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We present an end-to-end computational system for autonomous materials discovery. The system aims for

cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential,

agent-based approach to deciding which experiments to carry out. In choosing next experiments, agents

can make use of past knowledge, surrogate models, logic, thermodynamic or other physical constructs,

heuristic rules, and different exploration–exploitation strategies. We show a series of examples for (i)

how the discovery campaigns for finding materials satisfying a relative stability objective can be

simulated to design new agents, and (ii) how those agents can be deployed in real discovery campaigns

to control experiments run externally, such as the cloud-based density functional theory simulations in

this work. In a sample set of 16 campaigns covering a range of binary and ternary chemistries including

metal oxides, phosphides, sulfides and alloys, this autonomous platform found 383 new stable or nearly

stable materials with no intervention by the researchers.
1. Introduction

Scientic discovery has been synonymous with serendipity, and
the desire to streamline it is not new. Principles governing
autonomy of agents, search of hypothesis spaces, knowledge,
sequential improvement, and statistical models in scientic
discovery systems had already been articulated more than two
decades ago.1–8 For materials, autonomous discovery is being
fueled by two concurrent developments: the need for new
technological materials and the progress in articial intelli-
gence (AI).9–11 Recent advances in rapid generation of materials
data12–17 have created a new frontier where computational and
experimental materials research is intersecting with AI.9,10 This
new wave of AI inmaterials has a theme of acceleration, enabled
either by bypassing tools or methods via surrogate models,18–23

or by identication of new materials via adaptive schemes that
combine models with decision-making approaches.24–32

A number of autonomous frameworks for materials
discovery have been designed and demonstrated, such as opti-
mization of carbon nanotube syntheses via a robotics inter-
face;27 organic molecule synthesis robots33,34 for autonomously
navigating complex chemical reaction networks with reagent-
based decision-making; and composition-based autonomous
search for low thermal hysteresis shape-memory alloys.35

Among other efforts,36–38 these demonstrate proof-of-concepts
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for autonomous discovery of materials for specic target prop-
erties or applications. In addition, open-source soware pack-
ages such as ChemOS,39,40 which includes functionality for
researcher interaction via natural-language-processing and
robotics interfaces, and ESCALATE,41 which features a stream-
lined data capture and reporting framework, have demon-
strated adaptable programming frameworks and ontologies for
achieving autonomous discovery. However, there remains an
opportunity for a framework which not only executes autono-
mous research, but facilitates the design of autonomous
discovery procedures via a scientic method that tests the
automated decision-making for their effectiveness in materials
discovery.

This paper, concerned with both execution and design of
autonomous discovery, introduces an end-to-end sequential
framework that adopts an agent–experiment abstraction to
solve complex discovery objectives in materials science. We
present the framework in an application targeting discovery of
stable inorganic compounds using ab initio calculations,
a problem central to identifying new, useful candidate materials
for technological applications.42–45 Using this framework, we
show examples of (i) simulations of agents designed for stable
materials discovery with existing data to gauge their perfor-
mance, and (ii) active-deployment of these agents in real-world
discovery campaigns of cloud-based density functional theory
(DFT) calculations. We show that this autonomous platform can
expand our knowledge of materials in target chemistries on user
demand, and further, augment the data available in community
databases like The Materials Project (MP),13 Open Quantum
Materials Database (OQMD)15 or AFLOW12 with new, potentially
Chem. Sci., 2020, 11, 8517–8532 | 8517
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useful materials. The framework is open-sourced for commu-
nity development and use in other autonomous materials
research settings.
2. Results and discussion
2.1 An AI framework for materials discovery

2.1.1 An agent-based sequential optimization approach to
materials discovery. In many cases, materials discovery can be
recast as an optimization problem,25,29,46–48 where desired
materials can be thought of as extrema of some complex
objective function f, oen to be deduced from the results of
some experiments. In abstract terms, we are facing a problem
that looks deceptively simple:

material* ¼ argmin Experiment(material)

where material* denotes some local or global extrema of the
function Experiment. Therefore if we can nd a reasonable f to
represent Experiment, a vector X to represent the materials, and
boundaries over X, the expression X* ¼ argmin f(X) could be
solved with some systematic effort, hence discovery
streamlined.

To be specic, let us focus on the problem of nding new
inorganic materials in the most basic terms; i.e. previously
unknown combinations of crystal structures and compositions
that demonstrate a property, the most ubiquitous of which is
thermodynamic stability. The effectiveness of design of experi-
ments,49–51 or traditional optimization methods (e.g. gradient-
based methods, off-the-shelf black-box or Bayesian optimizers,
etc.) vanish quickly in such scenarios for a few reasons and we
will invoke some of the early principles of discovery systems to
suggest practical solutions for each. First, the experiments are
oen costly, and researchers have nite time and resources,
such as a limited budget for running a set of experiments. The
need for frugality can be satised by a sequential design that
factors past attempts in informing its next stages. Nevertheless,
rather than a fully sequential optimization framework where
a single sample is run at a time, adopting a batch mode where
multiple samples are run in parallel in each iteration is oen
desirable to minimize the total time-cost in applications where
experiments take a long time.52,53 The advances in high-
throughput computational and experimental workows make
batch mode further appealing in optimization of materials,
offering a higher volume of knowledge per experiment duration,
as well as potential failure mitigation by diversication of
experimental parameters. Using batch mode, however, leads to
some degree of loss in efficiency in using new information in
decision-making compared to running a single experiment at
a time, and introduces other challenges in ensuring efficient
use of the allocated budget, e.g. how to choose the batch in each
iteration for maximum return.52,53 Many practical decisions
need to be automated to reduce this material optimization
process to practice, as we show later.

Second, the Experiment can be highly complex, sometimes
broadly thought as a “black-box”, with no gradients to aid in
optimization. This complexity may necessitate the use of an
8518 | Chem. Sci., 2020, 11, 8517–8532
array of methods to compose f, including not only surrogate
models, but also physical or empirical models, physical laws
(e.g. thermodynamics), or heuristics garnered by the scientists.
In addition, one may need to try many such “compositions” of f
to nd the most suitable one for the task. Hence, drawing
inspiration from the basic intelligent agents of AI,54 we adopt
a similar abstraction hereaer referred to as a research agent (or
simply agent), which, in our case, is a computational entity that
manages the decision-making phase of the scientic-method;
i.e. chooses candidate materials as hypotheses to test next,
making use of any past or recent results and any available
model, data, intuition, heuristics, logic or uncertainty as well as
exploration–exploitation strategies. The agent is capable of
performing this duty recursively, each time with added knowl-
edge of recent experiments. Agents can communicate with the
outside-world, namely, with external experimental facilities, by
means of an experiment-specic application programming
interface (API).

