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The intestinal mucosa is constantly facing a high load of antigens including bacterial anti-
gens derived from the microbiota and food. Despite this, the immune cells present in the
gastrointestinal tract do not initiate a pro-inflammatory immune response.Toll-like receptors
(TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal
tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina pro-
pria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel
disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gas-
troenteritis and allergic IBS), and infections are nowadays associated with a deregulated
microbiota.The microbiota may directly interact withTLR. In addition, differences in intesti-
nal TLR expression in health and disease may suggest that TLRs play an essential role in
disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is
involved in either maintaining intestinal homeostasis or the induction of an inflammatory
response. This mini review provides an overview of the current knowledge regarding the
contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting
intestinal inflammation, with a focus on food allergy. We will also highlight a potential role
of the microbiota in regulating gut immune responses, especially through TLR activation.

Keywords: toll-like receptors, intestinal epithelial cells, food allergy, microbiota, probiotics, prebiotics, circadian
rhythm

THE MUCOSAL IMMUNE RESPONSE IN THE INTESTINE – AN
OVERVIEW
The mucosal tissue of the intestines contains the largest part of
the immune system present in the human body, and is constantly
exposed to many antigens, which are derived from amongst oth-
ers food and micro-organisms including the commensal micro-
biota or invading pathogens. Approximately, 70% of the cells of
the immune system are present in the gut and are continuously
discriminating between harmless and pathogenic antigens. Nev-
ertheless, the majority of oral foreign antigens do not result in
inflammatory responses in healthy individuals. This phenome-
non is known as oral tolerance. Local or systemic pathological
inflammation may occur when oral tolerance toward some harm-
less luminal antigens is lost. This is seen for instance in food allergy,
which is characterized by an inflammatory immune response
toward generally harmless food-derived antigens.

Intestinal epithelial cells (IEC) provide a physical and chemical
barrier between the intestinal lumen and the lamina propria. The
expression of tight junction proteins by IEC, production of mucus
by goblet cells and Paneth cell-derived antimicrobial peptides
prevent translocation of luminal antigens and micro-organisms
into the lamina propria (1, 2). Nevertheless, antigens are actively
sampled into the gut-associated lymphoid tissue (GALT). Under-
standing of the GALT is essential to gain insight in both disease
pathogenesis and to design new therapeutic strategies to prevent or

cure inflammatory diseases of the intestine. As an antigen ends up
in the lumen of the intestine, it is generally recognized by dendritic
cells (DC) present in Peyer’s patches, after the antigen has been
transported into the Peyer’s patch via specialized IEC known as M
cells (3, 4). Antigen sampling also occurs via dendrites of DC that
protrude between the IEC (5, 6). Upon antigen recognition, DC
migrate toward the draining mesenteric lymph nodes (MLN) and
activate T cells, which migrate back toward the intestinal lamina
propria to carry out their effector functions (7).

Intestinal epithelial cells have been described to suppress DC
activation as well and contribute to tolerance induction by secret-
ing amongst others TSLP and TGF-β, and metabolize vitamin A
into retinoic acid to induce the development of CD103+ DC (8–
12). These CD103+ DC induce antigen-specific regulatory T cells
(Treg) as well as the expression of the specific gut-homing mole-
cules α4β7 integrin and CCR9 on T cells in the MLN (13). Treg

cells suppress adaptive immune responses through cell–cell con-
tact dependent mechanisms or secretion of the anti-inflammatory
cytokines IL-10 or TGF-β. Indeed, induction of Treg cells results
in abrogation of food hypersensitivity responses (14, 15). A
higher frequency of allergen-specific Treg cells is observed in chil-
dren that have outgrown cow’s milk allergy and allergen-specific
immunotherapy has been shown to induce Treg cells (16, 17),
implicating that the induction of Treg cells is essential for mucosal
tolerance.
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REGULATION OF INTESTINAL IMMUNITY AND TOLERANCE
BY TLRs EXPRESSED BY IEC
Toll-like receptors (TLRs) recognize a wide range of microbial
fragments and therefore recognize both antigens derived from the
microbiota as well as invading pathogens. TLRs are expressed by
a variety of cells, including IEC. TLR2 can dimerize with TLR1 or
TLR6 to recognize bacterial cell wall lipoproteins. LPS produced
by Gram-negative bacteria is recognized by TLR4 in conjunc-
tion with CD14 and MD2, whereas unmethylated CpG motifs
of bacterial DNA are recognized by TLR9. In addition, flagellin is
recognized by TLR5, which is expressed at the basolateral mem-
brane by IEC. TLR2, 4, and 5 are generally expressed at the cell
membrane, whereas TLR9 is expressed intracellularly. However, in
IEC, TLR9 has been reported to be expressed at the cell membrane
as well (18, 19).

Under homeostatic conditions, IEC show low expression of
TLR2 and TLR4 and are therefore unresponsive to TLR stimuli
(20, 21). However, under inflammatory conditions, epithelial TLR
expression is increased, which contributes to both inflammation
as well as immune tolerance (19, 22, 23). Increased epithelial TLR2
and TLR4 expression is associated with inflammatory bowel dis-
ease (24). In contrast, apical TLR9 stimulation has been described
to contribute to intestinal homeostasis (18). Interestingly, TLR
activation of IEC appears to be important in regulating adap-
tive immune responses. Using an in vitro co-culture system, it was
shown that TLR4 and basolateral TLR9 activation on IEC is impor-
tant in driving an inflammatory response, whereas apical TLR9
activation supported the differentiation of an anti-inflammatory
response (25). The underlying mechanisms by which TLR9 pro-
motes tolerance are not well understood, but it has been described
that apical but not basolateral TLR9 ligation on IEC prevents
degradation of IκB-α, and therefore suppresses NF-κB-induced
pro-inflammatory cytokine production by IEC (18). In addition,
it has recently been indicated that apical TLR9 activation sup-
ports the expression and secretion of galectin-9, a soluble protein
of the lectin family, which supports the differentiation of Treg

cells potentially by supporting the development of tolerogenic
DC (26, 27). Though IEC are important in driving the devel-
opment of tolerogenic CD103+ DC and suppress DC activation
(8), it is not known whether TLR activation on IEC influences
the generation of CD103+ DC. Recently, it has been shown that
gut bacteria stimulate the recruitment of CD103+ DC into the
epithelium potentially via TLR-dependent mechanisms in both
IEC and hematopoietic cells (28). Altogether, TLR stimulation in
the intestinal epithelium plays an important role in regulating
mucosal immune responses in the intestine.

