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Abstract: Staphylococcal infections are a widespread cause of disease in humans. In particular,
S. aureus is a major causative agent of infection in clinical medicine. In addition, these bacteria
can produce a high number of staphylococcal enterotoxins (SE) that may cause food intoxications.
Apart from S. aureus, many coagulase-negative Staphylococcus spp. could be the source of food
contamination. Thus, there is an active research work focused on developing novel preventative
interventions based on food supplements to reduce the impact of staphylococcal food poisoning.
Interestingly, many plant-derived compounds, such as polyphenols, flavonoids, or terpenoids, show
significant antimicrobial activity against staphylococci, and therefore these compounds could be
crucial to reduce the incidence of food intoxication in humans. Here, we reviewed the most promising
strategies developed to prevent staphylococcal food poisoning.
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1. Introduction

The bacteria belonging to the genus Staphylococcus are generally classified as coagulase-
positive or coagulase-negative species. Among all of them, Staphylococcus aureus is the
leading cause of human disease. Moreover, staphylococcal food poisoning (SFP) is a
common disease, and the number of cases had increased continuously since 1884 when
the first case was reported to become one of the most common causes of foodborne
disease [1]. In addition, coagulase-negative staphylococci and their toxins could also be
an important source of food contamination, particularly in ready-to-eat products, milk,
cheese, milk chocolate, or canned meat [2–9]. This may lead to food intoxication due
to the presence of staphylococcal exotoxins, which were firstly identified in 1992 [7].
Moreover, the inappropriate manipulation of fresh food may lead to outbreaks originated
in restaurants because S. aureus could also be transmitted from human carriers during food
handling [10,11]. Furthermore, food production animals, including pigs, cattle, or chickens,
may also be carriers of S. aureus [1]. In fact, the use of antibiotics in animal production has
increased the incidence of livestock-associated antibiotic-resistant strains [1,12,13].

The existence of a robust and straightforward PCR test that detects microorganisms
with genes that encode exotoxins has allowed the detection of hundreds of staphylococcal
food-poisoning outbreaks every year [14]. However, a high exotoxin production is not
directly correlated with a higher disease incidence. Therefore, other alternative analytical
methods have been routinely employed to identify the presence of exotoxins in food,
including those based on high-performance liquid chromatography (HPLC) and mass
spectrometry (MS) [15]. Unfortunately, there is a wide range of exotoxins produced by
pathogens from the staphylococcal group, making it challenging to identify the origin of
the food intoxication [6].
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Moreover, the pasteurization of food destroys staphylococci, but it usually does not
affect exotoxins’ activity, which may still cause disease in humans after food processing [6].
Besides, some S. aureus strains can resist high concentrations of lactic acid, which facilitates
their growth in various foods, including cheese, meat, salads, or milk chocolate [1,9,15,16].

In addition, coagulase-negative staphylococci in food are important reservoirs of
antimicrobial resistance genes, virulence factors, and exotoxins [3,17,18]. This is now
considered a significant health problem because these genes could be horizontally trans-
mitted to coagulase-positive staphylococci, which may increase the incidence of foodborne
disease [17,19–21].

In summary, there is a great interest in developing novel ways of preventing the
presence of Staphylococcus spp. and their exotoxins in food to reduce the incidence of
intoxications. Natural compounds used as food supplements are now considered an
up-and-coming strategy to decrease the staphylococcal colonization of food.

2. Staphylococcal Enterotoxins and Virulence Factors

Staphylococcus spp. exotoxins present in food are a group of low-molecular-weight
pyrogenic proteins of around 22–29 kDa, with important similarities in their secondary and
tertiary structures [1,17,22–24]. These exotoxins are grouped into three different families
depending on their aminoacidic sequence: Staphylococcal enterotoxins (SE), Staphylococcal
enterotoxin-like (SEl), and the toxic shock syndrome toxin 1 (TSST-1) [1]. Other toxins
related to TSST-1 but showing a different mechanism of action have now been classified as
staphylococcal superantigen-like (SSl) [24].

