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Abstract: We propose a new statistical observation scheme of diffusion processes named convolutional
observation, where it is possible to deal with smoother observation than ordinary diffusion processes
by considering convolution of diffusion processes and some kernel functions with respect to time
parameter. We discuss the estimation and test theories for the parameter determining the smoothness
of the observation, as well as the least-square-type estimation for the parameters in the diffusion
coefficient and the drift one of the latent diffusion process. In addition to the theoretical discussion,
we also examine the performance of the estimation and the test with computational simulation,
and show an example of real data analysis for one EEG data whose observation can be regarded as
smoother one than ordinary diffusion processes with statistical significance.

Keywords: convolutional observation; diffusion processes; parametric inference; partial observation;
statistical modelling; stochastic differential equations

1. Introduction

We consider a d-dimensional diffusion process defined by the following stochastic
differential equation,

dXt = b (Xt, β)dt + a (Xt, α)dwt, X−λ = x−λ,

where λ > 0, {wt}t≥−λ is a standard r-dimensional Wiener process, x−λ is an Rd-valued random
variable independent of {wt}t≥−λ, α ∈ Θ1 and β ∈ Θ2 are unknown parameters, Θ1 ⊂ Rm1 and
Θ2 ⊂ Rm2 are compact and convex parameter spaces, a : Rd ×Θ1 → Rd ⊗ Rr and b : Rd ×Θ2 → Rd

are known functions. Our concern is statistical estimation for α and β from observation. θ? = (α?, β?)

denotes the true value of θ := (α, β).
We denote the observation as the discretised process

{
Xihn ,n : i = 0, . . . , n

}
with discretisation step

hn > 0 such that hn → 0 and Tn := nhn → ∞, where the convoluted process
{

Xt,n
}

t≥0 is defined as

Xt,n :=
∫ t

t−ρhn
Vhn (t− s) Xsds =

∫
R

Vhn (t− s) Xsds = (Vhn ∗ X) (t) ,
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where Vhn is an Rd ⊗ Rd-valued kernel function whose support is a subset of [0, ρhn], and ρ > 0 such
that supn ρhn ≤ λ. In this paper, we specify Vhn = Vρ,hn which is a parametric kernel function whose
support is a subset of [0, ρhn] defined as

V(i,j)
ρ,hn

(t) :=


(

ρ(i)hn

)−1
1[0,ρ(i)hn] (t) if i = j and ρ(i) > 0,

δ (t) if i = j and ρ(i) = 0,

0 if i 6= j,

δ (t) is the Dirac-delta function, ρ =
[
ρ(1), . . . , ρ(d)

]T
∈ Θρ := [0, ρ]d is the smoothing parameter

determining the smoothness of observation. That is to say, the observed process is defined as follows:

X(`)
ihn ,n =


(

ρ(`)hn

)−1 ∫ ihn

(i−ρ(`))hn
X(`)

s ds if ρ(`) > 0,

X(`)
ihn

if ρ(`) = 0,

for all ` = 1, . . . , d. Let us consider both the problems that (i) ρ is a known parameter, and (ii) ρ is an
unknown one whose true value is denoted by ρ? and this is estimated by observation

{
Xihn ,n

}
, and the

parameter space is denoted as Ξ := Θρ ×Θ, where Θ := Θ1 ×Θ2.
When assuming ρ as a known parameter, we can find literature for parametric estimation for α

and/or β based on observation schemes which can be represented as special cases for some specific
ρ. If ρ = 0, our scheme is simply equivalent to parametric inference based on discretely observed
diffusion processes

{
Xihn : i = 0, . . . , n

}
studied in [1–8] and references therein. If ρ = [1, . . . , 1]T ,

we can regard the problem as parametric estimation for integrated diffusion processes discussed in
Gloter [9], Ditlevsen and Sørensen [10], Gloter [11], Gloter and Gobet [12], Sørensen [13]. Even for
the case ρ = [0, . . . , 0, 1, . . . , 1]T where some axes correspond to direct observation and the others do
to integrated observation, we give consistent estimators for α and β by considering the scheme of
convolutionally observed diffusion processes and this is one of the contributions of our study.

What is more, our contribution is to consider the scheme where ρ is unknown and succeed in
representation of the microstructure noise which makes the observation smoother than the latent
diffusion process itself, which can be seen in some biomedical time series data. Statistical modelling of
biomedical time series data with stochastic differential equations has been one of the topics eagerly
studied e.g., [14–17]. As [18] states, the existence of microstructure noise in financial data affects
realised volatilities to increase as the subsampling frequency gets higher, for instance, see Figure 7.1
on p. 217 in [19]. However, realised volatilities of some biomedical data such as EEG decrease as
subsampling frequency increases. For instance, some time series data for the 2nd participant in the
dataset named Two class motor imagery (002-2014) of BNCI Horizon 2020 [20] show clear tendency of
decreasing realised volatilities as subsampling frequency increases. Figure 1 shows the path of the 2nd
axis of the data S02E.mat BNCI Horizon 2020 [20] for all 222 seconds (the observation frequency is
512 Hz, and hence the entire data size is 113664) and that for the first one second; it seems to perturb
like a diffusion process.
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Figure 1. The path of the second column of S02E.mat of BNCI Horizon 2020 [20] for all 222 seconds
(left) and the first one second (right).