In addition to regulating intestinal immunity, TLR activation
on IEC is also known to modulate the expression of tight junction
proteins. In many inflammatory disorders, including food allergy,
epithelial tight junctions are impaired and increased bacterial
translocation occurs (29). This increased bacterial translocation
into the lamina propria may sustain the inflammatory response.
In particular, epithelial TLR2 activation has been described to
protect against barrier disruption by enhancing zonula occludens
(ZO)-1 expression in IEC in a protein kinase C-dependent manner
(30). In contrast, activation of TLR4 increases intestinal perme-
ability and results in enhances bacterial translocation (31). NF-κB

signaling as a result of TLR4 activation by LPS appears to play
a major role in LPS-mediated barrier disruption (32, 33). Simi-
larly, apical Campylobacter jejuni infection of T84 cell monolayers
results in a rapid decrease in the transepithelial resistance of the
monolayer involving NF-κB signaling (34). Activation of TLR9
apically on IEC prevents TLR4-induced gut leakiness and infec-
tion of IEC monolayers with Campylobacter jejuni disrupts the
intestinal epithelial barrier function by reducing TLR9 expression
at the surface membrane of IEC (33). In this similar study, the
authors also indicate an increase in the intestinal barrier func-
tion upon apical, but not basolateral TLR9 stimulation with a
synthetic CpG DNA (35). Preliminary data from our group also
report a potential protective effect of apical TLR9 activation in T84
cell monolayers co-cultured with CD3/28-activated PBMC. Hence,
paracellular transport of antigens as well as bacterial translocation
under pathological conditions may be affected by TLR activation
on IEC.

With respect to food and environmental allergens, the contri-
bution of TLR activation on IEC is not well studied. Recently,
TLR4 activation by wheat α-amylase trypsin inhibitors, a rec-
ognized plant-derived allergen (36), has been described to drive
intestinal inflammation (37). The percentage of α-amylase trypsin
inhibitors is markedly higher in genetically modified grain seeds
that are more resistant to infection than traditional seeds (38–40),
which might explain why a wheat-free diet could be beneficial
in a wide range of inflammatory and allergic disorders. Simi-
larly, the house dust mite allergen Der p 2 as well as the major
cat allergen Fel d 1 enhance signaling through TLR2 and TLR4
(41). Although these studies were carried out on innate immune
cells, this does not exclude that these allergens may interact with
TLR expressed by IEC as well. Especially, since TLR activation on
IEC affects the mucosal barrier function and potentially shapes
mucosal immune responses in the intestine, interactions of aller-
gens with TLR expressed by IEC may facilitate their entry into the
gut mucosa and sustain the allergic inflammatory response. Inter-
estingly, treatment with CpG oligodeoxynucleotides improved the
intestinal barrier function and increased the percentage of Treg

cells in the spleen and MLN (42). Since epithelial TLR may interact
with the gut microbiota and luminal antigens, further under-
standing of the role of epithelial TLR activation in food allergy
is necessary.

INTERACTIONS BETWEEN THE MICROBIOTA AND TLRs
The microbiota is the largest source of microbial stimulation in the
gut. Furthermore, the microbiota is necessary for development of
the intestinal immune system (43). The “hygiene hypothesis,” cur-
rently the most popular theory of deregulation of the microbiota,
theorizes that specific microbial stimulation is necessary for gut
health. Originally, it states that microbial stimulation polarizes the
immune response toward Th1, while lack of microbial stimulation
maintains a Th2 polarized immune response, which is character-
istic for atopy (44). Recently, a specific microbiota signature was
linked to oral allergic sensitization in mice exhibiting a gain-of-
function mutation in the IL-4 receptor α chain, which rendered
these animals more prone to developing food allergy. This micro-
biota signature was characterized by a reduction in Firmicutes spp.
and increase in Proteobacteria spp. (45). Another example that
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indicates the importance of the gut microbiota composition in the
development of food allergy is a recent study showing that colo-
nization of germ-free mice with the fecal microbiota of a healthy
infant rich in Bifidobacterium spp. and Bacteroides spp. protected
against the development of cow’s milk allergy following sensi-
tization to β-lactoglobulin (46). This was associated with lower
T cell reactivity toward the allergen, an increase in Foxp3+ Treg

and lower bacterial translocation into the lamina propria. Bifi-
dobacterium breve potentially activates CD103+ intestinal DC to
produce IL-10 and IL-27 in a TLR2-dependent fashion to induce
IL-10-producing Tr1 cells (47), whereas colonization of germ-free
mice with Bacteroides fragilis restores the Th1/Th2 balance and
prevents intestinal inflammation through induction of IL-10 pro-
ducing CD4+ T cells. This was dependent on recognition of B.
fragilis polysaccharide A by gut DC (48, 49).

Disturbances in the commensal bacterial composition in the
gut, reflected by increased colonization with Escherichia coli or
Clostridium difficile, is associated with an increased risk in the
development of allergic disease and IBD in humans (50, 51). The
fecal microbiota of allergic infants shows a higher prevalence of
Clostridium spp. and Staphylococcus aureus. In parallel, lower lev-
els of Bifidobacteria, Enterococci, and Bacteroides were found in
the stool of allergic infants compared to healthy individuals (52,
53). Bacterial colonization early in life has been shown to affect
cytokine production by T helper cell subsets, implicating that dys-
biosis at an early age may increase the risk of developing food
allergy (54). Likewise, infants that have developed eczema by the
age of 12 months show a lower diversity in the gut microbiota
during the early postnatal period (55). Thus, it appears that low
abundance of Bifidobacteria, Enterococci, and Bacteroides and a
higher abundance of Clostridium spp. and Staphylococcus are asso-
ciated with loss of tolerance and an exaggerated allergic response
toward food-derived antigens. However, it was recently shown that
Clostridium butyricum can induce IL-10 producing macrophages
in the gut in a TLR2-dependent manner and suppresses TLR4
expression by colonic IEC (56, 57). Hence, host–microbiome
interactions not only promote a normal Th1/Th2 balance, but sup-
port the development of Treg responses as well. Whether changes
in microbiota composition are a factor to promote an allergic
response to food or are a consequence of food allergy remains to
be studied.

It is important to note that not only changes in the microbiota
are present in individuals with food allergy, but the response of
immune cells toward the microbiota has also been described to
be different. The so-called beneficial bacteria are not necessarily
associated with anti-inflammatory responses in allergic patients.
For example, although an increased prevalence of Bifidobacteria
is rendered as beneficial, specific Bifidobacterium strains isolated
from the feces of allergic infants were shown to induce increased
production of the pro-inflammatory cytokines IL-1β, IL-6, and
TNF-α (58). This is supported by the observation that the aller-
gic infants showed an increased IL-6 and TNF-α response toward
TLR2, TLR4, and TLR5 stimuli (59).

Using in vitro models it was shown that IEC play an impor-
tant role in discrimination between different bacterial strains at
the apical membrane (60, 61). In addition, commensal bacteria
have the capacity to enhance TLR expression by IEC (62–66).