An outline of this framework for computational autonomy
for materials discovery (CAMD) is illustrated in Fig. 1, where the
main process in a campaign is a back and forth between an
agent and an experiment. Since the API translates the requests
of the agent to the experimental facility and delivers the results
back to the system when experiments nish, the agent is dis-
entangled from where or how the experiments are run. This
abstraction yields a modularity that allows seamless transition
between experimental resources or between agents. For
instance, as we show in Section 2.2, the framework can simulate
the performance of a series of agents using existing data along
with an “aer-the-fact” experiment API that emulates running
experiments but simply returns results from a lookup table, and
can later swap in the relevant experiment API to run the actual
experiments with an agent of choice.

In designing agents for materials discovery, a practical
challenge stems from the composition–structure space of
materials being innite, and the difficulty in formulating it
while ensuring distinct materials to have distinct representa-
tion vectors. Despite recent promising efforts,55,56 the difficulty
in inversion of such vectors to materials is a compounding
factor in the overall problem. A means of circumventing these
issues is creating a nite search space; a domain of candidates,
such as from decoration of prototype crystal structures in our
current effort for nding materials of relative stability. While
not restricted to it, we isolate the domain creation process from
the agents (Fig. 1), as an independent stage, again to benet
from the modularity. We note also that the nature of given
materials domain, particularly in the distinction between cate-
gorical and continuous variables, may strongly inuence the
effectiveness of a given strategy for exploring it.57 In our primary
example, domain generation blends heuristics, such as an
integral grid-based stoichiometric formula generation and
chemically-selective enforcement of nominal charge-balance
constraints over formulas, and prototype extraction from
structure databases (see the Methods section for details).

2.1.2 Specialized agents and campaigns for nding new
stable materials. As outlined in Fig. 1, a “research agent” here is
an abstract decision-making entity in execution of the scientic-
This journal is © The Royal Society of Chemistry 2020



Fig. 1 High-level flow-diagram for the agent-based sequential framework for computational autonomy for materials discovery (CAMD). Bullet
points below each major component list examples or parts of the respective component. API, DFT and MD denote application programming
interface, density functional theory and molecular dynamics, respectively.
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method, and has no predisposed algorithmic form other than
explicit data input and output contracts with the rest of the
CAMD framework. This abstraction enables a modular soware
framework where designing, testing and deployment of various
approaches to materials discovery become standardized and
efficient. In our current implementation, all agents inherit from
a hypothesis agent abstraction, which simply denes the
mandatory data input to an agent to consist of two datasets; one
for the seed (i.e. existing, known data), and one for the candi-
date space (i.e. search domain), and requiring the agent to
return a subset from the candidate space that agent “hypothe-
sizes” to meet its goal. Agents obeying this contract can be
exibly composed by the researcher and used within the CAMD
framework (we refer the interested readers to our open soware
package outlined in Methods for further details). The crux of an
agent's scientic approach therefore lies within its problem-
specic design. In this work, we choose to focus on computa-
tional discovery of stable or nearly stable inorganic materials,
because as a powerful indicator of realizability,58–60 relative
stability is a general prerequisite for computer-designed mate-
rials to be useful. Hence we need to design agents for this
particular purpose.

We consider several strategies in our agent-design for stable
material discovery. As a common design element, agents are
allowed to take existing results from DFT calculations that were
already run, train formation energy regression models, modify
predictions on the candidate space having the objective of
stability in mind (e.g. by tagging on an uncertainty derived
component or other exploration–exploitation strategies),
construct a thermodynamic energy-composition convex-hull
and use distance to this estimated hull as part of their deci-
sions. The use of convex-hull within agents is a concrete
example of a physical construct that is leveraged in the form of
relational-information between materials, that is otherwise not
easy to incorporate as part of standard optimization frame-
works. Agents can also use logic; e.g., current agents enforce
a oor for how low predicted energies can go, so they do not
This journal is © The Royal Society of Chemistry 2020
inadvertently skew the results in early iterations where energy
predictions might be poor. Or they can use heuristics, e.g. to
minimize the risk of acquiring similar points, or terminate if
their performance is not satisfactory. Further details of agents
are provided in the Methods section.

There are a large array of approaches for how acquisitions
can be decided for nding materials that meet the objective of
stability, oen taking into account the variance in model
predictions, such as the probability of improvement, expected
improvement, lower (or upper) condence bound or greedy
(including 3-greedy) approaches.25,61,62 We frequently use the
latter two, as they more easily generalize to optimization in the
data-regimes we navigate. Some related algorithms the current
set of agents adopt include query-by-committee (QBC)63,64 which
can decorate a learner with variance in predictions, ensemble
learners where prediction variances can be approximated in
a similar way, or Bayesian approaches, including Gaussian
process (GP) and its variants which circumvent its unfavorable
computational complexity.65 Voronoi-based descriptors by
Ward et al.66 are incorporated to represent materials in models,
and for stability agents that require a regressor, we use a simple
two hidden-layer (84 � 50) fully-connected neural network (NN)
(see Methods). We found that for the present application, these
choices for the formation energy models provide a good
compromise in terms of accuracy and the speed of model
training and prediction.

The value delivered by the discovery system should be
measured carefully against baselines. A randomly choosing
(RC) agent is therefore always simulated for comparison. For
the task of nding new materials, however, this agent is not too
difficult to outperform, unlike an active-learning scenario,
where the goal is to minimize the variance over the prediction.
In that case, an RC is a strong baseline. Thus, for discovery
tasks, we simulate additional “one-shot” baselines, to test
whether the sequential learning paradigm (i.e. incremental
improvement of agent) is helping the discovery or not. These,
unlike an RC agent, are difficult to beat, as they harness models
Chem. Sci., 2020, 11, 8517–8532 | 8519
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trained on the entire past data, and can use acquisition tech-
niques, but in contrast to sequential agents with access to
accumulating data, are simply not given the opportunity to
learn from each prior iteration. They make their choices in
a chemical system, in one-shot, at the same overall budget as
other simulated agents.
2.2 Campaign simulations with agents for materials
discovery

