molecular pathways and DNA structures. DNA Repair. (2016) 44:68–75.
doi: 10.1016/j.dnarep.2016.05.008

188. Masuda Y, Suzuki M, Kawai H, Hishiki A, Hashimoto H, Masutani C, et al.
En bloc transfer of polyubiquitin chains to PCNA in vitro is mediated by
two different human E2-E3 pairs. Nucleic Acids Res. (2012) 40:10394–407.
doi: 10.1093/nar/gks763

189. Waters LS, Walker GC. The critical mutagenic translesion DNA polymerase
Rev1 is highly expressed during G2/M phase rather than S phase. Proc Natl
Acad Sci USA. (2006) 103:8971–6. doi: 10.1073/pnas.0510167103

190. Choe KN, Moldovan G-L. Forging ahead through darkness: PCNA, still
the principal conductor at the replication fork. Mol Cell. (2017) 65:380–92.
doi: 10.1016/j.molcel.2016.12.020

191. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, et al. Crosstalk
between SUMO and ubiquitin on PCNA is mediated by recruitment of the
helicase Srs2p.Mol Cell. (2005) 19:123–33. doi: 10.1016/j.molcel.2005.06.001

192. Pfander B, Moldovan G-L, Sacher M, Hoege C, Jentsch S. SUMO-modified
PCNA recruits Srs2 to prevent recombination during S phase.Nature. (2005)
436:428–33. doi: 10.1038/nature03665

193. Hoege C, Pfander B, Moldovan G-L, Pyrowolakis G, Jentsch S. RAD6-
dependent DNA repair is linked to modification of PCNA by ubiquitin and
SUMO. Nature. (2002) 419:135–41. doi: 10.1038/nature00991

194. Moldovan GL, Dejsuphong D, PetalcorinMI, Hofmann K, Takeda S, Boulton
SJ, et al. Inhibition of homologous recombination by the PCNA-interacting
protein PARI.Mol Cell. (2012) 45:75–86. doi: 10.1016/j.molcel.2011.11.010

195. Zafar MK, Eoff RL. Translesion DNA synthesis in cancer: molecular
mechanisms and therapeutic opportunities. Chem Res Toxicol. (2017)
30:1942–55. doi: 10.1021/acs.chemrestox.7b00157

196. Albertella MR, Lau A, O’Connor MJ. The overexpression of
specialized DNA polymerases in cancer. DNA Repair. (2005) 4:583–93.
doi: 10.1016/j.dnarep.2005.01.005

197. Stallons LJ, McGregor WG. Translesion synthesis polymerases in the
prevention and promotion of carcinogenesis. J Nucleic Acids. (2010)
2010:643857. doi: 10.4061/2010/643857

198. Canitrot Y, Frechet M, Servant L, Cazaux C, Hoffmann JS. Overexpression
of DNA polymerase beta: a genomic instability enhancer process. FASEB J.
(1999) 13:1107–11. doi: 10.1096/fasebj.13.9.1107

199. Canitrot Y, Hoffmann JS, Calsou P, Hayakawa H, Salles B, Cazaux C.
Nucleotide excision repair DNA synthesis by excess DNA polymerase beta:

Frontiers in Oncology | www.frontiersin.org 21 May 2020 | Volume 10 | Article 670