This suggests that TLR responses toward microflora constituents
may be important. However, not all bacterial strains are equally
effective in suppressing food allergy. This is reflected by the selec-
tive capacity of bacterial strains to induce Foxp3+ Treg cells in a
murine model for OVA-induced asthma and OVA-induced food
hypersensitivity (67). Similarly, only specific Lactobacillus strains
attenuate Th2 responses by inducing CD103+ tolerogenic DC
(68). Both Lactobacillus and Bifidobacterium strains have been
shown to induce Treg type immune responses, thereby suppressing
allergy (47, 69–72). Recently, it has been shown that the bacter-
ial DNA from Lactobacillus spp. or probiotics contain a higher
frequency of immunoregulatory CpG motifs – potentially stimu-
lating TLR9 – when compared to pathogenic bacteria like E. coli,
which is important for Treg conversion in the intestinal mucosa
(73). Exposure of IEC to DNA derived from E. coli or S. dublin
induces high IL-8 production by IEC (19, 74), whereas DNA from
Lactobacillus rhamnosus GG prevents NF-κB-induced IL-8 pro-
duction by IEC (66). Similarly, apical exposure of IEC to genomic
DNA from B. breve M-16V was found to enhance IFN-γ and IL-10
secretion by PBMC in an HT-29/PBMC co-culture model (26). In
line with this study, it was shown that DC cultured in the condi-
tioned medium of IEC apically exposed to S. Dublin DNA, but not
from B. breve, produced increased amounts of pro-inflammatory
cytokines (75). This suggests that not all probiotic bacterial strains
are potentially effective in treating allergic diseases. Selection of
probiotic bacterial strains should possibly be based on their rich-
ness in CpG motifs, targeting TLR9, and bacterial strains high in
these motifs may be considered for clinical trials.

PREBIOTICS SHAPE THE INTESTINAL MICROBIOTA
Breast feeding also affects the microbiota composition by increas-
ing the amount of Bifidobacteria as shown by higher fecal Bifi-
dobacteria counts (76). Human milk contains a high amount of
non-digestible oligosaccharides with over 1000 different oligosac-
charide structures and it has been shown that human milk, as well
as specific dietary fibers like chicory-derived inulin and lactose-
derived short-chain galacto-oligosaccharides (scGOS), selectively
support the growth of Lactobacillus and Bifidobacterium strains
(77). Therefore, these oligosaccharides have prebiotic effects in
the intestine. Based on the basic structure and size of neutral
non-digestible oligosaccharides present in human milk, a specific
prebiotic mixture consisting of scGOS and long-chain fructo-
oligosaccharides (lcFOS) in a 9:1 ratio has been developed. Oral
supplementation of scGOS/lcFOS has been shown to reduce aller-
gic symptoms in mice and humans (78–80). Especially dietary
supplementation with a combination of scGOS/lcFOS and B. breve
M-16V (GF/Bb) is effective in reducing allergic symptoms (81,
82). In a colitis model in rats, inulin, and FOS reduced coli-
tis, which was associated with increased Bifidobacterium species
and reduced Enterobacteriaceae and C. difficile in the feces (83).
The underlying mechanisms are not known. However, exposure
of IEC to GF/Bb may result in the generation of tolerogenic DC
and consequently Treg polarization in the GALT. In addition to
supporting Treg conversion, stimulation of the growth of Lacto-
bacillus and Bifidobacterium strains may also improve the intesti-
nal barrier function in a TLR2 and potentially TLR9 dependent
manner (84, 85).
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CIRCADIAN CLOCK AND TLR
Although the type of microbiota composition is a critical fac-
tor for the state of TLR activation in the gut of patients with
allergic disorders, other environmental factors can also influence
TLR activation. It has recently been shown that the expression
of TLRs is under regulation of the circadian clock. This impli-
cates that the expression of TLRs is not temporally fixed in a 24-h
day and night cycle. Recently, the expression of TLR9 as well as
other TLRs were shown to be regulated by the circadian clock
(86, 87). Interestingly, the severity of TLR9-mediated induction of
sepsis is associated with the time-dependent expression of TLR9
(86). Moreover, further studies have indicated that the interaction
between the microbiota and TLRs expressed by the gut epithelium
is dependent on the circadian rhythm as well (88). Besides the
observation that the expression of TLRs is under circadian con-
trol, cytokine production by macrophages and CD4+ T cells, the
suppressor function of Foxp3+ Treg cells, leukocyte trafficking, and
antibody production also show a circadian pattern (89–97). Fur-
thermore, it was recently shown that the circadian clock is critical
for regulation of intestinal permeability as well, as disruption of the

circadian rhythm led to increased microbial translocation and dis-
ruption of the epithelial tight junctions (98). Hence, interactions
between the microbiota and the intestinal mucosal immune system
may not only be dependent on the type of bacterial species present
in the microbiome, but are also temporally regulated, which may
contribute to regulation of immune responses in the intestine.
These data may explain why many allergic reactions like asthma
attacks occur in the early morning (99, 100). Recently, it was shown
that the expression of the FcεRI by mast cells and IgE-mediated
mast cell degranulation is temporally regulated by the circadian
clock (101, 102). Also, it might, at least partially, explain the rapid
rise of incidence of (food) allergies in western societies where dis-
ruption of normal circadian patterns and stress is a consequence
of modern day society (103).

IMPLICATIONS FOR THE USE OF PRO- AND PREBIOTICS
There is still controversy about the effectiveness of probiotic and
prebiotic treatment in food allergy (104). However, given the
data that alteration of the gut microbiota influences mucosal
immune responses in the gut indicates that treatment using

FIGURE 1 | Schematic overview of potential interactions between the
gut microbiota and the intestinal mucosal immune system. A healthy
gut microbiota composition is high in the frequency of Bacteroides spp.,
Lactobacillus spp., and Bifidobacterium spp. (1) In particular, Bacteroides
fragilis supports Th1 and Treg polarization in a TLR2-dependent manner
through recognition of polysaccharide A by gut DC. Genomic DNA of
Bifidobacterium spp. and Lactobacillus spp. – rich in unmethylated CpG
motifs – potentially interact with TLR2 and/or TLR9 to enhance the
intestinal epithelial barrier function (2) and to support Treg conversion via
CD103+ DC (3). Furthermore, apical TLR9 activation by IEC suppresses

NF-κB activation (3). In food allergy, the microbiota composition shifts
toward a higher frequency in Proteobacteria spp., Clostridium spp., and
Enterobacteriaceae. This may favor TLR4 mediated barrier disruption
facilitating allergen translocation in the gut mucosa (4) and
pro-inflammatory cytokine production (5) in a NF-κB-dependent fashion,
sustaining an allergic inflammation. Specific non-digestible
oligosaccharides (prebiotics) support the growth of Bifidobacterium spp.
and Lactobacillus spp. and suppresses the growth of Clostridium spp. and
Enterobacteriaceae, which may contribute to induction of tolerance toward
allergens in the intestines.
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specific probiotic bacterial strains as well as prebiotics may be
useful in treatment for food allergy (Figure 1). Selection of the
right bacterial strains appears key to the effect of treatment using
probiotics. Especially, characterization of specific probiotics based
on CpG rich motifs in the DNA may improve the selection of
potential beneficial strains. Hence, studies aimed at the interaction
between probiotic bacteria and epithelial expressed TLRs may be
warranted. In addition, timing of treatment may play an essential
factor in the effectiveness of treatment using pro- and prebiotics
as expression of TLRs and immune cell functions appears to be
regulated by the circadian clock. In conclusion, more studies are
necessary focusing on interaction between the gut epithelium and
gut bacteria,both in terms of selecting potential beneficial bacterial
strains as well as appropriate timing of intervention.

