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Abstract: Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune
system. The lost homeostasis is followed by the immune attack of one’s self, what damages healthy
cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs,
heart, eyes). Different medications to control the excessive immune response are in use, however, drug
resistances, flare-reactions and adverse effects to the current therapies are common in the affected
patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop
disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs
in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the
proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet,
concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host
unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases
crucial in various cellular functions have arisen. This review summarizes the existing knowledge on
the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the
developed inhibitors, and discusses the pros and cons of their potential clinical use.
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1. Toll-like Receptor Signalling and Innate Immunity

The innate immune system is the host’s first line of defense against assaulting pathogens.
Several innate immune receptors (pathogen recognition receptors—PRRs-) recognize a
broad repertoire of molecular constituents in pathogens (pathogen associated molecular
patterns—PAMPs-) such as ssRNA, CpG DNA or lipoproteins. The family of PRRs charac-
terized in more depth is the family of Toll-like receptors (TLRs). In humans, 10 TLRs have
been described. They are located at the plasma membrane (TLR1, 2, 4, 5, 6) or in the endo-
somes (TLR3, 7, 8, 9; Figure 1). Some TLRs homodimerize, and others form heterodimers
(e.g., TLR2 with TLR1 or TLR6). TLR10 is not expressed in mice, and in humans, it seems
to have an inhibitory role in the activity of TLR2 in immune cells [1]. TLRs may recognize,
in addition to PAMPs, host-ligands derived from cellular or tissue damage, the so-called
damage-associated molecular patterns (DAMPS or alarmins). Some examples include
serum amyloid A—SAA-, high mobility group box 1 -HMGB-1-, endogenous nucleic acids,
citrullinated fibrinogen or hyaluronan fragments. In some cases, DAMPs may be ligated by
several TLRs (also in combination) as is the case of hyaluronan [2] and HMGB-1 [3] which
may be recognized by TLR2, TLR4 and TLR5. In this way, the same DAMP may prompt
different types of innate immune responses in an injury and cell-type specific manner.
This response is also steered by the properties and chemical modifications of the DAMP
(e.g., acetylation and molecular weight variations of hyaluronan [4] or post-translational
modifications of HMGB-1).

TLR activation leads to the interaction with adaptor proteins (i.e., MyD88—Myeloid
differentiation primary response 88- and Mal/TIRAP—Toll-interleukin 1 receptor (IL-1)
domain containing adaptor protein; or TRIF—TIR-domain containing adapter inducing
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interferon-ß- and TRAM—TRIF-related adaptor molecule-) via TIR (Toll-IL-1 receptor)-
domain interactions. Next, the adaptor proteins recruit downstream proteins in the sig-
nalling cascade. For instance, MyD88 forms the Myddosome complex which is composed
of IRAK4 (interleukin-1 receptor-associated kinase 4), IRAK1, IRAK2 and TRAF6 (TNF-
receptor associated factor 6) [5]. The IRAK1/TRAF6 complex dissociates from the receptor
and interacts with TAK1 (TGF-β activated kinase 1) and TAB1/TAB2 (TAK1-binding pro-
teins), which in turn bind E3 ligases Ubc13 and Uev1A [6]. Once the kinase TAK1 has been
activated, it phosphorylates the IκB-kinase (IKK) complex (IKK-α, IKK-β and IKK-γ) and
the mitogen activated protein kinases (MAPKs: extracellular signal-regulated kinase (ERK)
1/2, C-Jun N-terminal kinase (JNK) and p38). The final activation step in the signalling cas-
cade leads to the translocation into the nucleus of several transcription factors (i.e.,: nuclear
factor kappa B—NF-kB-, interferon regulatory factor—IRF- and activator protein 1—AP1-)
which prompt the pro-inflammatory cytokine response (e.g., TNFα, IL-1ß) [7]. Addition-
ally, NF-kB mediates the expression of cyclooxygenase 2 (COX-2) in several kinds of cells
(e.g., rheumatoid synovial fibroblasts) [8]. COX-2 is one of the enzymes that regulates
the production of the pro-inflammatory prostaglandin PGE2 from arachidonic acid (AA)
released from the membrane by phospholipase A2 (PLA2). AA is also metabolized by
lipoxygenases (e.g., 5-LOX) to produce the potent chemotactic agents leukotrienes (LT). It
has also been shown that COX-2 expression can be induced by pro-inflammatory cytokines
and mitogens (e.g., TNF-α, IL-1β, INF-γ) [9] and that certain PAMPs lead to the production
of leukotrienes and prostaglandins in a cell specific manner [10].
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Figure 1. Constituents of the TLR pathways that have been targeted in inflammatory arthritis. Several kinds of pharma-
cological agents that modulate TLRs and downstream proteins have been shown to have in vitro, in vivo or clinical ther-
apeutic effect in different inflammatory arthritis pathologies. Ab: antibodies; SM: small-molecules; PEP: peptides; ON: 
oligonucleotides; miRNA: microRNA. 
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In normal conditions, after instigation of the inflammatory response, a regulatory
program to regain homeostasis is initiated (e.g., clearance of cellular debris, tissue repair),
however, in inflammatory arthritis this activity is disrupted leading to a sustained inflam-
matory loop responsible for the chronic progression. In order to modulate inflammation,
TLRs and their downstream proteins are explored as potential therapeutic targets. The next
sections recapitulate the role of TLRs in various inflammatory pathologies, and also the
kinds of compounds (e.g., small molecules, antibodies, peptides, oligonucleotides, micro
RNAs) that have been discovered and engineered to control TLR expression and activity.