2.2.1 Overall structure of campaign simulations for agent
design. We designed an array of agents that aim for discovering
(nearly) stable materials and tested their performance in
simulations in various binary chemical spaces using the data
available in the OQMD.14,15 Since these agents are aer new
stable materials, we use the unique Inorganic Crystal Structure
Database (ICSD)67 derived entries in OQMD with about �36
thousand entries as the standard seed data for all agents.
Hence, during agent design via simulations, the agents exclu-
sively choose from hypothetical (prototype-derived) OQMD
entries (unseen to the agent), set aside upfront as the “candi-
date space” of crystal structures (see Methods). The goal of the
agents is to nd the stable ones among these hypothetical
candidates. This design ensures the agent simulations closely
mimic the actual discovery campaigns we want to deploy later
(Section 2.3). We give the simulated agents a budget of 50
experiment requests in each round. In the particular case of
these aer-the-fact simulations, the system uses an experiment
Fig. 2 Simulated performance of various agents in discovering stable F
number of materials that are within 0.1 eV per atom of the instantaneo
calculations agent is allowed to request), respectively. Agents are lab
correspond to “greedy” agent with a surrogate model, AdaBoost based ag
committee based agent. The parameters 3 (fraction of random explora
respective values in labels. The “one-shot” points refer to direct acquisitio
NN regressor, and AB refers to the same regressor boostedwith AdaBoos
label means the agent uses diversification. Ideal-limit shows the maximu
deemed stable and therefore “discovered”, outside of which is not acce
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emulator that reads the results from a table and communicates
immediately back to the agent as if DFT simulations were run.
For these agent simulations, we rst select the Fe–X binary
systems, where X is any element other than Fe, as they provide
a large enough candidate set of 1628 entries, all hypothetical,
and span a range of material classes: from metallic to covalent.
Among these candidates, only about 220 are within 0.1 eV per
atom of the convex-hull (hereaer we refer to these as “stable”
for simplicity) when measured against the cumulative set con-
taining the ICSD-derived entries as well as the hypothetical
entries themselves.

2.2.2 Baselines and simple agents: decisions with minimal
complexity. Simulated performance of different agents are dis-
played in Fig. 2. We start with simple designs and incrementally
build complexity into the agents. The simplest of all; randomly-
choosing agent takes the entire candidate set to discover all
stable candidates. The next class are the “greedy” agents
(marked as M in Fig. 2), which pick those candidates projected
to be within the stability threshold (and ranked on the basis of
their distance to hull). In each iteration, these agents train
a formation energy model (a NN described above) on the seed
data (combination of the initial seed and results of its experi-
ments) and make predictions on the remaining candidate set,
followed by an aggregated convex-hull computation for all
candidates and existing data to measure their distances to the
hull. We nd that this relatively simple greedy agent (M-30)
yields a discovery rate (i.e. slope) considerably better than the
random agent. We also nd that it outperforms its “one-shot”
e–X binary compounds. Ndiscovered and NDFT correspond to the total
us convex-hull, and the DFT budget (in terms of total number of DFT
eled as follows: M, AB, GPheur, SVGP and QBC which respectively
ent, heuristic GP agent, stochastic variational GP agent, and query-by-
tion) and a (mixing parameter for uncertainty) are followed by their
n of N ¼ 200 or 500 candidates, with the noted agent (M refers to the

t), with no sequential (batch-mode) acquisitions. Presence of “div” in the
m achievable performance, i.e. if every agent-designated material was
ssible by any agent and hence grayed out.

This journal is © The Royal Society of Chemistry 2020
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analogues, demonstrating that the sequential strategy is indeed
benecial. Aer nding about 2

3 of the stable materials (at about
�500 DFT requests), this agent enters a regime of mild “satu-
ration”, and its performance drops. As we will show later,
a simple explanation of saturation is that the accuracy of the
energy model is not sufficiently high to distinguish the
remaining stable materials from the rest of the candidate pool
at later stages of the campaign. This causes the greedy-agent to
get “stuck”. A standard way to mitigate this problem is letting
the agent not only exploit its best predictions, but also explore
some candidates randomly, by a fraction 3 of its budget. We
observe that such an 3-greedy agent with 3 of 0.1 discovers at the
same rate as its fully-greedy counterpart, but does not show any
notable saturation until the candidate set is exhausted. As 3 gets
larger (e.g. 3 ¼ 0.5), however, the discovery rate starts to
decrease.

2.2.3 Role of energy prediction accuracy in agent perfor-
mance. The next question we ask is how much role the under-
lying energy regressor is playing in the performance of the
agent. The cross-validation (CV) mean absolute error (MAE) of
the original NN we use remains close to 95 meV per atom (with
our seed of �36 000 ICSD-derived OQMD entries and newly
“acquired” examples in each campaign), similar to the random
forest model trained on �30 000 examples in the original study
that introduced the Voronoi-based descriptors we use.66 We did
not see a notable dri from this performance with growing data
set size or switching between models with enough complexity
(e.g. random forest vs. NN). However, we nd that adaptive
boosting (AdaBoost, or simply AB) of the original regressor
notably increases the model accuracy, reducing the CV-MAE
with the same data to about 77 meV per atom. This boosting
yields an improvement in the discovery rate (Fig. 2, second
panel) for the greedy agent (AB-30-a0), but a pronounced satu-
ration happens at about the same level as the non-boosted
greedy agent. Interestingly, switching to an 3-greedy strategy
for the boosted agent (e.g. AB-30.1-a0) does not help avoid early
saturation (which will be studied in detail in a later section).
Since results of the DFT or convex-hull computations do not
have any notable uncertainty element, the accuracy of the
formation energy model remains as the main bottleneck in the
overall performance of the agents. Considerations of prediction
uncertainties in decisions could therefore be useful for
improving the agent performance.

2.2.4 Agents that incorporate uncertainties in decisions. As
a general approach, we adopt lower condence bound; LCB
(oen studied as upper condence bound depending on the
context),61 a well-known strategy that reects “optimism in the
face of uncertainty” to address exploration–exploitation
threshold. In the current LCB approach, formation energy
predictions, DĤf are combined with their uncertainty as
LCB(X) ¼ DĤf � as(X) where a is a positive mixing parameter
for uncertainty s, and the rest of the pipeline is similar to the
greedy agent. Thus, we need formation energy models that can
decorate their predictions with uncertainties, and below we
explore several such options.