AUTHOR CONTRIBUTIONS
Sander de Kivit wrote the manuscript; Mary C. Tobin, Christopher
B. Forsyth carefully reviewed the manuscript; Ali Keshavarzian
and Alan L. Landay reviewed the manuscript and provided overall
supervision.

ACKNOWLEDGMENT
This work is financially supported by a generous gift from Mr. and
Mrs. Burridge.

REFERENCES
1. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in

the mucosal barrier to infection. Mucosal Immunol (2008) 1(3):183–97.
doi:10.1038/mi.2008.5

2. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, et al.
Enteric defensins are essential regulators of intestinal microbial ecology. Nat
Immunol (2010) 11(1):76–83. doi:10.1038/ni.1825

3. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens.
Nat Rev Immunol (2003) 3(4):331–41. doi:10.1038/nri1057

4. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold
(M) cells: important immunosurveillance posts in the intestinal epithelium.
Mucosal Immunol (2013) 6(4):666–77. doi:10.1038/mi.2013.30

5. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al.
Dendritic cells express tight junction proteins and penetrate gut epithelial
monolayers to sample bacteria. Nat Immunol (2001) 2(4):361–7. doi:10.1038/
86373

6. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-
mediated dendritic cell access to the intestinal lumen and bacterial clearance.
Science (2005) 307(5707):254–8. doi:10.1126/science.1102901

7. Agace WW. Tissue-tropic effector T cells: generation and targeting opportuni-
ties. Nat Rev Immunol (2006) 6(9):682–92. doi:10.1038/nri1869

8. Butler M, Ng CY, van Heel DA, Lombardi G, Lechler R, Playford RJ, et al.
Modulation of dendritic cell phenotype and function in an in vitro model of
the intestinal epithelium. Eur J Immunol (2006) 36(4):864–74. doi:10.1002/eji.
200535497

9. Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y,
et al. A functionally specialized population of mucosal CD103+ DCs induces
Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mecha-
nism. J Exp Med (2007) 204(8):1757–64. doi:10.1084/jem.20070590

10. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al.
Small intestine lamina propria dendritic cells promote de novo generation
of Foxp3 T reg cells via retinoic acid. J Exp Med (2007) 204(8):1775–85.
doi:10.1084/jem.20070602

11. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, et al.
Human intestinal epithelial cells promote the differentiation of tolerogenic
dendritic cells. Gut (2009) 58(11):1481–9. doi:10.1136/gut.2008.175166

12. Spadoni I, Iliev ID, Rossi G, Rescigno M. Dendritic cells produce TSLP that
limits the differentiation of Th17 cells, fosters Treg development, and protects
against colitis. Mucosal Immunol (2012) 5(2):184–93. doi:10.1038/mi.2011.64

13. Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Förster
R, et al. Functional specialization of gut CD103+ dendritic cells in the reg-
ulation of tissue-selective T cell homing. J Exp Med (2005) 202(8):1063–73.
doi:10.1084/jem.20051100

14. Adel-Patient K, Wavrin S, Bernard H, Meziti N, Ah-Leung S, Wal JM. Oral
tolerance and Treg cells are induced in BALB/c mice after gavage with bovine
beta-lactoglobulin. Allergy (2011) 66(10):1312–21. doi:10.1111/j.1398-9995.
2011.02653.x

15. Yamashita H, Takahashi K, Tanaka H, Nagai H, Inagaki N. Overcoming
food allergy through acquired tolerance conferred by transfer of Tregs in
a murine model. Allergy (2012) 67(2):201–9. doi:10.1111/j.1398-9995.2011.
02742.x

16. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G,Yoo S, et al.
The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of
dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant
in vitro. J Immunol (2006) 177(6):3677–85.

17. Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy. J Allergy
Clin Immunol (2011) 127(1):18–27; quiz 8–9. doi:10.1016/j.jaci.2010.11.030

18. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, et al. Maintenance of
colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial
cells. Nat Cell Biol (2006) 8(12):1327–36. doi:10.1038/ncb1500

19. Ewaschuk JB, Backer JL, Churchill TA, Obermeier F, Krause DO, Madsen
KL. Surface expression of Toll-like receptor 9 is upregulated on intestinal
epithelial cells in response to pathogenic bacterial DNA. Infect Immun (2007)
75(5):2572–9. doi:10.1128/IAI.01662-06

20. Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M. Decreased expres-
sion of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell
protection against dysregulated proinflammatory gene expression in response
to bacterial lipopolysaccharide. J Immunol (2001) 167(3):1609–16.

21. Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, et al.
Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor
2-dependent bacterial ligands: implications for host-microbial interactions in
the gut. J Immunol (2003) 170(3):1406–15.

22. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, et al. TLR4
and MD-2 expression is regulated by immune-mediated signals in human
intestinal epithelial cells. J Biol Chem (2002) 277(23):20431–7. doi:10.1074/
jbc.M110333200

23. Singh JC, Cruickshank SM, Newton DJ, Wakenshaw L, Graham A, Lan J, et al.
Toll-like receptor-mediated responses of primary intestinal epithelial cells dur-
ing the development of colitis. Am J Physiol Gastrointest Liver Physiol (2005)
288(3):G514–24. doi:10.1152/ajpgi.00377.2004

24. Frolova L, Drastich P, Rossmann P, Klimesova K, Tlaskalova-Hogenova H.
Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples
of patients with inflammatory bowel diseases: upregulated expression of TLR2
in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem
(2008) 56(3):267–74. doi:10.1369/jhc.7A7303.2007

25. de Kivit S, van Hoffen E, Korthagen N, Garssen J, Willemsen LE. Apical TLR
ligation of intestinal epithelial cells drives a Th1-polarized regulatory or inflam-
matory type effector response in vitro. Immunobiology (2011) 216(4):518–27.
doi:10.1016/j.imbio.2010.08.005

26. de Kivit S, Kraneveld AD, Knippels LM, van Kooyk Y, Garssen J, Willemsen LE.
Intestinal epithelium-derived galectin-9 is involved in the immunomodulating
effects of nondigestible oligosaccharides. J Innate Immun (2013) 5(6):625–38.
doi:10.1159/000350515

27. de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B, van Esch
BC, et al. Galectin-9 induced by dietary synbiotics is involved in suppres-
sion of allergic symptoms in mice and humans. Allergy (2012) 67(3):343–52.
doi:10.1111/j.1398-9995.2011.02771.x

28. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, et al. Lumi-
nal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to
sample bacterial antigens for presentation. Immunity (2013) 38(3):581–95.
doi:10.1016/j.immuni.2013.01.009

29. Iemoli E, Trabattoni D, Parisotto S, Borgonovo L, Toscano M, Rizzardini G,
et al. Probiotics reduce gut microbial translocation and improve adult atopic
dermatitis. J Clin Gastroenterol (2012) 46(Suppl):S33–40. doi:10.1097/MCG.
0b013e31826a8468

30. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated
intestinal epithelial barrier integrity via protein kinase C. Gastroenterology
(2004) 127(1):224–38. doi:10.1053/j.gastro.2004.04.015

www.frontiersin.org February 2014 | Volume 5 | Article 60 | 5

http://dx.doi.org/10.1038/mi.2008.5
http://dx.doi.org/10.1038/ni.1825
http://dx.doi.org/10.1038/nri1057
http://dx.doi.org/10.1038/mi.2013.30
http://dx.doi.org/10.1038/86373
http://dx.doi.org/10.1038/86373
http://dx.doi.org/10.1126/science.1102901
http://dx.doi.org/10.1038/nri1869
http://dx.doi.org/10.1002/eji.200535497
http://dx.doi.org/10.1002/eji.200535497
http://dx.doi.org/10.1084/jem.20070590
http://dx.doi.org/10.1084/jem.20070602
http://dx.doi.org/10.1136/gut.2008.175166
http://dx.doi.org/10.1038/mi.2011.64
http://dx.doi.org/10.1084/jem.20051100
http://dx.doi.org/10.1111/j.1398-9995.2011.02653.x
http://dx.doi.org/10.1111/j.1398-9995.2011.02653.x
http://dx.doi.org/10.1111/j.1398-9995.2011.02742.x
http://dx.doi.org/10.1111/j.1398-9995.2011.02742.x
http://dx.doi.org/10.1016/j.jaci.2010.11.030
http://dx.doi.org/10.1038/ncb1500
http://dx.doi.org/10.1128/IAI.01662-06
http://dx.doi.org/10.1074/jbc.M110333200
http://dx.doi.org/10.1074/jbc.M110333200
http://dx.doi.org/10.1152/ajpgi.00377.2004
http://dx.doi.org/10.1369/jhc.7A7303.2007
http://dx.doi.org/10.1016/j.imbio.2010.08.005
http://dx.doi.org/10.1159/000350515
http://dx.doi.org/10.1111/j.1398-9995.2011.02771.x
http://dx.doi.org/10.1016/j.immuni.2013.01.009
http://dx.doi.org/10.1097/MCG.0b013e31826a8468
http://dx.doi.org/10.1097/MCG.0b013e31826a8468
http://dx.doi.org/10.1053/j.gastro.2004.04.015
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Kivit et al. TLR, microbiota, and gut health

31. Li X, Wang C, Nie J, Lv D, Wang T, Xu Y. Toll-like receptor 4 increases intesti-
nal permeability through up-regulation of membrane PKC activity in alco-
holic steatohepatitis. Alcohol (2013) 47(6):459–65. doi:10.1016/j.alcohol.2013.
05.004

32. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK.
Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial
cell lines expressing Toll-like receptors. J Immunol (2000) 164(2):966–72.

33. Sodhi C, Levy R, Gill R, Neal MD, Richardson W, Branca M, et al. DNA atten-
uates enterocyte Toll-like receptor 4-mediated intestinal mucosal injury after
remote trauma. Am J Physiol Gastrointest Liver Physiol (2011) 300(5):G862–73.
doi:10.1152/ajpgi.00373.2010

34. Chen ML, Ge Z, Fox JG, Schauer DB. Disruption of tight junctions and
induction of proinflammatory cytokine responses in colonic epithelial cells
by Campylobacter jejuni. Infect Immun (2006) 74(12):6581–9. doi:10.1128/IAI.
00958-06

35. O’Hara JR, Feener TD, Fischer CD, Buret AG. Campylobacter jejuni disrupts
protective Toll-like receptor 9 signaling in colonic epithelial cells and increases
the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun
(2012) 80(4):1563–71. doi:10.1128/IAI.06066-11

36. Breiteneder H, Radauer C. A classification of plant food allergens. J Allergy Clin
Immunol (2004) 113(5):821–30. doi:10.1016/j.jaci.2004.01.779

37. Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, et al. Wheat amy-
lase trypsin inhibitors drive intestinal inflammation via activation of toll-like
receptor 4. J Exp Med (2012) 209(13):2395–408. doi:10.1084/jem.20102660

38. Ryan CA. Protease inhibitors in plants: genes for improving defenses against
insects and pathogens. Annu Rev Phytopathol (1990) 28:425–49. doi:10.1146/
annurev.phyto.28.1.425

39. Cordain L. Cereal grains: humanity’s double-edged sword. World Rev Nutr Diet
(1999) 84:19–73. doi:10.1159/000059677

40. Sands DC, Morris CE, Dratz EA, Pilgeram AL. Elevating optimal human nutri-
tion to a central goal of plant breeding and production of plant-based foods.
Plant Sci (2009) 177(5):377–89. doi:10.1016/j.plantsci.2009.07.011

41. Herre J, Grönlund H, Brooks H, Hopkins L, Waggoner L, Murton B, et al.
Allergens as immunomodulatory proteins: the cat dander protein Fel d 1
enhances TLR activation by lipid ligands. J Immunol (2013) 191(4):1529–35.
doi:10.4049/jimmunol.1300284

42. Zhong Y, Huang J, Tang W, Chen B, Cai W. Effects of probiotics, probiotic
DNA and the CpG oligodeoxynucleotides on ovalbumin-sensitized Brown-
Norway rats via TLR9/NF-κB pathway. FEMS Immunol Med Microbiol (2012)
66(1):71–82. doi:10.1111/j.1574-695X.2012.00991.x

43. Artis D, Grencis RK. The intestinal epithelium: sensors to effectors in nematode
infection. Mucosal Immunol (2008) 1(4):252–64. doi:10.1038/mi.2008.21

44. Romagnani S. The increased prevalence of allergy and the hygiene hypothesis:
missing immune deviation, reduced immune suppression, or both? Immunol-
ogy (2004) 112(3):352–63. doi:10.1111/j.1365-2567.2004.01925.x

45. Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M,
et al. A microbiota signature associated with experimental food allergy pro-
motes allergic sensitization and anaphylaxis. J Allergy Clin Immunol (2013)
131(1):201–12. doi:10.1016/j.jaci.2012.10.026

46. Rodriguez B, Prioult G, Hacini-Rachinel F, Moine D, Bruttin A, Ngom-Bru
C, et al. Infant gut microbiota is protective against cow’s milk allergy in
mice despite immature ileal T-cell response. FEMS Microbiol Ecol (2012)
79(1):192–202. doi:10.1111/j.1574-6941.2011.01207.x

47. Jeon SG, Kayama H, Ueda Y, Takahashi T, Asahara T, Tsuji H, et al. Probiotic
Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS
Pathog (2012) 8(5):e1002714. doi:10.1371/journal.ppat.1002714

48. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents
intestinal inflammatory disease. Nature (2008) 453(7195):620–5. doi:10.1038/
nature07008

49. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by
a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A
(2010) 107(27):12204–9. doi:10.1073/pnas.0909122107

50. Penders J, Stobberingh EE, van den Brandt PA, Thijs C. The role of the
intestinal microbiota in the development of atopic disorders. Allergy (2007)
62(11):1223–36. doi:10.1111/j.1398-9995.2007.01462.x

51. Loh G, Blaut M. Role of commensal gut bacteria in inflammatory bowel dis-
eases. Gut Microbes (2012) 3(6):544–55. doi:10.4161/gmic.22156