Different species of Staphylococcus can produce exotoxins, including coagulase-negative
strains that are considered non-pathogenic. However, picomolar concentrations of SEs can
cause toxic shock syndrome (TSS), fever, hypotension, and multi-organ failure that enhance
the disease caused by S. aureus [25,26]. In addition, the SE and TSST-1 are also considered
superantigens (SAgs) because they have the potential to activate T cells through a complex
signaling pathway and stimulate a hyper-inflammatory response [24,27]. SAgs are impli-
cated in the development of sepsis, infective endocarditis, and other complications [28].

Among all staphylococcal toxins, SEs have been the most frequently associated with
foodborne diseases, causing emesis and T-cell activation [29]. There are at least 26 different
SEs characterized, but this number could be even higher [10]. These toxins are resistant to
heat and acidity and to the hydrolysis mediated by most proteolytic enzymes [1,17].

While SEs and TSST-1 directly activate macrophages and T-cells, SEl and SSl are
considered capable of general immunomodulation [24]. However, SEl proteins can induce
neither emesis nor T-cell activation [27]. Moreover, some staphylococcal toxins show a
proapoptotic activity essential for S. aureus colonization [27]. SEs may cause cytotoxicity in
intestinal cells, which results in gastroenteritis, vomiting, and gastric inflammation [29].

Despite that coagulase-negative strains could be involved in food-poisoning and may
even release toxins that cause the lethal toxic shock syndrome [4,22,30], S. aureus is still
considered the leading cause of staphylococcal gastroenteritis and food intoxication [7,9].
There are important outbreaks caused periodically by S. aureus and its toxins, and in most
cases, the staphylococcal enterotoxin A (SEA) is involved [5,7].

In addition, other virulence factors encoded in the genome of different staphylococcal
strains could be putative sources of gastrointestinal diseases. In fact, several virulence
factors are essential for the successful colonization of the host, including coagulase, staphy-
lokinase, adhesins, protein A, and β-hemolysin [31–33]. Their expression is under the
control of several regulatory genes and sometimes under the control of noncoding RNAs.
The expression of this plethora of virulence factors is indirectly regulated by pH, tem-
perature, and other changing conditions that the pathogen encounters in food or during
infection [31,34].

Finally, discovering the toxin-antitoxin (TA) system has revolutionized the search for
novel therapies against staphylococci [35]. The TA system is composed mainly of two
genes encoding an antitoxin (usually located upstream of an operon) and the toxin (located
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downstream). The first gene is self-regulated, and both the antitoxin and the toxin-antitoxin
complex may repress the TA operon’s promoter [36,37]. During infection, the host proteases
degrade the antitoxin protein, enabling the expression of the toxin [36]. There is much
interest in developing treatments that may inhibit the antitoxin protein’s degradation or
even block the antitoxin-toxin interactions, which could be a natural and broad-spectrum
antibacterial treatment [36,37].

3. Treatments Against Staphylococcal Food Poisoning

Traditionally, the treatments against staphylococcal food-poisoning are focused on
either controlling exotoxins or the control of the transmission of the bacteria. The use
of antimicrobials to treat staphylococcal food intoxications is not recommended due to
the additional release of staphylococcal toxins after bacterial cell death, leading to septic
shock. Besides, if antibiotic therapy is administered to patients infected by multidrug-
resistant staphylococci, this could facilitate colonization of the gastrointestinal tract once
the sensitive intestinal flora is altered. Consequently, antimicrobial-resistant staphylococci
may then replicate and secrete more toxins that could aggravate the disease [38].

3.1. Monoclonal Antibodies and Vaccines

S. aureus is a natural commensal of the human skin; however, it can circumvent the host
immune system, and it is a facultative intracellular pathogen [39]. These two aspects of the
pathogenesis of S. aureus are the main causes of the failure of all vaccine candidates tested
in humans and based on opsonization [40–42]. However, the production of antibodies
against staphylococcal extracellular proteins protect patients against sepsis caused by S.
aureus [43]. Therefore, the development of monoclonal antibodies-based therapies against
specific staphylococcal toxins is now considered a very promising strategy to generate
protection against S. aureus [44]. Importantly, this strategy has been successfully tested in
clinical trials against toxins from Clostridium difficile or Escherichia coli [35].