https://doi.org/10.1038/cr.2008.4
https://doi.org/10.1146/annurev.biochem.74.082803.133250
https://doi.org/10.1016/j.molcel.2005.03.032
https://doi.org/10.1038/sj.emboj.7600438
https://doi.org/10.1016/j.jmb.2007.07.036
https://doi.org/10.1074/jbc.M112.351122
https://doi.org/10.1073/pnas.1206052109
https://doi.org/10.1016/j.dnarep.2015.02.012
https://doi.org/10.1093/nar/gks948
https://doi.org/10.1016/j.canlet.2012.02.001
https://doi.org/10.1016/j.molcel.2013.10.035
https://doi.org/10.1016/j.molcel.2013.09.025
https://doi.org/10.1016/j.dnarep.2015.02.013
https://doi.org/10.1093/nar/gkz056
https://doi.org/10.1038/ncomms15222
https://doi.org/10.1080/15384101.2016.1191711
https://doi.org/10.1016/j.molcel.2019.10.008
https://doi.org/10.1093/nar/gku1321
https://doi.org/10.1093/nar/gku214
https://doi.org/10.1021/bi501024u
https://doi.org/10.1016/j.molcel.2014.12.038
https://doi.org/10.1371/journal.pgen.1001205
https://doi.org/10.1073/pnas.0504586102
https://doi.org/10.1002/embj.201387425
https://doi.org/10.1016/j.molcel.2012.11.016
https://doi.org/10.1016/j.celrep.2014.09.005
https://doi.org/10.1016/j.cell.2007.05.003
https://doi.org/10.1080/10409238.2019.1687420
https://doi.org/10.1016/j.dnarep.2016.05.008
https://doi.org/10.1093/nar/gks763
https://doi.org/10.1073/pnas.0510167103
https://doi.org/10.1016/j.molcel.2016.12.020
https://doi.org/10.1016/j.molcel.2005.06.001
https://doi.org/10.1038/nature03665
https://doi.org/10.1038/nature00991
https://doi.org/10.1016/j.molcel.2011.11.010
https://doi.org/10.1021/acs.chemrestox.7b00157
https://doi.org/10.1016/j.dnarep.2005.01.005
https://doi.org/10.4061/2010/643857
https://doi.org/10.1096/fasebj.13.9.1107
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liptay et al. Replication Defects and Cancer Therapy

a potential source of genetic instability in cancer cells. FASEB J. (2000)
14:1765–74. doi: 10.1096/fj.99-1063com

200. Nicolay NH, Helleday T, Sharma RA. Biological relevance of
DNA polymerase β and translesion synthesis polymerases to
cancer and its treatment. Curr Mol Pharmacol. (2012) 5:54–67.
doi: 10.2174/1874467211205010054

201. Lemée F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire M-
J, Bieth A, et al. DNA polymerase theta up-regulation is associated
with poor survival in breast cancer, perturbs DNA replication, and
promotes genetic instability. Proc Natl Acad Sci USA. (2010) 107:13390–5.
doi: 10.1073/pnas.0910759107

202. Ceppi P, Novello S, Cambieri A, Longo M, Monica V, Iacono ML, et al.
Polymerase η mRNA expression predicts survival of non-small cell lung
cancer patients treated with platinum-based chemotherapy. Clin Cancer Res.
(2009) 15:1039–45. doi: 10.1158/1078-0432.CCR-08-1227

203. Teng K, QiuM, Li Z, Luo H, Zeng Z, Luo R, et al. DNA polymerase η protein
expression predicts treatment response and survival of metastatic gastric
adenocarcinoma patients treated with oxaliplatin-based chemotherapy. J
Transl Med. (2010) 8:126. doi: 10.1186/1479-5876-8-126

204. Wojtaszek JL, Chatterjee N, Najeeb J, Ramos A, Lee M, Bian K, et al. A small
molecule targeting mutagenic translesion synthesis improves chemotherapy.
Cell. (2019) 178:152–9.e11. doi: 10.1016/j.cell.2019.05.028

205. Actis ML, Ambaye ND, Evison BJ, Shao Y, Vanarotti M, Inoue A,
et al. Identification of the first small-molecule inhibitor of the REV7
DNA repair protein interaction. Bioorgan Med Chem. (2016) 24:4339–46.
doi: 10.1016/j.bmc.2016.07.026

206. Izuta S. Inhibition of DNA polymerase eta by oxetanocin derivatives.
Nucleic Acids Symp Ser.(2006) 50:269–270. doi: 10.1093/nass/
nrl134