52. Bjorksten B, Sepp E, Julge K,Voor T, Mikelsaar M. Allergy development and the
intestinal microflora during the first year of life. J Allergy Clin Immunol (2001)
108(4):516–20. doi:10.1067/mai.2001.118130

53. Murray CS, Tannock GW, Simon MA, Harmsen HJ, Welling GW, Custovic A,
et al. Fecal microbiota in sensitized wheezy and non-sensitized non-wheezy
children: a nested case-control study. Clin Exp Allergy (2005) 35(6):741–5.
doi:10.1111/j.1365-2222.2005.02259.x

54. Johansson MA, Saghafian-Hedengren S, Haileselassie Y, Roos S, Troye-
Blomberg M, Nilsson C, et al. Early-life gut bacteria associate with IL-4-,
IL-10- and IFN-gamma production at two years of age. PLoS One (2012)
7(11):e49315. doi:10.1371/journal.pone.0049315

55. Ismail IH, Oppedisano F, Joseph SJ, Boyle RJ, Robins-Browne RM, Tang
ML. Prenatal administration of Lactobacillus rhamnosus has no effect on the
diversity of the early infant gut microbiota. Pediatr Allergy Immunol (2012)
23(3):255–8. doi:10.1111/j.1399-3038.2011.01239.x

56. Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al.
A single strain of Clostridium butyricum induces intestinal IL-10-producing
macrophages to suppress acute experimental colitis in mice. Cell Host Microbe
(2013) 13(6):711–22. doi:10.1016/j.chom.2013.05.013

57. Isono A, Katsuno T, Sato T, Nakagawa T, Kato Y, Sato N, et al. Clostridium
butyricum TO-A culture supernatant downregulates TLR4 in human colonic
epithelial cells. Dig Dis Sci (2007) 52(11):2963–71. doi:10.1007/s10620-006-
9593-3

58. He F, Morita H, Hashimoto H, Hosoda M, Kurisaki J, Ouwehand AC, et al.
Intestinal Bifidobacterium species induce varying cytokine production. J Allergy
Clin Immunol (2002) 109(6):1035–6. doi:10.1067/mai.2002.124894

59. Prescott SL, Noakes P, Chow BW, Breckler L, Thornton CA, Hollams EM, et al.
Presymptomatic differences in Toll-like receptor function in infants who have
allergy. J Allergy Clin Immunol (2008) 122(2):391–9; 9.e1–5. doi:10.1016/j.jaci.
2008.04.042

60. Haller D, Bode C, Hammes WP, Pfeifer AM, Schiffrin EJ, Blum S.
Non-pathogenic bacteria elicit a differential cytokine response by intestinal
epithelial cell/leucocyte co-cultures. Gut (2000) 47(1):79–87. doi:10.1136/gut.
47.1.79

61. van Hoffen E, Korthagen NM, de Kivit S, Schouten B, Bardoel B, Duivelshof A,
et al. Exposure of intestinal epithelial cells to UV-killed Lactobacillus GG but
not Bifidobacterium breve enhances the effector immune response in vitro. Int
Arch Allergy Immunol (2010) 152(2):159–68. doi:10.1159/000265537

62. Vizoso Pinto MG, Rodriguez Gomez M, Seifert S,Watzl B, Holzapfel WH, Franz
CM. Lactobacilli stimulate the innate immune response and modulate the TLR
expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol (2009)
133(1–2):86–93. doi:10.1016/j.ijfoodmicro.2009.05.013

63. Kingma SD, Li N, Sun F, Valladares RB, Neu J, Lorca GL. Lactobacillus johnsonii
N6.2 stimulates the innate immune response through Toll-like receptor 9 in
Caco-2 cells and increases intestinal crypt Paneth cell number in biobreeding
diabetes-prone rats. J Nutr (2011) 141(6):1023–8. doi:10.3945/jn.110.135517

64. Eun CS, Kim YS, Han DS, Choi JH, Lee AR, Park YK. Lactobacillus casei pre-
vents impaired barrier function in intestinal epithelial cells. APMIS (2011)
119(1):49–56. doi:10.1111/j.1600-0463.2010.02691.x

65. Furrie E, Macfarlane S, Thomson G, Macfarlane GT, Microbiology & Gut
Biology Group, Tayside Tissue & Tumour Bank. Toll-like receptors-2, -3 and
-4 expression patterns on human colon and their regulation by mucosal-
associated bacteria. Immunology (2005) 115(4):565–74. doi:10.1111/j.1365-
2567.2005.02200.x

66. Ghadimi D, Vrese M, Heller KJ, Schrezenmeir J. Effect of natural commensal-
origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8
expression, and barrier integritiy of polarized intestinal epithelial cells. Inflamm
Bowel Dis (2010) 16(3):410–27. doi:10.1002/ibd.21057

67. Lyons A, O’Mahony D, O’Brien F, MacSharry J, Sheil B, Ceddia M, et al. Bacter-
ial strain-specific induction of Foxp3+ T regulatory cells is protective in murine
allergy models. Clin Exp Allergy (2010) 40(5):811–9. doi:10.1111/j.1365-2222.
2009.03437.x

68. Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, et al.
L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase
Treg frequencies in healthy mice in a strain dependent manner. PLoS One
(2012) 7(10):e47244. doi:10.1371/journal.pone.0047244

69. von der Weid T, Bulliard C, Schiffrin EJ. Induction by a lactic acid bacterium
of a population of CD4(+) T cells with low proliferative capacity that produce
transforming growth factor beta and interleukin-10. Clin Diagn Lab Immunol
(2001) 8(4):695–701.

70. Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM,
et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells
in vitro by modulating dendritic cell function through dendritic cell-specific

Frontiers in Immunology | Immunological Tolerance February 2014 | Volume 5 | Article 60 | 6