While a GP is the “go-to” Bayesian approach for this purpose,
its computational complexity prohibits its straightforward use
This journal is © The Royal Society of Chemistry 2020
in the data regimes (>30 000 examples with 273 dimensional
representations) we operate in. We rst try a simple work-
around: a GP is trained on a seed that combines ICSD-derived
OQMD compounds in Fe–X chemistries, with 5000 additional
samples randomly drawn from the rest of the ICSD-OQMD seed.
We nd that an agent employing this heuristic GP strategy
(GPheur-30-a0.5) is on par with the boosted greedy agents,
despite its lower MAE of�110 meV per atom, but saturates early
like the fully-greedy agents. Despite its ability to handle big data
in a GP setting, stochastic variational inference GP65 yielded
relatively large MAEs (�130 to 140 meV per atom) with the
surrogate matrix sizes we could afford, and using the same LCB
strategy, the agent SVGP-30-a0.5 displayed a relatively poor
performance (third panel in Fig. 2).

Given the above difficulties, we turn to decorating predic-
tions of non-Bayesian regression models with uncertainty esti-
mates. QBC is an ensemble method analogous to bagging and
estimates prediction variance from the disagreement of the
committee members (each trained on a subset of data), and can
be used for this purpose.64 A QBC agent that uses LCB (a ¼ 0.5)
with our standard NN regressor did not produce results better
than a fully-greedy agent. The random acquisitions, as in 3-
greedy agent, seem to play a more signicant role than uncer-
tainty estimates from QBC, to overcome the observed satura-
tion. Given that boosting forms an ensemble of models, we can
decorate predictions of AB with proxies for uncertainties
derived from the variance among that of each regressor in the
ensemble. An AB agent that uses such uncertainties with LCB
and a ¼ 0.5 (AB-30-a0.5 in Fig. 2) has the same discovery rate as
its boost-only parents, but outperforms them by saturating
much later, at a point where about only 20 stable materials le
in the candidate pool. This is so far the best performing agent.

2.2.5 Transferability of agents. The performance of the
agents evaluated by simulations in the Fe–X dataset is not
guaranteed on all datasets, but since this dataset has broad
structural and compositional diversity with 83 unique elements
considered in position of X, we expect it to be fairly represen-
tative of the relative performances of agents in other chemis-
tries. To further test if this statement holds, we design an
alternative candidate set of M–O binaries chemically orthogonal
to the previous one, by following a similar approach; i.e. setting
aside all hypothetical M–O binaries in the OQMD (which
contains 84 such unique binary systems) as the candidate set,
and keeping the remaining OQMD entries with ICSD-origin
(including the ICSD based M–O as well) as our seed data, to
form a strong baseline for agents to compete against (as was
done for Fe–X). This candidate space has a size of 2023 unique
entries, 145 of which are within 0.1 eV per atom of the convex-
hull. The performance of primary agents selected from Fig. 2 in
this particular scenario are displayed in Fig. 3. We nd that the
performance trends from Fe–X campaigns reasonably translate
to the M–O campaigns; e.g. all performant agents still outper-
form the random baseline by a substantial margin, and
performance of AB agents are higher than M agents, and the
greedy AB-30-a0 saturates early, which is again overcome by the
LCB strategy in AB-30-a0.5. With this example, we are able to
conrm that the observed relative performances of agents in the
Chem. Sci., 2020, 11, 8517–8532 | 8521



Fig. 3 Simulated performance of various agents in discovering stable
M–O binary compounds. Ndiscovered and NDFT correspond to the total
number of materials that are within 0.1 eV per atom of the instanta-
neous convex-hull, and the DFT budget (in terms of total number of
DFT calculations agent is allowed to request), respectively. See the
caption of Fig. 2 for the descriptions of the layout and agent labels.
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broad Fe–X chemistries are fairly transferable to others, such as
M–O, which has almost no overlap with the former (except for of
course the Fe–O system).

2.2.6 Variability in agent performance due to incomplete
phase information. Campaigns described so far used a xed
seed encompassing the unique ICSD based entries in the
OQMD excluding only the hypothetical phases in target binary
chemistries (to use them as candidates). This xed seed
scenario provides a strong baseline for agents to perform
against, and mimics the actual deployment scenario in active
campaigns closely (described in the Section 2.3). However, this
deterministic scenario does not reect the potential variability
in performance that agents may experience due to partial,
incomplete phase information in seed data in target chemis-
tries. Since completeness of phase information is difficult, if not
impossible, to fully ensure (not only in under-explored systems
but even in thoroughly-studied systems, where theremay still be
materials awaiting discovery), we would like to understand its
inuence on the performance of the agents by designing rele-
vant campaigns that are as close as possible to the deterministic
ones described before.

In these variable-seed campaigns, we still focus on the Fe–X
chemistry due to its chemical diversity and candidate set size, as
well as for consistency with the previous campaigns, but this
time we remove all Fe–X phases from the seed regardless of its
origin, and reserve all of the 1933 Fe–X phases as candidates.
We start these campaigns by randomly choosing and adding 50
candidates from this Fe–X candidate space to the above-
8522 | Chem. Sci., 2020, 11, 8517–8532
mentioned seed. While we keep the chemistry and other
settings (e.g. number of queries in each iteration) consistent as
much as possible with Fig. 2, these new campaigns by design
have a slightly larger candidate pool, and hence more stable
materials (473 within 0.1 eV per atom of the convex-hull)
available compared to prior deterministic campaigns. For
each agent, we repeatedly run these campaign simulations with
varying initial seeds at least eight times for the primary agents
of interests that we selected from Fig. 2. The results of these
variable-seed campaigns are presented in Fig. 4, where �2s
condence bounds are shown around the mean performance at
each iteration of the campaign. Although there are minor
performance differences compared to Fig. 2 due above-
mentioned slight differences in campaign structure (for
example M-30 and M-30.1 are closer now, but variation in
performance with 3 is still present as seen for M-30.5), most
notable aspects, such as the improvements in performance with
AB agents, their early saturation in greedy or 3-greedy strategies,
and further improvement with LCB in AB, are all observed in
this setting as well. Fig. 4 clearly shows that the condence
intervals are relatively tight, especially in the early stages of the
campaigns, and tend to broaden only slightly as campaigns
progress, the largest s remaining within �13 compounds in AB
agents. These results indicate that the incomplete phase
information in partially explored chemical spaces do not result
in signicant variations in agent performance.