2. Rheumatoid Arthritis (RA)

RA is an autoimmune disease characterized by painful synovial inflammation, joint
destruction, systemic inflammation and generation of autoantibodies (e.g., rheumatoid
factor and anti-citrullinated protein antibodies) which affects 1% of the population world-
wide [11]. Cartilage and bone damage in RA are associated with elevated TNFα levels
produced by T-, B-cells, synovial-like fibroblasts and macrophage-like synoviocytes. Subse-
quently, other pro-inflammatory cytokines such as IL-6 and IL-1 are produced.

The aetiology of RA is still not completely understood. Lymphocytes and macrophages
attack the synovium that in turn thickens and, if left untreated, invades and destroys the
articular cartilage and underlying bone via proteolytic cleavage of aggrecan and colla-
gen. Further, synovial fibroblasts secrete pro-inflammatory cytokines and matrix metal
proteases (MMPs) what initiates the process of chronic inflammation. Several studies
have emphasized the role of TLR activation in the abnormal synovial cell behavior [11].
It has been shown that the activation of TLR2 in synoviocytes leads to PLA2 activation,
AA release and PGE2 production [12]. In turn, PGE2 mediates the increase in MMP and
IL-1 expression amplifying the local inflammatory process. Likewise, LTs are important
mediators of chronic inflammation and joint destruction in experimental models of RA,
and leukotriene B4 (LTB4) levels are elevated in patients with RA [13,14].

The main therapy for RA patients consists of disease-modifying antirheumatic drugs
(DMARDs), primarily methotrexate alone or in combination with glucocorticoids. Biologi-
cal drugs that suppress the action of inflammatory cytokines (e.g., IL-1ß and TNFα) are
used when DMARDs are not effective or toxic, however some patients do not respond well
to these therapies.

While it is recognized that the major environmental factor that increases the risk for
RA and the severity of the disease is smoking [15], 50% of the risk for RA development
is due to genetic factors [11]. Thus, polymorphisms in TLR2, TLR4, TLR9 and NF-kB
genes were associated with disease susceptibility or predisposition and response to TNFα
treatment [16]. In contrast, allelic variants in TLR1, TLR7 and TLR8 were not found to be as-
sociated with susceptibility to RA. However, the variant M1V in TLR8 was associated with
a lower need for DMARDs and biologic treatments due probably, to reduced production
of inflammatory cytokines following TLR8 stimulation, indicating a protective role of this
mutation [17]. Further, a TLR10 variant (I473T) led to increased NF-kB activity and was
associated with disease severity and low response to infliximab (anti-TNFα antibody) [18].

The expression of different TLRs in cell-subsets implicated in RA development have
been widely studied and TLR gene expression profiles are strongly associated with disease
status. Clanchy et al. demonstrated that increased TLR expression in blood cells precedes
clinical manifestation [19]. One study reported increased expression of TLR10 in B cell
subsets and the levels correlated with the patients´ disease severity [20]. TLR1, 4 and
6 expression was reduced in whole blood after TNFα blocking and TLR2 expression
in monocytes of patients who were non-responders to anti-TNFα therapy was higher
compared to responders. Further, TLR3 and TLR7 expression was higher in synovial
tissue of RA patients, indicating a possible involvement of viruses in the pathogenesis of
RA [21] and several studies pointed to a pathological role of TLR9 and endogenous DNA
in the disease [22]. As a consequence, inhibition, downregulation or neutralization of TLR
function might have a positive therapeutic effect in RA as demonstrated in experimentally



Biomolecules 2021, 11, 1291 4 of 16

induced arthritis in mice. TLR4 and TLR5 neutralization with antibodies in that model
reduced disease severity [23,24]. Furthermore, cytokine and MMP production by synovial
tissue and synovial membrane cells from RA patients was inhibited by TLR2, TLR4 and
TLR8 antibodies [25,26]. Likewise, TLR9 appears to be a possible target in RA as the TLR9
antagonist hydroxychloroquine halts the progression of RA by inhibiting dendritic cell
(DC) maturation and migration from peripheral blood to the lymph nodes. Healthy DCs
stimulated with serum from RA patients were treated with hydroxychloroquine, what led
to lower expression of activation markers (i.e., CD86, CXCR4) and lower IFN-α secretion
due to downregulation of TLR9 [27].