Monoclonal antibodies-based therapies are effective against many other bacteria [45,46],
particularly against the most virulent species [46]. However, due to the high number of
toxins produced by S. aureus, it is becoming clear that therapies based on monoclonal
antibodies targeting a single toxin are frequently ineffective [25]. Therefore, there is interest
in developing combinatorial therapies against multiple S. aureus enterotoxins and other
virulence factors, including extracellular or cell-wall anchored proteins [42,45,47–51]. In
particular, monoclonal antibodies-based therapies have been developed against multiple
staphylococcal enterotoxins and TSST-1 [42,51,52]. Some of these therapies are undergoing
clinical trials [45]. This type of therapy could also be used to prevent the spread of the dis-
ease in animals infected by livestock-associated multidrug-resistant strains [53]. However,
the high cost of this type of treatment makes this strategy difficult to be implemented in
animal production.

In addition, some studies have been focused on developing immunotherapies target-
ing the staphylococcal α-toxin [42]. This is based on recent evidence showing a high titter
of anti-α-toxin antibodies protect against future infections. However, a vaccine developed
against different variants of the α-toxin was not effective in humans, despite that it pro-
vided effective protection in mouse pneumonia models [54,55]. Nevertheless, these results
support the development of multi-target immunotherapies.

Interestingly, TSST-1 is another important target for the development of immunothera-
pies. Similar to α-toxin, it has been demonstrated that antibodies generated against TSST-1
may protect patients against future infections [56,57]. Accordingly, 80% of the human
population develops antibodies against TSST-1 during the first years of life [58]. A vaccine
has been developed to provide immunity against TSST-1 in the remaining 20% of the
population, which is also undergoing clinical trials [59,60].

Other interesting targets for immunotherapy-based strategies are virulence factors
such as the iron-regulated surface determinants (Isd) proteins, which are located on the
extracellular matrix of biofilms produced by S. aureus [61]. Moreover, the toxin-antitoxin
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system could be disrupted by monoclonal antibodies that bind to the toxin but not to the
antitoxin [36].

Overall, monoclonal antibodies showed promising results in animal models, but data
from clinical trials in humans are still not available or conclusive [48,61]. However, a cocktail of
monoclonal antibodies protects mice from S. aureus infections very efficiently [48,61].

3.2. Natural Compounds Against Staphylococcal Infections

As mentioned above, a plethora of toxins, virulence factors, and antimicrobial resis-
tance traits make S. aureus a principal cause of foodborne disease. In addition, the biofilm
structures created by this pathogen increase its resistance to antimicrobials [62,63]. Fortu-
nately, there is an increasing body of knowledge on natural compounds derived from plants
or microorganisms that could be used as dietary supplements to prevent staphylococcal
infections and the spreading of their antimicrobial resistance.

In general, the therapeutic strategies based on natural compounds could be classified
by their mode of action in antimicrobial or anti-virulence therapies [64]. Antimicrobial ther-
apies act directly on the bacteria to inhibit their growth, whereas anti-virulence therapies
are based on inhibitors of bacterial virulence factors [65]. Importantly, anti-virulence thera-
pies do not directly affect bacterial fitness, and therefore they elicit a limited evolutionary
pressure that reduces the development of resistance [35].

Many natural compounds directly inhibit bacterial growth or replication. In particular,
polyphenols are very well-known antimicrobial compounds present in significant concentrations
in plants (Table 1). Importantly, the combination of polyphenols with other antimicrobial com-
pounds may be synergistic [62], making them very attractive candidates for the development of
combinatorial strategies used to prevent staphylococcal food contamination.