2.2.7 A closer inspection of the decision-making in agents.
While our focus thus far has been designing and simulating
a variety of agents for stable materials discovery to identify the
ones that are the most performant, the mechanisms behind the
observed performance evolution trends in campaigns, such as
the counter-intuitive early saturation of certain AB agents in
Fig. 2–4, are important to understand to design better agents in
the future. As discussed before, the primary source of error in
the current sequential learning application is the formation
energy models trained and used by the agents. Therefore, in
Fig. 5, we inspect the prediction errors in formation energies in
the remaining candidate set during two distinct stages of each
campaign (consistently selected to reect earlier and later
stages – see the gure caption) by the specic regression models
for the primary agents discussed before. We immediately
observe that prediction errors in remaining candidates are close
to normal distributions. However, AB-30-a0 (i.e. the fully greedy
AB agent), despite its better CV-MAE of �77 meV per atom in
seed data, shows a larger bias towards lower formation energies
in its predictions, accompanied by a visible skew in the error
distribution and parity plots, which persist from earlier to later
stages of the campaign. With no explicit acquisition mecha-
nisms to mitigate this issue, AB-30-a0 keeps acquiring points
where it is fairly accurate (as evident from the evolution of its
error distribution). In turn, this agent's accuracy does not
improve for candidates near lower and upper tails of its error
distribution (in fact its overall MAE in candidate set deteriorates
as campaign evolves), and once it mostly exhausts the candi-
dates from the accurate (middle) region of the same distribu-
tion, AB-30-a0 gets stuck (i.e. saturates early). Its simpler greedy
version, M-30, which also lacks any explicit mechanism to
This journal is © The Royal Society of Chemistry 2020



Fig. 4 Simulated performance of selected agents under variable-seed conditions. For each agent, the solid line and the shaded area around it
show the average number of discoveries and the �2s (95%) confidence interval around these averages, from at least eight random campaign
initializations. See the caption of Fig. 2 for the descriptions of the layout and agent labels.
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mitigate such issues, does not exhibit the same degree of early
saturation in Fig. 2–4 (only a mild tendency in Fig. 2). This
observation indicates that with less-biased predictions (and
higher normality of its error distribution) seen in Fig. 5, M-30's
acquisitions tend to more evenly sample the candidates from
the broader error range, opposite to AB-30-a0, in turn not leading
to such pronounced saturation. In other words, regardless of
whether the agent has better CV-MAE in seed data, biased and/
or skewed predictions in candidate space seem to be a primary
cause of early saturation. The nite 3 helps AB-30.1-a0 more
evenly sample the candidate space in the entire error distribu-
tion. While it was not clear from the deterministic campaigns in
Fig. 5 Analysis of the errors in predicted energies of candidates by vario
later (iteration ¼ 25) stages of respective campaigns. Top panels show p
candidates at the selected early and late stages of each campaign, where
bottom panels show corresponding histograms of the difference betwee
same stages of the campaign as the top panels. Each same-colored set of
where m and s are the mean and standard deviation of their correspon
responding m and s (in units of meV per atom for clarity) are also shown a
labels are shown above the parity plots.

This journal is © The Royal Society of Chemistry 2020
Fig. 2, we observe in variable-seed campaigns in Fig. 4 that the
nite 3 indeed helps AB-30.1-a0 improve its saturation point on
average, not substantially but at least to a statistically measur-
able degree. In AB-30-a0.5, not only the underlying model's
accuracy improves, but the LCB strategy that explicitly considers
the uncertainty of model's predictions in candidate space turns
out to be more effective in identifying the remaining stable
candidates as campaign advances.

2.2.8 Summary of agent simulations and transitioning to
active deployment. The takeaway from stable material agent
simulations is that the saturation point of agents can be
enhanced by adopting different exploration–exploitation
us energy-models underlying several agents at early (iteration ¼ 3) and
arity plots comparing predicted formation energies to DFT values for
dashed-lines are a guide for the eye depicting ideal fit (i.e. x ¼ y). The
n predicted and DFT values of formation energies for candidates in the
vertical dashed-lines correspond from left to right to m� s, m and m + s

ding (same colored) distributions at two separate stages shown. Cor-
s insets along with MAE (as “m”), color-coded the same way. The agent
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tradeoff strategies, namely, 3-greedy strategies or incorporating
uncertainty via lower condence bound. The discovery rate can
be improved, to some extent, by using more accurate models for
formation energy. Any signicant improvement is unlikely to be
achieved by further tuning of the parameters of the presented
strategies. Prior to the deployment of the best performing agent
in active campaigns, we augment it with a risk-aversion strategy
that diversies the acquisitions (AB-30-a0.5-div in Fig. 2). As ex-
pected, when simulated with OQMD data (which already went
through structural uniqueness lters), this strategy does not
affect the performance, but is put in place to ensure that in
prototype-based searching in active campaigns, where similar
structures are more likely to be encountered, the agent can
prioritize acquiring dissimilar ones (see the Methods section).
2.3 Active deployment of agents: DFT-based campaigns of
materials discovery

2.3.1 Overall structure of active DFT-based campaigns for
stable materials discovery. In this section, we demonstrate the
deployment of the best agent designed in the previous section
in active DFT-based stable material discovery campaigns in
a diverse set of sample chemistries. The described abstraction
of Agents and Experiments enables a seamless transition from
simulations of campaigns to production deployment of
a materials discovery workow. As outlined in Fig. 1, the only
additional tasks we need in active deployment are: (i) to create
the domain of inputs which may be tested in experiments (i.e.
the candidate space), and (ii) the experiment which will acquire
new data and augment the seed data with which the campaign
begins and continues.