In contrast to the former reports, Monnet et al. demonstrated in a placebo-controlled,
double-blind, randomized study, with non-responders to methotrexate, that blockage of
TLR4 with NI-0101 (monoclonal anti-TLR4) did not produce a significant response in
clinical endpoints or changes in inflammatory cytokines levels, in comparison with placebo
effect [28]. The mechanism of action of methotrexate seems to be due to the upregulation
of A20 expression (a negative regulator of NF-kB after TLR or TNFα-R stimulation) what
impairs macrophage inflammatory responses [29]. Likewise, lower expression of the TLR
negative regulator SARM (sterile-a and armadillo motif-containing protein) was found
to correlate with higher disease activity and responders to anti-TNFα therapy showed
upregulation of SARM in contrast to non-responders [30].

Several DAMPs have been found in the synovial membrane and fluid of RA patients.
For instance, extracellular HMGB-1 is a DAMP that has been shown to activate TLR2,
TLR4 [31] and TLR5 [32]. HMGB-1 expression in synovial tissue, fluid and serum of RA
patients is elevated [33] pointing to the blockade of the cognate receptors as potential
targets [34].

3. Spondyloarthropathies

Spondyloarthridities (SpA) are a group of inflammatory rheumatic diseases with
complex aetiology that comprises psoriatic arthritis (PsA), seronegative reactive arthritis
(ReA), arthritis associated with inflammatory bowel disease (IBD) and the most severe
subtype, ankylosing spondylitis (AS). Patients present with inflammation of the spine and
peripheral joints, and in some cases, extra-articular inflammatory manifestations such as
psoriasis, uveitis or inflammatory bowel disease [35]. Abnormal host response against
bacteria has been implicated in the pathogenesis of SpA, a disease that is characterized
by abundant synovial infiltration of innate immune cells. It has been proposed that
in genetically susceptible individuals, a first TLR stimulation by bacterial components,
followed by sensitization to endogenous antigens that mimic bacterial products might lead
to a persistent and chronic activation of the innate and adaptive immunity [36].

SpA has a strong genetic link with the human leukocyte antigen (HLA)-B27 marker [37].
Additionally, polymorphisms in TLR genes that lead to changes in these receptors or that
affect the transcription of TLRs mRNA may be involved in the exaggerated inflammatory
response observed in SpA [38]. Although a study with a reduced number of patients
suggested that C-reactive protein and TLR4 gene polymorphisms may be related to the
development of psoriatic arthritis, two larger studies with Brasilian and Korean popula-
tions showed no association between TLR4 polymorphisms and AS susceptibility [39–41].
Recently, a study with a broad patient cohort by Oliveira-Toré et al. demonstrated that
certain polymorphisms in TLR2 and TLR9 increased 10 and 1.69-fold, respectively, the
susceptibility to develop SpA, independently of the presence of antigen HLA-B27 [38].
This study suggests that the two receptors may contribute to the immunopathogenesis
of SpA, and they may be potential therapeutic targets in spondyloarthritis. Additional
hints to a possible implication of TLRs in SpA development comes from studies that show
upregulated TLR2 expression in antigen presenting cells (monocytes and dendritic cells) of
patients with PsA [42,43], and of TLR4 and TLR5 in AS patients [44]. Moreover, it has been
shown that TNFα blockade down-modulates the increased systemic and local expression of
TLR2 and TLR4 in SpA [45]. The causal relation for this elevated expression is not clear and
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it has been proposed that TLR up-regulation might be a non-specific indicator of activation
of a more general inflammatory response in SpA [36].

4. Systemic Lupus Erythematosus (SLE)

SLE is an autoimmune disease characterized by the loss of tolerance to self-nuclear
antigens, resulting in chronic systemic inflammation of the joints and various organs such
as the kidneys and the brain. The organism produces antinuclear autoantibodies in a
combined adaptive and innate immune response to endogenous nucleic acids released
after cell death. Defective clearance mechanisms (e.g., enhanced apoptosis and neutrophil
extracellular traps, nucleic acid debris) trigger the activation of the innate immune system
and the production of interferons [46]. The current therapy comprises NSADs (non-
steroidal anti-inflammatory drugs), hydroxychloroquine, immunosuppressants and short
courses of corticosteroids.