Some of these compounds repress SEs production, whereas others directly inter-
act with enterotoxins and inhibit their mechanism of action. Some of the latter could
be used as additives to inhibit SEs-derived food intoxication, particularly in products
treated with sterilization or pasteurization processes where staphylococci may be killed.
However, their already secreted exotoxins could still be active in contaminated food [1].
Therefore, enterotoxin-directed treatments can be used against S. aureus-contaminated
and SEs-contaminated food [25], whereas treatments that alter the expression of the genes
encoding enterotoxins expression are not effective once SEs are already present in food.

For example, the Muscadine grape’s skin is rich in gallic and ellagic acids, which show
significant antimicrobial activity against S. aureus [62]. The crude extracts of other plant
species such as Chenopodium album are rich in phenolic and flavonoid compounds with
powerful antibacterial activity against S. aureus, equivalent to many antibiotics used in
clinical medicine [66]. Aloe vera, black garlic, eucalyptus, or grape seeds could be the
source of many other natural compounds with antimicrobial activity [64]. This is due to
phenolic and phenolic-derivative compounds and alkaloids, fatty acids, organo-sulfurs,
and other aliphatic and cyclic compounds that in total amount to hundreds of molecules
with anti-staphylococcal activity [35,64].

In addition, some of these plant-derived compounds show activity against SEs [35],
which is essential to achieve an all-in-one strategy against staphylococcal food poisoning
(Table 1). For example, tomatidine is a well-known antibacterial compound with demon-
strated activity against S. aureus [67]. Tomatidine is a steroidal alkaloid found in different
solanaceous plants, which was first described as a bactericidal agent against small-colony
variants of S. aureus [68]. However, tomatidine is also a quorum-sensing inhibitor, which
alters the expression of many virulence factors, including some toxins [69]. Similarly,
the expression of the staphylococcal α-toxin is controlled by allicin, capsaicin, and other
amide-derived alkaloids present in chili peppers [35,70], another solanaceous plant.

Interestingly, anisodamine is an alkaloid produced by a Chinese herb that reduces the
TSST-1 concentration in serum and the risk of toxic shock syndrome [71]. Anisodamine
is an immunomodulator that inhibits the expression of cytokines such as tumor necrosis
factor alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 8 (IL-8), interleukin 2 (IL-2), and
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interferon gamma (IFN-γ) expression in a dose-dependent manner, which may eventually
reduce the effects of the cytokine storm induced during the toxic shock syndrome [71,72].

Table 1. Natural sources of active compounds that could be useful to prevent staphylococcal-food poisoning.

Natural Sources Active Compounds Targets References

Muscadine grape Gallic and ellagic acids S. aureus [62]

Chenopodium album Phenolic compounds
Flavonoid compounds S. aureus [66]

Citrus fruits, grapes, and tomatoes Tomatidine
Naringenin S. aureus [69,73,74]

Fermented orange juice Naringenin-glycosylated S. aureus [75]

Garlic Allicin S. aureus [70]

Chili peppers Capsaicin S. aureus [35]

Chinese herbs Anisodamine SEs [71]

Licorice root Licochalcone A S. aureus [76]

Olive oil

4-hydroxytyrosol
Tyrosol

Vanillic acid
p-coumaric acid

4-(acetoxyethyl)-1,2-dihydroxybenzene
Pinoresinol

1-acetoxypinoresinol

Salmonella enterica
Listeria monocytogenes

E. coli
S. aureus

[77–83]

Clove oil Eugenol SEs [84]

Wine Resveratrol
Tannins α-toxin [35,85]

Mentha Menthol SEs [86]

Hop plant Xanthohumol S. aureus [87]

Mustard Allylisothiocyanate

S. aureus
Pseudomonas aeruginosa

E. coli
L. monocytogenes

[88]

Aloe vera Aloeemodin S. aureus [64]

Eucalyptus, Mimosa Pyroligenous acids
S. aureus

E. coli
P. aeruginosa

[89]

Caloboletus radicans 8-deacetylcyclocalopin S. aureus [90]

Pleurotus sajor-caju
p-hydroxybenzoic acid

p-coumaric acid
Cinnamic acid

S. aureus [90,91]

Honey
Hydrogen peroxide

Gluconic acid
Polyphenols

Multiple bacteria
S. aureus [92–95]