207. Sail V, Rizzo AA, Chatterjee N, Dash RC, Ozen Z, Walker GC, et al.
Identification of small molecule translesion synthesis inhibitors that target
the Rev1-CT/RIR protein-protein interaction. ACS Chem Biol. (2017)
12:1903–12. doi: 10.1021/acschembio.6b01144

208. Xu X, Xie K, Zhang X-Q, Pridgen EM, Park GY, Cui DS, et al. Enhancing
tumor cell response to chemotherapy through nanoparticle-mediated
codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci USA. (2013)
110:18638–43. doi: 10.1073/pnas.1303958110

209. Doles J, Oliver TG, Cameron ER, Hsu G, Jacks T, Walker GC, et al.
Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant
lung tumors to chemotherapy. Proc Natl Acad Sci USA. (2010) 107:20786–91.
doi: 10.1073/pnas.1011409107

210. Buoninfante OA, Pilzecker B, Aslam MA, Zavrakidis I, van der Wiel R, van
de Ven M, et al. Precision cancer therapy: profiting from tumor specific
defects in the DNA damage tolerance system.Oncotarget. (2018) 9:18832–43.
doi: 10.18632/oncotarget.24777

211. Lu C, Romo-Bucheli D, Wang X, Janowczyk A, Ganesan S, Gilmore H, et al.
Nuclear shape and orientation features from H&E images predict survival
in early-stage estrogen receptor-positive breast cancers. Lab Invest. (2018)
98:1438–48. doi: 10.1038/s41374-018-0095-7

212. Whitney J, Corredor G, Janowczyk A, Ganesan S, Doyle S, Tomaszewski
J, et al. Quantitative nuclear histomorphometry predicts oncotype DX risk
categories for early stage ER+ breast cancer. BMC Cancer. (2018) 18:610.
doi: 10.1186/s12885-018-4448-9

213. Chakraborty S, Hosen Md. I, Ahmed M, Shekhar HU. Onco-multi-OMICS
approach: a new frontier in cancer research. Biomed Res Int. (2018)
2018:9836256. doi: 10.1155/2018/9836256

214. Gallo Cantafio ME, Grillone K, Caracciolo D, Scionti F, Arbitrio
M, Barbieri V, et al. From single level analysis to multi-omics
integrative approaches: a powerful strategy towards the precision
oncology. High Throughput. (2018) 7:33. doi: 10.3390/ht70
40033

215. Lu M, Zhan X. The crucial role of multiomic approach in cancer
research and clinically relevant outcomes. EPMA J. (2018) 9:77–102.
doi: 10.1007/s13167-018-0128-8

216. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J,
McMichael JF, et al. Comprehensive molecular portraits of human breast
tumours. Nature. (2012) 490:61–70. doi: 10.1038/nature11412

217. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al.
Proteogenomics connects somatic mutations to signalling in breast cancer.
Nature. (2016) 534:55–62. doi: 10.1038/nature18003

218. Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, et al. Patient-
derived organoids from endometrial disease capture clinical heterogeneity
and are amenable to drug screening. Nat Cell Biol. (2019) 21:1041–51.
doi: 10.1038/s41556-019-0360-z

219. Kim M, Mun H, Sung CO, Cho EJ, Jeon H-J, Chun S-M, et al. Patient-
derived lung cancer organoids as in vitro cancer models for therapeutic
screening. Nat Commun. (2019) 10:3991. doi: 10.1038/s41467-019-1
1867-6

220. Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka
N, et al. Establishment of patient-derived organoids and drug
screening for biliary tract carcinoma. Cell Rep. (2019) 27:1265–76.e4.
doi: 10.1016/j.celrep.2019.03.088

221. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A
living biobank of breast cancer organoids captures disease heterogeneity.
Cell. (2018) 172:373–86.e10. doi: 10.1016/j.cell.2017.11.010

222. Duarte AA, Gogola E, Sachs N, Barazas M, Annunziato S, de Ruiter JR, et
al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug
resistance. Nat Methods. (2018) 15:134–40. doi: 10.1038/nmeth.4535

223. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al.
Linkage of early-onset familial breast cancer to chromosome 17q21. Science.
(1990) 250:1684–9. doi: 10.1126/science.2270482

224. Capoluongo E. BRCA to the future: towards best testing practice in the
era of personalised healthcare. Eur J Hum Genet. (2016) 24(Suppl 1):S1–2.
doi: 10.1038/ejhg.2016.92

225. Nicolussi A, Belardinilli F, Mahdavian Y, Colicchia V, D’Inzeo S, Petroni M,
et al. Next-generation sequencing of BRCA1 and BRCA2 genes for rapid
detection of germline mutations in hereditary breast/ovarian cancer. PeerJ.
(2019) 7:e6661. doi: 10.7717/peerj.6661

226. Cummings CA, Peters E, Lacroix L, Andre F, Lackner MR. The role of
next-generation sequencing in enabling personalized oncology therapy. Clin
Transl Sci. (2016) 9:283–92. doi: 10.1111/cts.12429

227. Cruz C, Castroviejo-Bermejo M, Gutiérrez-Enríquez S, Llop-Guevara A,
Ibrahim YH, Gris-Oliver A, et al. RAD51 foci as a functional biomarker
of homologous recombination repair and PARP inhibitor resistance in
germline BRCA-mutated breast cancer. Ann Oncol. (2018) 29:1203–10.
doi: 10.1093/annonc/mdy099

228. Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M, Gitlin AD, et al.
Rif1 prevents resection of DNA breaks and promotes immunoglobulin
class switching. Science. (2013) 339:711–5. doi: 10.1126/science.
1230624

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Liptay, Barbosa and Rottenberg. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 22 May 2020 | Volume 10 | Article 670

https://doi.org/10.1096/fj.99-1063com
https://doi.org/10.2174/1874467211205010054
https://doi.org/10.1073/pnas.0910759107
https://doi.org/10.1158/1078-0432.CCR-08-1227
https://doi.org/10.1186/1479-5876-8-126
https://doi.org/10.1016/j.cell.2019.05.028
https://doi.org/10.1016/j.bmc.2016.07.026
https://doi.org/10.1093/nass/nrl134
https://doi.org/10.1021/acschembio.6b01144
https://doi.org/10.1073/pnas.1303958110
https://doi.org/10.1073/pnas.1011409107
https://doi.org/10.18632/oncotarget.24777
https://doi.org/10.1038/s41374-018-0095-7
https://doi.org/10.1186/s12885-018-4448-9
https://doi.org/10.1155/2018/9836256
https://doi.org/10.3390/ht7040033
https://doi.org/10.1007/s13167-018-0128-8
https://doi.org/10.1038/nature11412
https://doi.org/10.1038/nature18003
https://doi.org/10.1038/s41556-019-0360-z
https://doi.org/10.1038/s41467-019-11867-6
https://doi.org/10.1016/j.celrep.2019.03.088
https://doi.org/10.1016/j.cell.2017.11.010
https://doi.org/10.1038/nmeth.4535
https://doi.org/10.1126/science.2270482
https://doi.org/10.1038/ejhg.2016.92
https://doi.org/10.7717/peerj.6661
https://doi.org/10.1111/cts.12429
https://doi.org/10.1093/annonc/mdy099
https://doi.org/10.1126/science.1230624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers
	DNA Damage Response-Targeted Cancer Therapy and Resistance
	The Tool-Box to Study RF Structure, Composition and Dynamics
	Electron Microscopy (EM)
	DNA Fiber Assay
	Isolation of Proteins on Nascent DNA (iPOND)
	In situ Analysis of Protein Interactions at DNA Replication Forks (SIRF)

	Replication Fork Reversal and its Players
	Mechanisms of Fork Restart
	Fork Stability as a Resistance Mechanism in BRCA-Deficient Tumors
	DNA Damage Tolerance Pathways
	Alterations of DDT Pathways in Cancer
	Future Directions in Predicting Therapy Response
	Author Contributions
	Funding
	Acknowledgments
	References