Numerous studies have exposed the predominant role of endosomal TLRs in the de-
tection of host DNA and RNA in SLE [47], but also TLR2 and TLR4 seem to be upregulated
in peripheral blood mononuclear cells of SLE patients [48].

However, no association has been found between SLE and common polymorphisms
in TLR2 (R677W and R753Q) and TLR4 (D299G and T399I) [49]. In contrast, the association
between clinical manifestations and TLR7, TLR8 and TLR9 polymorphisms is clear [50,51]
and the involvement of the endosomal TLRs, mainly TLR7, in lupus is backed up by several
studies [52]. The over-expression of TLR7 in SLE patients is detrimental and conversely,
some reports suggest that TLR8 and TLR9 have a protective role in the TLR7 response to
RNA-associated autoantibodies in dendritic cells [53,54]. Various oligonucleotides that
mimic TLR ligands (for TLR7, TLR8, TLR9) have been synthesized and are prospective
therapeutics for lupus [55].

5. Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease

Systemic juvenile idiopathic arthritis (sJIA), which affects children between 1 and
5 years of age, and adult-onset Still’s disease (AOSD) are systemic inflammatory disorders
characterized by spiking fever, joint pain, skin rash, hepato- and/or spleno-megaly and
leukocytosis. Even though the pathophysiology remains unknown, several hints point
to a dysregulated immune system: elevated pro-inflammatory cytokine levels and acute
phase markers, rapid clinical response to IL-1-blocking strategies and the absence of
autoantibodies [56]. To this respect, Chen et al. [57] observed that the levels of TLR7 were
elevated and positively correlated with disease activity after evaluating TLR7 expression in
DCs from AOSD patients. It seems clear that polymorphisms in single genes do not cause
sJIA, however, most confirmed genetic associations involve pro- or anti-inflammatory
cytokine genes [56]. In addition, environmental factors and several DAMPs seem to play
a role in the development or severity of systemic JIA and AOSD [58]. The concentration
of S100 proteins (S100A8/A9) correlates with response to treatment and disease activity
in SJIA patients [59], and HMGB1 [60] and SAA [61] serum levels are elevated in JIA
and AOSD patients, and downregulated after disease resolution. Dysregulated release of
DAMPS might lead to TLR activation (e.g., TLR4 in the case of S100, HMGB1 and SAA) and
initiation or maintenance of the inflammatory response. Accordingly, cytokine blocking
strategies (e.g., anti-IL-1, anti-IL6) are implemented with sJIA patients usually after an
initial high-dose of corticosteroid treatment or when the corticosteroid tapering fails [56].

6. Synthetic Ligands That Down-Regulate TLR Activity

In the last decade, different kinds of inhibitors targeting the TLR pathways have been
designed. Those with a potential therapeutic use in inflammatory arthritis will be described
in the next sections. Some of the inhibitors targeted the binding of the activating ligand
to the receptor and others the intracellular signalling triggered after TLR ligation. The
first kind of inhibitors are selective for a defined TLR pathway, while the last group of
substances may inhibit several signalling cascades simultaneously. Intracellular inhibitors
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are either cell permeable per se or they must be modified in order to transverse the cell
plasma membrane and reach their target (e.g., nanocarriers, linkage with cell-penetrating
peptides). Intracellular targets might be proteins proximal to the receptor (e.g., adaptors
such as MyD88, TIRAP) or further down in the signalling cascade (Figure 1). Most TLR
pathways, except TLR3, share the adaptor MyD88. Other inflammatory pathways, such
as the TNFα-R pathway, have only some proteins in common with the TLR-pathway
(e.g., TAK1/TAB1).

Thus, inhibitors that target downstream proteins display broader anti-inflammatory
properties since they downregulate several signalling cascades simultaneously. On the
other hand, down regulation of a large part of the inflammatory response might leave the
body unguarded against the outbreak of pathogen infections.