Propolis

Polyphenols
Waxes
Resins

Polysaccharides

E. coli
S. aureus [96,97]

Other natural sources

Cinnamaldehyde
Baicalein
Apicidin

α-cyperone
Avellanin C

Quorum sensing
S. aureus

Bacillus sp.
[64,98,99]
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Moreover, phenolic compounds (in particular, many flavonoids) could be used to
control the hemolytic activity and secretion of some SEs (Table 1). For example, licochalcone
A may decrease the expression and secretion of SEA and SEB in a dose-dependent manner,
and consequently, the release of TNF-α, which ameliorates the adverse effects of these
enterotoxins [76].

Naringenin is another well-studied natural flavonoid that is present in citrus fruits
and tomatoes. Naringenin presents a low antimicrobial activity against S. aureus, but it can
also inhibit the α-toxin expression at subinhibitory concentrations [73,74]. However, the
main handicap of naringenin is its low solubility and, therefore, low oral bioavailability.
Nevertheless, the functionalization of the molecule with certain lipophilic groups may
enhance its biochemical properties [100]. Furthermore, naringenin-glycosylated forms
present in fermented orange juice increase this compound’s absorption profile from the
diet [75].

Moreover, olive oil possesses many phenolic compounds with important antimicrobial
activities, and therefore it is considered a great natural product used for food preserva-
tion [77]. The antimicrobial activity of commercial olive oil has been tested against many
different bacterial pathogens (Table 1), showing activity against all of them in broth cultures
when small quantities of olive oils are added [78].

The antimicrobial activity of polyphenols contained in olive oil has been clearly
demonstrated [79–81]. For example, 4-hydroxytyrosol is a phenolic derivative found in
olives that shows SEA-inhibition and bactericidal activity [82]. This compound may be
found in plant crude extracts but also in edible olives. However, the polyphenols content
can vary depending on the species used, the degree of maturation of its fruits, and the
irrigation system used during olive cultivation [79,81].

Apart from 4-hydroxytyrosol, the most common phenolic compounds found in olive
oil are tyrosol, vanillic acid, p-coumaric, 4-(acetoxyethyl)-1,2-dihydrxybenzene, pinoresinol,
and 1-acetoxypinoresinol [77,79–81,83]. Due to its complex and variable composition, the
olive oil’s polyphenols are collectively named olive oil polyphenol extract (OOPE).

Other plant-derived polyphenols include eugenol, which is found in clove oil and
represses the expression of the genes that encode SEA, SEB, and TSST-1 at subinhibitory
concentrations [84]. Wine-derived phenolic compounds such as the stilbenoids (e.g., resver-
atrol) and tannins showed anti-hemolytic activity [35,85]. Moreover, menthol is a terpene
alcohol from plants of the Mentha genus that also inhibits the expression of genes encoding
exotoxins, specially α-hemolysin, SEA, SEB, and TSST1 [86].

Besides, several compounds block biofilm formation or bacterial adhesion to host
tissues that are important to reduce the virulence of S. aureus. For instance, the hop plant
(Humulus lupulus) contains xanthohumol, which showed significant antimicrobial activity
against S. aureus and inhibited its biofilm formation [87]. Moreover, allylisothiocyanate is
the product responsible for the pungent taste of mustard, radish, or wasabi, and it is an
efficient biofilm inhibitor of many different bacteria, including S. aureus [35,88]. There are
many more antibiofilm compounds produced by plants, including terpenes, flavonoids,
and other phenolic compounds, with variable effectiveness [35,101].

Other plant-derived compounds may exhibit broad anti-staphylococcal activities. For
instance, aloeemodin is an inhibitor of the Accessory Gene Regulation C (AgrC) produced
by aloe vera, which strongly impacts S. aureus because the AgrCA two-component system
controls the expression of many virulence factors [64]. On the other hand, eucalyptus and
mimosa plants produce pyroligneous acid (PA) with antiseptic activities that have been
tested against several bacterial pathogens, including S. aureus [89,102].