For the domain creation, we use an approach that decorates
crystal structure prototypes derived from databases of existing
materials, combined with chemical, stoichiometric and charge-
balance heuristics (see the Methods section). Briey, the inputs
to a stable materials discovery campaign are a list of elements
which dene the chemical system in which materials are to be
discovered. With these elements, reasonable chemical formulas
are generated algorithmically using heuristics from charge
balance and permissible integral stoichiometric coefficients of
elements in formulas. Candidate structures at these composi-
tions are generated from the large array of anonymized (proto-
type) crystal structures. This process of domain generation
renders a dataframe of structures keyed by element-specic
stoichiometry and structure prototype and provides it to the
campaign as the “candidate data”. The “seed data” is provided
as the ICSD-derived entries in the OQMD (as explained before),
because they reasonably capture the current stability landscape
from experimentally known materials, and hence form a strong
baseline against which to measure the stability of new ndings.
In effect, the energy-composition convex-hull construction for
determination of the stability of new discoveries explicitly
includes experimental data to the extent possible in the present
framework, ensuring the predictions are valid in comparison to
real, known materials. We note that these are merely the
implementation defaults, and framework allows using other
choices for all these components.
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Dening experiments typically requires more effort than
dening the campaign domain, as ensuring compatibility of the
experimental data generated and the existing seed data may
require knowledge of that seed data's provenance. For our
initial implementation, we employ a DFT workow that mirrors
calculations done by the OQMD (see the Methods section),
which ensures compatibility with DFT data that already exists
therein. We employ a strict time limit for DFT runs to prioritize
rapid turnover, and therefore agents may oen receive a frac-
tion of their requests back (further explained in the Methods
section). Upon completion of a given experiment, a stability
analyzer computes the convex hull corresponding to data from
both new experimental results and prior seed data. We note that
stability is an aggregate property of the dataset and thus
requires a post-processing step independent of the experiment
that includes data from the same seed data used as part of the
agent. This batch-mode sequential workow of the agent and
the experiment iterating back and forth continues until the
budget is exhausted or the campaign is terminated for one of
the reasons outlined in Methods. A post-campaign structure
analysis is performed, as prototype derived structures can oen
relax into a similar structure aer the DFT relaxation, and hence
become duplicates. The settings and other practical details of
active campaigns reported here are listed in the Methods
section.

2.3.2 Active discovery campaigns in diverse chemistries. To
demonstrate the active deployment of agents for materials
discovery campaigns, we present results from a diverse set of
chemical systems such as Mn–S, Fe–V, Os–Cl, V–O, Cu–Rh–O,
Hf–K–S, Ca–Bi–P, and Al–Ti–Sc in Fig. 6 and 7, and statistics
pertaining to all 16 campaigns run in this work are provided in
Table 1. These examples are picked to cover a range of material
classes (e.g. oxides, suldes, phosphides and alloys) or bonding
types (e.g. metallic, covalent and ionic), as well as different
degrees of prior experimental exploration in the literature, and
different degrees of success in discovery by the agents. Many of
these systems are relatively common, well-explored chemistries
populated with experimentally known compounds, and hence
serve as stringent tests for the framework. The evolution of the
convex hulls for binary and ternary systems can be clearly seen
in Fig. 6 and 7, where the pre-campaign convex-hulls show
material structures in the OQMD that have an experimental
source.

For the 16 chemically-diverse campaigns presented in this
manuscript, we report 383 autonomously-discovered distinct
structures that could not be matched to an experimental entry
in the OQMD and are within 0.2 eV per atom of the convex hull.
The discovery rate for unique structures within this threshold
range from around 10% to 45% across different campaigns
(Table 1), averaging close to 22%. Out of these structures, 13 are
on the convex-hull, and 36 are within 0.025 eV per atom, 67 are
within 0.05 eV per atom and 153 are within 0.1 eV per atom of
the convex-hull. Of the structures discovered as unique, only 9
are found in the MP database, suggesting that 374 of the
discovered structures have not been previously reported there
either. In addition, we note that the structures generated by
CAMD have a natural structural diversity that is limited only by
This journal is © The Royal Society of Chemistry 2020



Fig. 6 Phase diagram and cumulative discovery histograms for CAMD campaigns in Mn–S, Fe–V, Os–Cl, and V–O chemical systems. The 2-D
phase diagrams are shown on the left with both pre-campaign convex hull (dashed line) and post-campaign convex hull (solid line). Material
discoveries, i.e. computed structures within 0.2 eV per atom of the convex hull, are shown as green circles, while materials higher than this
threshold are shown as red crosses. The number of total materials discovered for each chemical system as the campaign iterations progress are
shown in the right-hand bar charts. For materials from pre-campaign convex-hulls (i.e. existing materials), only the most stable ones are shown
for simplicity.
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Fig. 7 Phase diagram and cumulative discovery histograms for CAMD campaigns in Cu–Rh–O, Hf–K–S, Ca–Bi–P, and Al–Ti–Sc chemical
systems. The ternary phase diagrams are shown on the left with both pre-campaign convex hull (left column) and post-campaign convex hull
(center column). Material discoveries, i.e. computed structures within 0.2 eV per atom of the convex hull, are shown as green circles, while
materials higher than this threshold are shown as red circles. The number of total materials discovered for each chemical system as the campaign
iterations progress are shown in the right-hand bar charts. Note that, for Hf–K–S and Ca–Bi–P, discoveries K2HfS3 and Ca3BiP are on the
convex-hull, i.e. current ground-states at those compositions.

8526 | Chem. Sci., 2020, 11, 8517–8532 This journal is © The Royal Society of Chemistry 2020
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Table 1 Campaign statistics for the chemical systems studied in this work. Gross discovery represents the total number of new materials within
0.2 eV per atom of the convex-hull at the end of the campaign, prior to post-campaign structure analysis. Duplicate discovery column lists how
many of the structures among the gross discoveries were found to be duplicates of others. We further checked how many of the discovered
structures relaxed into ICSD-derived entries in OQMD, listed as experimental in the table. Final column lists the total number (383) of explicitly
unique, non-experimental structures

System Agent requests DFT received Gross discovery Duplicate discovery Experimental Unique discovery

B–Fe 152 146 32 28 3 19
C–Fe 91 81 37 14 2 26
Cl–Os 101 70 13 1 1 11
Fe–N 66 47 17 10 1 10
Fe–S 158 133 22 23 6 14
Fe–V 147 130 53 30 1 32
Mn–S 99 73 29 5 2 22
Ni–S 220 191 94 30 6 66
O–V 66 52 23 5 3 17
S–V 174 129 31 22 3 20
Al–Sc–Ti 216 199 115 32 0 90
Bi–Ca–P 220 157 37 10 0 27
Ca–Mo–P 73 53 6 2 0 4
Cu–O–Rh 123 72 17 4 1 14
Hf–K–P 89 63 8 4 0 7
Hf–K–S 38 23 4 0 0 4
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the structural diversity of the seed from which the prototype set
is generated. From the 383 discovered structures, 7 crystal
systems and 87 distinct space groups are represented.
Furthermore, it can be observed in Fig. 6 and 7 that the breadth
of compositions CAMD samples varies notably across different
chemistries. Particularly in spaces where a charge-balance can
be enforced (e.g. Cu–Rh–O), agents naturally focus mostly on
the respective parts of the phase diagram enclosed by existing
charge-balanced compounds, avoiding potentially unphysical
compositions (see Methods for details). While this choice
comes at the expense of potentially missing a few plausible
candidates (e.g. peroxides or superoxides), we nd it to be
essential to ensure efficient use of computational resources in
the current “exploratory” campaigns. In cases when charge-
balance is not as plausible and hence is not enforced, the
composition space broadens (e.g. Ca–Bi–P and Al–Sc–Ti). Some
of the stable or nearly stable structures identied by CAMD are
displayed in Fig. 8.