6.1. TLR Blocking Antibodies

Therapeutic antibodies are highly specific drugs with lower off-target effects and have
a longer half-life in comparison with other drugs. However, their production is costly,
they have low cellular and tissue penetration, and they are potentially immunogenic [62].
Since the early days in the TLR history, when antibodies were used to block in vitro
ligand recognition (e.g., TL2.1, T2.5, 1A6) [63,64], several therapeutic antibodies have
been developed (Table 1). OPN-305 is the first fully humanized IgG4 monoclonal TLR2
specific antibody, which has shown promising results in clinical studies, until now, in organ
transplantation [65]. NI-0101 is the first monoclonal anti-TLR4 antibody used in clinical
trials. It hinders TLR4 dimerization and it blocks pro-inflammatory cytokine production in
monocytes stimulated with synovial fluid from RA patients. NI-0101 has been tested in
clinical trials in RA patients [28], unfortunately without showing any benefit.

Table 1. TLR inhibitors used in inflammatory arthritis.

Disease Target
Pharmacological Agent

In Vitro/In Vivo Clinical Trial
(for This Indication)

RA

TLR2 Antibody: OPN301 [26]
miRNA: miR-149a/b [66]

TLR3 miRNA: miR-26a-5p [67]

TLR4 Peptide: PIP2 [68]
Small molecule: TAK-242 [69]

Antibody: NI-0101 [28]
Non effective

TLR5 Antibody [24]
TLR8 Small molecule: Mianserin,

chloroquine, imiquimod [25]
TLR9 Small molecule:

Hydroxychloroquine [27]
TLR7/8 MicroRNA: miR574-5p [70–72]

TLR7/8/9 Small molecule: IMO-9200 [73]
IRAK4 Small molecule: PF-0665033 [74]

p38 Small molecule: Org48762-0 [75]
IKKβ Small molecule: CHPD [76]

A20 (negative regulator) [29] -
SARM (negative regulator) [30] -

HMGB-1 (TLR2-, TLR4-, TLR5-ligand) Antibodies [34]

SpA

TLR2? [38]
TLR4? [45]
TLR5? [44]
TLR9? [38]



Biomolecules 2021, 11, 1291 7 of 16

Table 1. Cont.

Disease Target
Pharmacological Agent

In Vitro/In Vivo Clinical Trial
(for This Indication)

SLE

TLR9 Small molecule:
Hydroxychloroquine [77]

Effective
TLR7/9 Oligonucleotides: IRS-954 [78]

Oligonucleotides: DV-1179 [79]
Non effective

TLR7/8/9 Oligonucleotides: IMO-8400 [80]
Small molecule: Compound f [81]

Small molecule: CpG-52364 [82]
IRAK1/TRAF6 MicroRNA: miR-146a [83]

JIA/AOSD

TLR7 high expression [57]
S100 elevated in serum [84]/TLR4?

HMGB-1 elevated in serum
[60,85]/TLR4?

SAA elevated in serum [61]/TLR4?

It seems more challenging to develop antibodies with inhibitory function for endoso-
mal TLRs. Nonetheless, Fukui and collaborators [86] were able to obtain antibodies against
a complete panel of TLRs (TLR1-9), some of them with blocking function (e.g., TLR3:
TLR3.7; TLR4/MD-2: MTS510, Sa15-21; TLR7: A94B10; TLR9: NaR9). The authors rea-
soned that the mechanism by which the antibodies blocked endosomal TLRs is that some of
these are also expressed in the plasma membrane, because antibody uptake is Fc receptor-
dependent and the TLR7 antibody A94B10 could be internalized also in the absence of Fc
receptor. A94B10 reduces the systemic inflammation caused by TLR7 hyper-response and
NaR9 inhibited TLR9-dependent lethal hepatitis in mice, thus, these antibodies appear as a
promising alternative treatment in SLE, RA or psoriasis [87].

6.2. Oligonucleotides

Endosomal TLR receptors recognize ssRNA, dsDNA and CpG-DNA, thus oligonu-
cleotide inhibitors that mimic the original ligand and bind to the receptor, block TLR
signalling. In this way, tri-functional TLR7/8/9 (IMO-8400) [80], bi-functional TLR7/9
(IRS-954; DV-1179; IMO-3100; INH-ODN-24888) or selective TLR7 (IRS-661) [88] and
TLR9 (IRS-869) [89] inhibitors have been developed. IMO-8400 (Immune Modulatory
Oligonucleotide-8400; Idera Phamaceuticals) inhibited NF-kB activation and production
of pro-inflammatory cytokines in a mouse model of SLE and showed therapeutic effect
in patients with moderate to severe plaque psoriasis [90]. IRS-954 (Immunoregulatory
DNA sequence-954; Dynavax Technologies) inhibited the induction of IFN-α by human
pDCs in response to DNA and RNA viruses and isolated immune complexes from lupus
patients [91]. In in vivo studies, IRS-954 reduced the serum levels of nucleic acid-specific
autoantibodies, proteinuria, glomerulonephritis, end-organ damage and increased sur-
vival [78]. DV-1179 (Dynavax Technologies) has been tested in clinical studies, however, it
did not satisfy the pharmacodynamic endpoints related to reduction in IFN-α-regulated
genes [79]. INH-ODN-24888 (Inhibitory Oligonucleotide-24888) reduces TLR7/9 mediated
immune responses in human immune cells and is a promising therapeutic agent for the
treatment of SLE [92].