Fungi are another very rich source of antimicrobial compounds that include terpenes,
anthraquinones, quinolines, or benzoic acid derivatives (Table 1). For example, members
of the genus Ganoderma produce many antimicrobial compounds that have been tested
against S. aureus [90,103]. However, the lack of knowledge on the mechanism of action of
these compounds is still impeding their application in the food industry.
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Other European-distributed fungi such as Caloboletus radicans produce the anti- staphy-
lococcal compounds 8-deacetylcyclocalopin [90]. In addition, Pleurotus sajor-caju produces
acid compounds with anti-staphylococcal activity, such as p-hydroxybenzoic, p-coumaric,
and cinnamic acids [90,91].

Honey is another well-studied natural product with antimicrobial activity [104].
Honey is composed mainly of sugars, but many other compounds are part of this natural
product (Table 1). Firstly, its physiological characteristics, such as its acidity and low water
activity, make it a challenging substrate for bacterial growth [92]. However, the complexity
of honey composition and its components’ heterogeneity makes it difficult to compare and
find the most active compounds with the highest antimicrobial potential [93]. Further-
more, the enzymatic conversion of glucose results in various compounds with antibacterial
properties, such as hydrogen peroxide and gluconic acid, which show dose-dependent
bactericidal effects [92–95].

Polyphenols are also key antimicrobial molecules present in honey, despite that the
polyphenolic profile and its bioactivity changes significantly between many different
types of honey [92,105]. Interestingly, the floral source of the honey seems to be a key
factor influencing its composition of polyphenolic compounds and their antibacterial
activity [106,107].

Wax propolis is another bee-derived product made basically of resins, waxes, polyphe-
nols, polysaccharides, volatile materials, and secondary metabolites that show antibacterial,
antioxidant, or antiviral activities [96]. Different propolis types have shown activity against
different Gram-positive and Gram-negative bacteria, including S. aureus [97]. Similar to
honey, the floral origin of the propolis determines its composition and antimicrobial activity.

Finally, many natural products inhibit the AgrC-based quorum sensing, biofilm for-
mation, and cell-to-cell communication in S. aureus [64,65,108,109]. These compounds are
frequently produced by fungi or plants and include cinnamaldehyde, baicalein, apicidin,
α-cyperone, or avellanin C [64,98,99]. In addition, some bacteria with probiotic potential,
such as Bacillus spp., may also produce very effective quorum-sensing inhibitors [110].

4. Conclusions

The incidence of antimicrobial-resistant bacterial infections is increasing worldwide,
and the development of new antimicrobial therapies is not keeping pace with the acqui-
sition and transmission of antibacterial resistance. S. aureus is one of the most important
human pathogens, and it is quickly acquiring resistance to last-resort drugs used in clinical
medicine. Moreover, staphylococci and their exotoxins are important sources of food
contamination. There are many promising preventative and therapeutic strategies against
staphylococcal food intoxications, but very few have been tested in vivo, and a limited
number of clinical trials have been conducted with these compounds.

One of these exceptions is the flavonoid naringenin, which has been recently tested
in clinical trials [111]. However, naringenin has a low oral bioavailability; thus, new
naringenin-glycosylated derivatives are currently developed to improve its absorption pro-
file. Many other natural compounds with antimicrobial activity against staphylococci have
only been tested in preclinical trials due to their low absorption, distribution, metabolism,
or excretion properties.

Nevertheless, the natural products with antimicrobial activity against staphylococci
have the potential to be used as food additives alone or in combination to prevent food-
poisonings. However, more research is required to test the dosage and stability of the
compounds with the best antimicrobial profiles.

Plant-derived polyphenols are one of the most important sources of antimicrobial
compounds with activity against S. aureus. Flavonoids, terpenoids, and other important
antimicrobial compounds could be found in citrus fruits, grapes, honey, garlic, and other
inexpensive food that undoubtedly may impact the incidence of staphylococcal food
intoxications and the spread of antimicrobial resistance. Combining different natural
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compounds could enhance their antimicrobial or antitoxin activities, but more research is
needed to evaluate their possible synergistic effects.
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