http://dx.doi.org/10.1016/j.alcohol.2013.05.004
http://dx.doi.org/10.1016/j.alcohol.2013.05.004
http://dx.doi.org/10.1152/ajpgi.00373.2010
http://dx.doi.org/10.1128/IAI.00958-06
http://dx.doi.org/10.1128/IAI.00958-06
http://dx.doi.org/10.1128/IAI.06066-11
http://dx.doi.org/10.1016/j.jaci.2004.01.779
http://dx.doi.org/10.1084/jem.20102660
http://dx.doi.org/10.1146/annurev.phyto.28.1.425
http://dx.doi.org/10.1146/annurev.phyto.28.1.425
http://dx.doi.org/10.1159/000059677
http://dx.doi.org/10.1016/j.plantsci.2009.07.011
http://dx.doi.org/10.4049/jimmunol.1300284
http://dx.doi.org/10.1111/j.1574-695X.2012.00991.x
http://dx.doi.org/10.1038/mi.2008.21
http://dx.doi.org/10.1111/j.1365-2567.2004.01925.x
http://dx.doi.org/10.1016/j.jaci.2012.10.026
http://dx.doi.org/10.1111/j.1574-6941.2011.01207.x
http://dx.doi.org/10.1371/journal.ppat.1002714
http://dx.doi.org/10.1038/nature07008
http://dx.doi.org/10.1038/nature07008
http://dx.doi.org/10.1073/pnas.0909122107
http://dx.doi.org/10.1111/j.1398-9995.2007.01462.x
http://dx.doi.org/10.4161/gmic.22156
http://dx.doi.org/10.1067/mai.2001.118130
http://dx.doi.org/10.1111/j.1365-2222.2005.02259.x
http://dx.doi.org/10.1371/journal.pone.0049315
http://dx.doi.org/10.1111/j.1399-3038.2011.01239.x
http://dx.doi.org/10.1016/j.chom.2013.05.013
http://dx.doi.org/10.1007/s10620-006-9593-3
http://dx.doi.org/10.1007/s10620-006-9593-3
http://dx.doi.org/10.1067/mai.2002.124894
http://dx.doi.org/10.1016/j.jaci.2008.04.042
http://dx.doi.org/10.1016/j.jaci.2008.04.042
http://dx.doi.org/10.1136/gut.47.1.79
http://dx.doi.org/10.1136/gut.47.1.79
http://dx.doi.org/10.1159/000265537
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.05.013
http://dx.doi.org/10.3945/jn.110.135517
http://dx.doi.org/10.1111/j.1600-0463.2010.02691.x
http://dx.doi.org/10.1111/j.1365-2567.2005.02200.x
http://dx.doi.org/10.1111/j.1365-2567.2005.02200.x
http://dx.doi.org/10.1002/ibd.21057
http://dx.doi.org/10.1111/j.1365-2222.2009.03437.x
http://dx.doi.org/10.1111/j.1365-2222.2009.03437.x
http://dx.doi.org/10.1371/journal.pone.0047244
http://www.frontiersin.org/Immunological_Tolerance
http://www.frontiersin.org/Immunological_Tolerance/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Kivit et al. TLR, microbiota, and gut health

intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol
(2005) 115(6):1260–7. doi:10.1016/j.jaci.2005.03.036

71. Lammers KM, Brigidi P, Vitali B, Gionchetti P, Rizzello F, Caramelli E,
et al. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10
response in human peripheral blood mononuclear cells. FEMS Immunol Med
Microbiol (2003) 38(2):165–72. doi:10.1016/S0928-8244(03)00144-5

72. Zhang LL, Chen X, Zheng PY, Luo Y, Lu GF, Liu ZQ, et al. Oral Bifidobac-
terium modulates intestinal immune inflammation in mice with food allergy.
J Gastroenterol Hepatol (2010) 25(5):928–34. doi:10.1111/j.1440-1746.2009.
06193.x

73. Bouladoux N, Hall JA, Grainger JR, dos Santos LM, Kann MG, Nagarajan V,
et al. Regulatory role of suppressive motifs from commensal DNA. Mucosal
Immunol (2012) 5(6):623–34. doi:10.1038/mi.2012.36

74. Akhtar M,Watson JL, Nazli A, McKay DM. Bacterial DNA evokes epithelial IL-8
production by a MAPK-dependent, NF-kappaB-independent pathway. FASEB
J (2003) 17(10):1319–21.

75. Campeau JL, Salim SY, Albert EJ, Hotte N, Madsen KL. Intestinal epithelial cells
modulate antigen-presenting cell responses to bacterial DNA. Infect Immun
(2012) 80(8):2632–44. doi:10.1128/IAI.00288-12

76. Haarman M, Knol J. Quantitative real-time PCR assays to identify and quan-
tify fecal Bifidobacterium species in infants receiving a prebiotic infant for-
mula. Appl Environ Microbiol (2005) 71(5):2318–24. doi:10.1128/AEM.71.5.
2318-2324.2005

77. Boehm G, Stahl B, Jelinek J, Knol J, Miniello V, Moro GE. Prebiotic carbohy-
drates in human milk and formulas. Acta Paediatr Suppl (2005) 94(449):18–21.
doi:10.1111/j.1651-2227.2005.tb02149.x

78. Schouten B, van Esch BC, Hofman GA, Boon L, Knippels LM, Willemsen
LE, et al. Oligosaccharide-induced whey-specific CD25(+) regulatory T-cells
are involved in the suppression of cow milk allergy in mice. J Nutr (2010)
140(4):835–41. doi:10.3945/jn.109.116061

79. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early dietary
intervention with a mixture of prebiotic oligosaccharides reduces the incidence
of allergic manifestations and infections during the first two years of life. J Nutr
(2008) 138(6):1091–5.

80. van Hoffen E, Ruiter B, Faber J, M’Rabet L, Knol EF, Stahl B, et al. A spe-
cific mixture of short-chain galacto-oligosaccharides and long-chain fructo-
oligosaccharides induces a beneficial immunoglobulin profile in infants at
high risk for allergy. Allergy (2009) 64(3):484–7. doi:10.1111/j.1398-9995.2008.
01765.x

81. Schouten B, van Esch BC, Hofman GA, van Doorn SA, Knol J, Nauta AJ,
et al. Cow milk allergy symptoms are reduced in mice fed dietary synbi-
otics during oral sensitization with whey. J Nutr (2009) 139(7):1398–403.
doi:10.3945/jn.109.108514

82. van der Aa LB, Heymans HS, van Aalderen WM, Sillevis Smitt JH, Knol J,
Ben Amor K, et al. Effect of a new synbiotic mixture on atopic dermatitis in
infants: a randomized-controlled trial. Clin Exp Allergy (2010) 40(5):795–804.
doi:10.1111/j.1365-2222.2010.03465.x

83. Koleva PT, Valcheva RS, Sun X, Ganzle MG, Dieleman LA. Inulin and fructo-
oligosaccharides have divergent effects on colitis and commensal microbiota
in HLA-B27 transgenic rats. Br J Nutr (2012) 108(9):1633–43. doi:10.1017/
S0007114511007203

84. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ,
et al. Regulation of human epithelial tight junction proteins by Lactobacillus
plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol
Gastrointest Liver Physiol (2010) 298(6):G851–9. doi:10.1152/ajpgi.00327.2009

85. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J,
et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithe-
lial cell barrier function. Am J Physiol Gastrointest Liver Physiol (2008)
295(5):G1025–34. doi:10.1152/ajpgi.90227.2008

86. Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-
like receptor 9-mediated innate and adaptive immunity. Immunity (2012)
36(2):251–61. doi:10.1016/j.immuni.2011

87. Froy O, Chapnik N. Circadian oscillation of innate immunity components
in mouse small intestine. Mol Immunol (2007) 44(8):1954–60. doi:10.1016/j.
molimm.2006.09.026

88. Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium
is orchestrated by the circadian clock and microbiota cues transduced by TLRs.
Cell (2013) 153(4):812–27. doi:10.1016/j.cell.2013.04.020

89. Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, et al. Circadian
clocks in mouse and human CD4+ T cells. PLoS One (2011) 6(12):e29801.
doi:10.1371/journal.pone.0029801

90. Bollinger T, Bollinger A, Naujoks J, Lange T, Solbach W. The influence of regula-
tory T cells and diurnal hormone rhythms on T helper cell activity. Immunology
(2010) 131(4):488–500. doi:10.1111/j.1365-2567.2010.03320.x

91. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, et al. A cir-
cadian clock in macrophages controls inflammatory immune responses. Proc
Natl Acad Sci U S A (2009) 106(50):21407–12. doi:10.1073/pnas.0906361106

92. Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N.
Circadian variation of the response of T cells to antigen. J Immunol (2011)
187(12):6291–300. doi:10.4049/jimmunol.1004030

93. Kirsch S, Thijssen S, Alarcon Salvador S, Heine GH, van Bentum K, Fliser D,
et al. T-cell numbers and antigen-specific T-cell function follow different circa-
dian rhythms. J Clin Immunol (2012) 32(6):1381–9. doi:10.1007/s10875-012-
9730-z

94. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep-
dependent activity of T cells and regulatory T cells. Clin Exp Immunol (2009)
155(2):231–8. doi:10.1111/j.1365-2249.2008.03822.x

95. Prendergast BJ, Cable EJ, Patel PN, Pyter LM, Onishi KG, Stevenson TJ, et al.
Impaired leukocyte trafficking and skin inflammatory responses in hamsters
lacking a functional circadian system. Brain Behav Immun (2013) 32:94–104.
doi:10.1016/j.bbi.2013.02.007

96. Mazzoccoli G, De Cata A, Greco A, Carughi S, Giuliani F, Tarquini R. Circa-
dian rhythmicity of lymphocyte subpopulations and relationship with neuro-
endocrine system. J Biol Regul Homeost Agents (2010) 24(3):341–50.

97. Cernysiov V, Gerasimcik N, Mauricas M, Girkontaite I. Regulation of T-cell-
independent and T-cell-dependent antibody production by circadian rhythm
and melatonin. Int Immunol (2010) 22(1):25–34. doi:10.1093/intimm/dxp109

98. Keith C, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, et al. Disrup-
tion of the circadian clock in mice increases intestinal permeability and pro-
motes alcohol-induced hepatic pathology and inflammation. PLoS One (2013)
8(6):e67102. doi:10.1371/journal.pone.0067102

99. Martin RJ. Location of airway inflammation in asthma and the relationship
to circadian change in lung function. Chronobiol Int (1999) 16(5):623–30.
doi:10.3109/07420529908998731

100. Majde JA, Krueger JM. Links between the innate immune system and sleep.
J Allergy Clin Immunol (2005) 116(6):1188–98. doi:10.1016/j.jaci.2005.08.005

101. Baumann A, Gönnenwein S, Bischoff SC, Sherman H, Chapnik N, Froy O, et al.
The circadian clock is functional in eosinophils and mast cells. Immunology
(2013) 140(4):465–74. doi:10.1111/imm.12157

102. Nakamura Y, Nakano N, Ishimaru K, Hara M, Ikegami T, Tahara Y, et al. Cir-
cadian regulation of allergic reactions by the mast cell clock in mice. J Allergy
Clin Immunol (2014) 133(2):568–75.e12. doi:10.1016/j.jaci.2013.07.040

103. Ball TM, Anderson D, Minto J, Halonen M. Cortisol circadian rhythms and
stress responses in infants at risk of allergic disease. J Allergy Clin Immunol
(2006) 117(2):306–11. doi:10.1016/j.jaci.2005.11.009

104. Nermes M, Salminen S, Isolauri E. Is there a role for probiotics in the prevention
or treatment of food allergy? Curr Allergy Asthma Rep (2013) 13(6):622–30.
doi:10.1007/s11882-013-0381-9

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 02 December 2013; accepted: 03 February 2014; published online: 18 February
2014.
Citation: de Kivit S, Tobin MC, Forsyth CB, Keshavarzian A and Landay AL (2014)
Regulation of intestinal immune responses through TLR activation: implications for
pro- and prebiotics. Front. Immunol. 5:60. doi: 10.3389/fimmu.2014.00060
This article was submitted to Immunological Tolerance, a section of the journal Frontiers
in Immunology.
Copyright © 2014 de Kivit, Tobin, Forsyth, Keshavarzian and Landay. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org February 2014 | Volume 5 | Article 60 | 7

http://dx.doi.org/10.1016/j.jaci.2005.03.036
http://dx.doi.org/10.1016/S0928-8244(03)00144-5
http://dx.doi.org/10.1111/j.1440-1746.2009.06193.x
http://dx.doi.org/10.1111/j.1440-1746.2009.06193.x
http://dx.doi.org/10.1038/mi.2012.36
http://dx.doi.org/10.1128/IAI.00288-12
http://dx.doi.org/10.1128/AEM.71.5.2318-2324.2005
http://dx.doi.org/10.1128/AEM.71.5.2318-2324.2005
http://dx.doi.org/10.1111/j.1651-2227.2005.tb02149.x
http://dx.doi.org/10.3945/jn.109.116061
http://dx.doi.org/10.1111/j.1398-9995.2008.01765.x
http://dx.doi.org/10.1111/j.1398-9995.2008.01765.x
http://dx.doi.org/10.3945/jn.109.108514
http://dx.doi.org/10.1111/j.1365-2222.2010.03465.x
http://dx.doi.org/10.1017/S0007114511007203
http://dx.doi.org/10.1017/S0007114511007203
http://dx.doi.org/10.1152/ajpgi.00327.2009
http://dx.doi.org/10.1152/ajpgi.90227.2008
http://dx.doi.org/10.1016/j.immuni.2011
http://dx.doi.org/10.1016/j.molimm.2006.09.026
http://dx.doi.org/10.1016/j.molimm.2006.09.026
http://dx.doi.org/10.1016/j.cell.2013.04.020
http://dx.doi.org/10.1371/journal.pone.0029801
http://dx.doi.org/10.1111/j.1365-2567.2010.03320.x
http://dx.doi.org/10.1073/pnas.0906361106
http://dx.doi.org/10.4049/jimmunol.1004030
http://dx.doi.org/10.1007/s10875-012-9730-z
http://dx.doi.org/10.1007/s10875-012-9730-z
http://dx.doi.org/10.1111/j.1365-2249.2008.03822.x
http://dx.doi.org/10.1016/j.bbi.2013.02.007
http://dx.doi.org/10.1093/intimm/dxp109
http://dx.doi.org/10.1371/journal.pone.0067102
http://dx.doi.org/10.3109/07420529908998731
http://dx.doi.org/10.1016/j.jaci.2005.08.005
http://dx.doi.org/10.1111/imm.12157
http://dx.doi.org/10.1016/j.jaci.2013.07.040
http://dx.doi.org/10.1016/j.jaci.2005.11.009
http://dx.doi.org/10.1007/s11882-013-0381-9
http://dx.doi.org/10.3389/fimmu.2014.00060
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive

	Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics
	The mucosal immune response in the intestine – An overview
	Regulation of intestinal immunity and tolerance by TLRs expressed by IEC
	Interactions between the microbiota and TLRs
	Prebiotics shape the intestinal microbiota
	Circadian clock and TLR
	Implications for the use of pro- and prebiotics
	Author contributions
	Acknowledgment
	References