6.3. Peptides

Targeting protein-protein interactions with small molecules is challenging due to the
size and relatively flat and featureless topologies of the interacting surfaces involved [93].
One strategy is to design decoy peptides that resemble the interaction surface of one
protein with its partner. With the purpose of inhibiting TLR2 signalling, Ebner et al. [94]
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designed a collection of peptides derived from the extracellular domain of TLR2. The
overlapping peptides covered epitopes involved either in TLR2/TLR1 hetero-dimerization,
or in interaction with the tri-acylated lipopeptide ligand Pam3CySK4 (among leucine-rich
repeats—LRR- 11 and 13), as indicated by structural studies. The decoy peptides decreased
selectively the TLR2/TLR1 mediated inflammatory response in human and mouse cells.
In addition, by means of phage display, Achek et al. [68] selected a peptide (PIP2) that
inhibited TLR4 signalling by interfering with the TLR4/MD2 interaction, and also with
the activity of other TLRs (TLR1/2/6 and TLR7/8/9) although with lower affinity. PIP2
relieved RA symptoms and displayed a protective effect in an RA rat model.

In order to target intracellular protein-protein interactions, the peptides have to pass
through the plasma membrane, for example, when they are linked to a cell penetrating
peptide (e.g., penetratin, TAT -transactivating transcriptional activator peptide–, anten-
napedia). Yet, this method of molecular delivery is unspecific. The first peptide derived
from the BB-loop of the TIR domain of the adaptor TIRAP was fused to penetratin and it
inhibited LPS-induced NF-kB activation in mouse macrophages [95]. Likewise, a peptide
derived from the BB loop of MyD88 (ST2345) interfered with the dimerization of MyD88.
The synthetic peptide was connected to Antennapedia, and it showed inhibitory activity
on IL-1 mediated NF-kB activity [96].

Furthermore, peptides with inhibitory function derived from microbial proteins have
been used. Microbial pathogens use proteins that can interact with TLR-signalling proteins
to avoid the TLR-mediated immune response [97]. A peptide derived from the protein
A52R from vaccinia virus reduced the cytokine production following TLR3, TLR4 or TLR9
stimulation in RAW264.7 macrophages [98]. Until now, this kind of peptides has been
mainly used in vitro or in mouse models of infection and sepsis [99].

6.4. Small Molecules

Small molecules present some advantages in comparison to the above-described in-
hibitors. They can be taken orally, and depending on their chemico-physical properties,
they can penetrate the cell membrane to target intracellular proteins, besides, their manufac-
turing is cheaper. The TLR7/8/9 small molecule antagonists hydroxychloroquine sulfate,
chloroquine and quinacrine were initially used as antimalarial drugs, and later on, applied
in the treatment of SLE [77]. Afterwards, triple (TLR7/8/9) [81], double (TLR7/8 [100],
TLR7/9 [101,102]) and selective (TLR8 [103] or TLR7 [104]) antagonists have been synthe-
sized. The tri-functional inhibitor compound f (a novel orally available 2-phenyl indole
derivative) showed anti-inflammatory and good pharmacokinetic properties in preclinical
models of lupus and psoriasis [81]. CpG-52364 (Coley Pharmaceutical) is also a TLR7/8/9
inhibitor, which works better than hydroxychloroquine sulfate in animal studies and it
was tested in clinical trials for the oral treatment of SLE, although no results to the clinical
study (NCT00547014; 2009) were posted [82]. IMO-9200 (TLR7/8/9) showed promising
in vivo results in inflammatory bowel disease, and it entered phase I clinical trials with a
good safety profile. However, the drug was outsourced in 2016 from Idera Pharmaceuticals
to Vivelix Pharmaceuticals and no subsequent data have been reported [73].

Our group [105] has discovered several small molecule inhibitors of TLR2/TLR1 and
TLR2/TLR6 by computer-aided drug design and in vitro screening. One of those com-
pounds, AT5, decreased the TNFα and IL-6 production in a mouse model of lipopeptide-
induced inflammation [106]. Further small molecules targeting TLR2/TLR1 have been
reported (CU-CPT22 [107], SMU-Z1 [108]). The TLR4 inhibitor TAK-242 (Resatorvid) has
been tested in in vitro and in vivo models of RA. It has attained successful decrease of LPS-
mediated expression of IL-6, IL-8, MMP-1 and VEGF and it ameliorates the inflammatory
symptoms of joint tissues in a rat model of arthritis [69]. In contrast, another selective TLR4
antagonist, T5342126, showed strong non-specific effects (e.g., decreased animal locomotor
activity) in a mice model of ethanol dependence what precludes its further use [109].