We nd it encouraging that the CAMD framework identi-
ed many new, unique stable (or nearly stable) phases in this
diverse set of binary and ternary chemical systems, even in
systems that one expects to have been thoroughly-explored,
such as Mn–S or Fe–V. Nevertheless, a quick survey for these
two examples reveals that for the Mn–S system, Okamoto68

mentions that the S-rich side is still speculative due to
insufficient experimental data, and for the Fe–V system, Bloch
et al.69 performed an ab initio high-throughput search and
found new ordered Fe3V and FeV3 phases, and further provide
experimental evidence that kinetic barriers to formation of
such previously unobserved phases in this system can be
overcome by hydrogen absorption. These examples hint at the
need to revisit even such well-known systems for new mate-
rials, and also show CAMD can rapidly uncover such gaps in
our knowledge of materials without any intervention. While
This journal is © The Royal Society of Chemistry 2020
searches in MP13 and OQMD15 show that both databases
naturally identied several hypothetical structures in the
current chemical systems (and many others) as part of high-
throughput prototyping studies run over the course of years,
we showed that by streamlining the discovery process, CAMD
far exceeds prior work in terms of the number of viable unique
material structures and the breadth of new compositions such
structures are found at (Table 1). Thus, our current, and future
results as they are being produced by the present framework
are expected to be valuable additions to such open material
databases.12–14
3. Outlook and open questions

The CAMD framework is suitable for sequential campaigns in
materials space in general, but we expect it to be more effective
in optimization efforts for identifying new inorganic materials
as showcased in this study, where the search space is large and
representations of entries are high-dimensional (i.e. thousands
of candidates and complex vector representations), with no
obvious gradients to trace, and where acquisition decisions
require blending of multiple scientic paradigms (such as
machine-learning, phase-diagram construction, risk-aversion
algorithms, etc.) under strict budget constraints. The design
of the framework, and in particular the agents, as well as many
of the hyperparameters or practical implementation details of
the system are geared towards our goal of achieving rapid
searching of entire chemical systems at minimal computational
cost. While there are no restrictions to investigating individual
compositions, as their core advantage, the agents in this work
process entire systems and are capable of taking into account
the relative stability of materials not only against their poly-
morphs but against decomposition into other materials in their
entire chemical systems.
Chem. Sci., 2020, 11, 8517–8532 | 8527



Fig. 8 Examples of stable or nearly stable crystal structures found in the present campaigns. Space group numbers are given in parentheses.
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The framework currently assumes a priori creation of
a search domain, and hence is not generative in the sense that it
would not consider an entirely new crystal structure that does
not exist in our list of chemically anonymized prototypes
derived from databases of known materials. But constraining
the search space this way enables speed, in other words, we can
scan entire chemical spaces (such as binaries or ternaries) for
new stable materials at relatively small computational costs.
With the current settings, a budget of maximum 220 DFT
calculations yields many new stable (or nearly stable) materials
in entire chemical systems (Table 1), oen spending a lot less
than the allocated budget. For these reasons, we expect that the
present use case of nding new stable materials will be
complementary to the existing approaches to crystal structure
prediction.70–72 We should also emphasize there is no obstacle
against the implementation of a generative approach in the
presented framework. Such generative-agents, for example, can
hypothesize the same way and suggest new structures while they
8528 | Chem. Sci., 2020, 11, 8517–8532
are active or a generative approach can deliver a large set of
candidate structures upfront to form the search domain.

We expect that the future work can extend the framework to
achieve improved performance in the present application, and
to add new target applications and functionality. For example,
more intelligent agents can be developed for tasks including
and beyond nding stable materials, such as studies that
consider other material properties and specic material appli-
cations. For this purpose, both traditional73 and newly advanced
a priori74 multi-objective approaches may serve as useful
components of the CAMD discovery agents. Those agents can
adapt new representations, surrogate models, rules, empirical
relations, physical or chemical laws etc. In our initial imple-
mentation to nd stable inorganic materials, no entropic effects
are considered in the determination of whether a material is to
be marked as a discovery. We note that these may serve an
important role and are an objective for future implementations of
our experimental and analysis functionality, particularly in alloy
This journal is © The Royal Society of Chemistry 2020
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and higher-order systems.75,76 Since thermodynamically accessible
energy ranges of making polymorphs vary across material
classes,58,59 agents that utilize a chemically-informed hull-distance
threshold are likely to deliver more performant, and less-biased
campaigns across chemistries. A priori identication of underex-
plored chemical spaces with higher likelihood of discoveries can
improve performance in exploratory searches.43,77 Incorporation
of cost estimation of acquisitions, dynamic budgeting, and better
error handling (e.g. whether to attempt to heal a failed request)
are planned as additions to the framework. Agents can adopt
strategies that alter their hyperparameters (e.g. 3 and a discussed
above) in response to observed performance metrics. Besides, it is
foreseeable that, as if forming a team of scientists, a team of
agents would be able to attack a scientic problem from different
angles, or agents can demonstrate self-improvement skills in
campaigns, beyond minimizing the variance of surrogate models
and would be more risk averse. Intersection with, and potential
benets from other black-box optimization approaches and
reinforcement learning are expected.78

4. Conclusion

In this work, we presented a sequential, agent-based optimiza-
tion framework for complex scientic objectives, designed
explicitly with the constraints and utility of materials discovery
in mind. The framework is designed to be modular such that it
allows simulations of research agents before their active
deployment in real discovery campaigns, enabling their effi-
cient, a priori design by the human researchers. We demon-
strated agent simulations in a case study of Fe–X systems and
showed how complexity can be built into agents, from baseline
one-shot models to uncertainty-driven decision-making. We
further demonstrated active DFT-based deployment of agents
we designed in 16 sample chemistries. The framework found
hundreds of new, structurally-unique materials in these chem-
istries with no human intervention, validating, and also
demonstrating the utility of having an end-to-end framework
for discovery of new materials autonomously. The supporting
code is open-sourced for community use.