Several groups have reported inhibitors that target the proteins downstream in the TLR
signalling cascades. IRAK4- or MyD88-deficient patients suffer from bacterial or viral infec-
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tions but not from autoimmune diseases, suggesting that targeting of IRAK4 and MyD88
may prevent autoimmunity in humans [110]. Thus, the dimerization of MyD88 or its interac-
tion with downstream proteins have been targeted via peptidomimetics (e.g., ST-2825) [111].
Moreover, various IRAK1/4 kinase inhibitors have been developed [112], among them, an
N-acyl2-aminobenzimidazole derivative abrogated the TLR7/9-induced IFN-α responses
in both, mouse and human pDCs [113]. Others (PF-05387252, PF-05388169, AS-2444697
and PF-0665033) are tested in preclinical- and phase I clinical-studies with favorable safety
and pharmacokinetic profiles. PF-0665033 was the first IRAK4 inhibitor to enter clinical
development, and it is tested in clinical trials for rheumatic and autoimmune diseases [74].

More downstream, it has been shown that MAPKs (p38 and JNK) and the kinases
that regulate them (TAK1, MEKK-2, MKK-4, MKK-7) are activated in macrophages and
fibroblasts of the synovial lining layer and at sites of bone erosion [114]. Inhibition of
p38 seems effective in suppressing joint destruction and TNF-α release in RA disease
models [75]. However, in spite of the development of selective inhibitors, problems
of toxicity in liver, skin and/or central nervous system have been reported, probably
due to the fact that p38 plays a central role in muscle differentiation, erythropoiesis and
bone formation. Overall, the feasibility of a therapeutic use of p38 inhibitors is under
dispute [115].

IKKs (inhibitory kappa B kinases) have been a target of interest since long, and several
groups and pharmaceutical companies have developed very potent and relatively selective
IKKα and IKKβ inhibitors (e.g., BMS-345541, Bristol-Myers Squibb [116]). Yet, also in this
case, several problems of toxicity have been reported [117]. Drexel at al [118] described the
discovery of INH14, a phenylurea derivative that inhibits IKKα/β. In vitro experiments
indicated that INH14 decreased TLR2-, TLR4-, TNFα-R- and IL-1R-mediated inflammatory
activity. In a mouse model of lipopeptide-induced inflammation, INH14 treatment led to a
decrease in TNFα production. The authors did not observe toxicity at the concentrations
tested. Further, Tsuchiya et al. [76] reported that CHPD, a selective IKKβ inhibitor, strongly
reduced the production of inflammatory cytokines (IL-6 and IL-8) in rheumatoid synovial
fibroblasts.

Classical non-steroidal anti-inflammatory drugs (NSAIDs; e.g., diclofenac) are in-
hibitors of COX-2 and they are applied in RA to decrease inflammation and alleviate
pain, yet they inhibit also COX-1 and they can produce gastrointestinal toxicity. Accord-
ingly, great effort has been invested in the selection of selective COX-2 inhibitors (Coxibs:
celecoxib, rofexocib, etericoxib). Disappointingly, these drugs presented an increased
cardiovascular risk. Lately, in order to reduce the production of leukotrienes in addition
to prostaglandins, dual inhibitors of COX-2/5-LOX have been developed (e.g., Tenidap—
Pfizer-) however, they showed an unfavorable toxicity profile and studies to identify new
pharmacophore models are on the way [119].

Finally, nanoformulations of small molecules in gold or silver nanoparticles present
some advantages such as passive or active delivery of the drugs to the target cells or
subcellular domains, besides improving their aqueous solubility and the protection from
enzymatic degradation. Nanoparticles of the α-pyrones opuntiol and opuntioside showed
anti-arthritic activity downregulating IL-1β, TNFα, TLR2 and TLR4 expression [120].

6.5. Micro RNAs

Lately, the study of the regulation of TLRs by microRNAs (miRNAs) has been a
flourishing field [121]. miRNAs are small (21-25 nucleotides), non-coding, regulatory
RNAs which bind to a sequence within the 3′ untranslated region (UTR) of the mRNA
from target proteins, promoting the degradation or the inhibition of translation of the
mRNA [122]. Several miRNAs that regulate TLR pathways have been identified and are
potential targets to treat inflammatory diseases, and different companies are developing
agomirs or antagomirs (modified microRNAs, for instance with cholesterol, to improve
their chemical properties) targeting mRNAs. However, miRNAs can regulate more than
one protein, thus unwanted effects might be attained by using them as therapeutic agents.
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In fibroblast-like synoviocytes the elevated expression of TLR2 can be regulated by
miR-19a/b, what leads to decreased IL-6 production [66] and a decrease of TLR3 mRNA
expression by miR-26a-5p in arthritic rats slowed the development of RA [67]. Micro
RNAs for other TLRs have been also developed: TLR4 (miR-100-5p), TLR6 (miR-124-5p),
TLR7 (miR-150-5p, miR-152-5p, miR-375-5p). In addition, several miRNAs regulate the
expression of MyD88 (MiR-155-5p [123], miR-203-5p [124], miR-149-5p [125], miR-124-
5p [126]) and their overexpression leads to inhibition of IL-6 and TNFα. IRAK1 is targeted
by various miRNAs (miR-21-5p, miR-133-5p, miR-142-3p, miR146a/b-5p). MiR-146a
downregulates the production of type I IFNs in human lupus by targeting simultaneously
TRAF6 and IRAK1 [83]. In SLE and RA patients, a reduced expression of miR-23b-5p and
accordingly higher expression of TAB2, TAB3 and IKKα has been observed, and in turn,
increased production of the cytokines TNFα, IL-1β and IL-17 [127].

Abnormal expression of micro RNAs (miRNAs) play a prominent role in the main-
tenance of RA [128]. It has been shown that enhanced osteoclast maturation is mediated
by TLR7/8 signalling when they are activated by miR-574-5p. This is a non-coding RNA
carried by cell-derived small extracellular vesicles that mediate cell-to-cell communication
in the synovial microenvironment. This novel mechanism underlying the pathogenesis
of RA points to miR-574-5p as a target to protect against osteoclast mediated cartilage
destruction [70,71]. Further, a MiR-147 mimic suppressed the expression of TLR7 in a
pristane-induced arthritic rat model and improved the severity of arthritis [72]. These
reports evidence that microRNAs can directly regulate activation of TLRs and might be
important drug-targets [129].

7. Conclusions

The involvement of plasma membrane located TLRs in RA, and of endosomal TLRs
in SLE progression has been broadly reported. However, whether TLRs play any role
in the pathology of SpA is, at least, uncertain. Concrete hints indicate that host-derived
DAMPs are elevated in IA/AOSD, but whether this is the cause or the consequence of the
underlying inflammatory process needs to be elucidated.

It seems reasonable to conclude that antagonists modulating TLR activity at the
level of the receptor might show lower anti-inflammatory potential as inhibitors targeting
downstream proteins implicated in several pathways (e.g., TLRs, IL-1R, TNFα-R). The last
inhibitors might, at least theoretically, lead to a more widespread, and perhaps potent,
systemic inhibition of cytokine production. However, experimental evidence shows that
the more downstream the inhibitory intervention points to, the greater the toxicity issues
(e.g., p38 [67]). In addition, inhibition of several inflammatory pathways might leave the
host partially unprotected in the likely case of a bacterial or viral infection. This leads
irredeemably to enquiry whether it is safe to use more than one TLR inhibitor (or one
inhibitor for different TLRs) instead of pointing to a single target. At least, a successful
example of multi-targeting endosomal TLRs is evidenced by the in vivo results in SLE
and RA models (Table 1). By extension, as various host-derived DAMPs are involved in
the pathologies of RA or IA/AOSD, it is tempting to speculate, that inhibition of several
TLRs (in general targets) might prove to be a more effective anti-inflammatory strategy.
Certainly, it is to be kept in mind that off-target effects and synergisms may obscure the
therapeutic outcome.

No specific TLR inhibitors have yet been approved for any of the described indications,
except the antimalarial compounds that target endosomal TLRs and that are used to treat
RA and SLE [130]. From the developmental point of view, small molecule TLR inhibitors
would be advantageous for the treatment of inflammatory arthritis in comparison to
biologics, as their production is more economical and anti-drug antibodies will not develop
in the treated patients, yet, new promising ways of intervention are emerging, such as the
regulation of/by micro RNAs.

In summary, targeting TLR pathways to effectively decrease the immune response
in chronic inflammatory diseases needs a deeper understanding of the mechanisms and
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dynamics of TLR activation in the different pathologies, besides extensive investigation of
the side effects that TLR modulation might cause in a sustained therapy.
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