5. Methods
5.1 Code, models and data availability

We have developed an open-source python-package, named
computational autonomy for materials discovery (CAMD) to carry
out the work presented in this publication, available at https://
github.com/TRI-AMDD/CAMD. The CAMD soware comes with
instructions and examples that are complementary to the
descriptions presented in this work. Main components of CAMD
build on open-source materials science and machine-learning
soware such as pymatgen,79 qmpy,15 matminer,20 scikit-learn,80

gpow81 and tensorow.82 Stability calculations are carried out
using a modied (parallelized) implementation of the linear-
programming approach in qmpy,15 available in the CAMD
library. Structure visuals in Fig. 8 are generated using VESTA.83

Datasets used or generated in this work are accessible at http://
data.matr.io/3. The NN models use a 84 � 50 layer conguration
This journal is © The Royal Society of Chemistry 2020
and the default arguments of MLPRegressor class in scikit-learn,
with a rectied linear unit activation function, L2 regularization
parameter of 0.0001, a learning rate of 0.001 and the adam opti-
mizer. The mean absolute error of the models are computed by 3-
fold cross validation during each campaign iteration over the seed
data to keep track of satisfactory model training and accuracy.

5.2 Active campaign settings

In active DFT-based campaigns, agents were allowed to request up
to 10 DFT calculations in each iteration. Each campaign is allowed
to run for at least 5 iterations regardless of its performance, aer
which, a campaign would be automatically terminated (i) if the
agent could not identify new materials meeting the stability goal
within any of the three most recent iterations or (ii) if the
campaign reaches 25% consumption of its candidate space or (iii)
if the campaign reaches 22 iterations. If an agent cannot suggest at
least one structure to acquire with DFT, it terminates the
campaign regardless of the campaign step count. Hence, every
campaign was allowed effectively a maximum budget of 220 DFT
calculations. The stability goal was set as maximum 0.2 eV per
atom above the evolving convex-hull. Agents were allowed to
choose structures that have up to 20 atoms, and each DFT calcu-
lation was allowed a wall-time of 8 hours on 16 CPUs on an AWS
EC2 instance. Calculations lingering beyond that point are
terminated and agents move to the next stage. While this step is
not optimal, and more intelligent stopping criteria for the exper-
iments are planned as future work, the current setting is geared
towards the ability to search rapidly and preservation of resources,
as relaxations that linger longer oen correspond to prototype-
derived structures that might be much harder to optimize. Post-
campaign unique structure matching tests to determine unique-
ness and phase diagram generations are carried out using
pymatgen.79Certain agents are allowed to attempt to diversify their
requests to minimize the regret of acquiring too many similar
candidates using a computationally cheap risk-aversion algo-
rithm. This algorithm measures similarity as Euclidean-distance
in a standardized feature space, and nds a diverse subset of
the stability-ordered list of candidates meeting the hull-distance
threshold. The algorithm eliminates points listed higher on the
list (i.e. further away from the hull) that are too similar to those
lower on this list (i.e. closer to the hull), based on a similarity
distance threshold that self-adjusts by attempting to iteratively
nd the smallest such subset larger than the allowed acquisition
batch size. The algorithm has no hyperparameters and reduces to
the ranked stability list if there are not enough candidates. In a test
campaign with a synthetic scenario where we perturbed structure
features of materials in the Si–O system to overpopulate the pool
with similar candidates, the agent incorporating this algorithm
acquired more unique structures.

5.3 Generation of search domains for stable material
discovery

During formula generation, charge balance was enforced based
on the allowed valence state of elements available in pymatgen, if
one or more of the elements O, Cl, F, S, N, Br, or I are present in
the target chemical system. Formula generation follows a certain
Chem. Sci., 2020, 11, 8517–8532 | 8529
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set of rules for stoichiometric compound formation. For example,
for a system A–B, coefficients x and y in formulas AxBy are allowed
to take integer values from the set {1, 2, ., gmax}. For systems
where no charge balance was enforced, the maximum integer,
gmax is set as 4 (inclusive) for both binaries and ternaries. For
charge balanced systems, larger values of gmax are allowed, and
gmax is determined explicitly by incrementing the default
maximum above until at least the 20 candidates are generated,
upto a hard limit of 7 (inclusive). It should be noted all these
parameters can be adjusted by the user, and these are merely the
settings we picked for the purposes of the present study.

Structure candidates at each composition are generated with
a crystallographic prototype enumeration scheme, as imple-
mented in protosearch84,85 using the space group and Wyckoff
positions to identify symmetrically unique structures. We have
limited the search to experimentally observed crystal structure
prototypes, by parsing the ICSD67 entries present in the OQMD
database,14,15 which has a large structural diversity. This
consists of approximately 32 000 structures which can be clas-
sied into 8050 unique crystal prototypes based on our scheme,
including 131 unary (N ¼ 1), 1070 binary (N ¼ 2), 3196 ternary
(N ¼ 3), 1970 quaternary (N ¼ 4), 1013 quinary (N ¼ 5), 542
sexinary (N ¼ 6), 104 septenary (N ¼ 7), and a few higher-order
structures (where N is the number of elemental components).
For each selected prototype, a structure (or several structures
depending on the symmetry of available sites) with the desired
composition is constructed by elemental substitution. Subse-
quently, lattice constants are approximated by rescaling the unit
cell, while avoiding atomic overlap, assuming a hard-sphere
radius for atoms as 90% of the elements' covalent radii.
Anisotropic scaling is applied to relevant crystal systems, while
internal coordinates and angles are kept xed.

Featurization of all crystal structures (including the OQMD
entries used in agent simulations and as seed data, and struc-
tures generated for active DFT campaigns as described above)
throughout this work was performed using the composition
and structure derived (Voronoi-based) material descriptors
introduced by Ward et al.66 producing a vector of 273 features
for each material as implemented in Matminer.20
5.4 Density functional theory calculations

The DFT workow consists of a structure optimization followed
by a static calculation of the nal, optimized structure using the
Vienna ab initio simulation package (VASP).86,87 The DFT
parameters are generated using OQMD's qmpy interface, which
renders OQMD-compatible computational data from the seed
data derived from the OQMD.15 Note that the actual DFT
calculation is done within a docker container on AWS batch,
and the Experiment API within CAMD submits, monitors, and
fetches the resultant data from the batch job in order to provide
formation energy–structure pairs back to the seed dataset.
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