We define realised volatilities with subsampling as for a sequence of real-valued observation
{Yi}i=0,...,n,

RV (k) = ∑
1≤i≤[n/k]

(
Yik −Y(i−1)k

)2
,

where k = 1, . . . , 100 is the subsampling frequency parameter, and provide a plot of the realised
volatilities the 2nd axis of the data S02E.mat in Figure 2:

Figure 2. Realised volatilities with subsampling of the 2nd axis of data S02E.mat in two class motor
imagery (002-2014) [20].

The altitudes of the graph represented in the y-axis correspond to the values of the realised
volatilities RV (k) with subsampling at every k observation represented in the x-axis. It is observable
that the increasing subsampling frequency results in decreasing realised volatilities, which cannot be
explained by the existent major microstructure noises, e.g., see [21–25]. To explain this phenomenon,
we consider the smoother process than the latent one, though ordinarily microstructure noises make
the observation rougher than the latent process, because quadratic variation of a sufficiently smooth
function is zero. One way to deal with smoother observation than the latent state is convolutional
observation. As a concrete example, we show a convolutionally observed diffusion process and its
characteristics in realised volatilities: let us consider the following 1-dimensional stochastic differential
equation defining an Ornstein–Uhlenbeck (OU) process:

dXt = −20Xtdt + 10dwt, X−λ = 0,

where λ = 10−2/5. We simulate the stochastic differential equation by Euler–Maruyama method
see [26] with parameters n = 107, hn = 10−5, and Tn = 102 and its convolution approximated by
summation with the smoothing parameter ρ = 10 (for details, see Section 5). Figure 3 shows the latent
diffusion process and the convoluted observation on [0, 1], and we can see that the observation is
indeed smoothed compared to the latent state.
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Figure 3. The left figure is the plot of the latent diffusion process, and the right one is that of the
convolutionally observed process on [0, 1] respectively.

In Figure 4, we also give the plot of realised volatilities of the convolutionally observed process
with subsampling as Figure 2.

Figure 4. The realised volatilities of the convolutionally observed diffusion process with subsampling.

It is seen that the convolutional observation of a diffusion process also has the characteristics
of decreasing realised volatilities as subsampling frequency increases, which can bee seen in some
biological data such as BNCI Horizon 2020 [20]. Of course, graphically comparing characteristics
of simulation and real data is insufficient to verify the convolutional observation with smoothing
parameter ρ > 0 in 1-dimensional case; therefore, we propose statistical estimation method for
unknown ρ and hypothesis test with the null hypothesis H0 : ρ = 0 and the alternative one H1 : ρ 6= 0
from convolutional observation in Section 3. Moreover, in Section 6, we examine the real EEG data
plotted in Figure 2 by the statistical hypothesis testing we propose, and see it is more appropriate to
consider the data as a convolutional observation of a latent diffusion process with ρ 6= 0 rather than
direct observation of the latent process, which indicates the validity to deal with the problem of the
convolutional observation scheme with unknown ρ.

The paper is composed of the following sections: Section 2 gives the notations and assumptions
used in this paper; Section 3 discusses the estimation and test for smoothing parameter ρ, and the
discussion provides us with the tools to examine whether we should consider the convolutional
observation scheme; Section 4 proposes the quasi-likelihood functions for the parameter of diffusion
processes α and β, and corresponding estimators with consistency; Section 5 is for the computational
simulation to examine the theoretical results in the previous sections; and Section 6 shows an
application of the methods we propose in real data analysis.
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2. Notations and Assumptions

2.1. Notations

First of all, we set A (x, α) := a (x, α)⊗2, a (x) := a (x, α?), A (x) := A (x, α?) and b (x) :=
b (x, β?). We also give the notation for a matrix-valued function G (x, α|ρ) such that G(i,j) (x, α|ρ) :=
A(i,j) (x, α) fG

(
ρ(i), ρ(j)

)
, where

fG
(

ρ(i), ρ(j)
)

:=



1 if ρ(i) = ρ(j) = 0,

1− ρ(j)

2 if ρ(i) = 0, ρ(j) ∈ (0, 1] ,
1

2ρ(j) if ρ(i) = 0, ρ(j) ∈ (1, ρ] ,

1− ρ(i)

2 if ρ(i) ∈ (0, 1] , ρ(j) = 0,
1

2ρ(i)
if ρ(i) ∈ (1, ρ] , ρ(j) = 0,

−3(ρ(i))
2

ρ(j)+3ρ(i)(ρ(j))
2
+6ρ(i)ρ(j)−2(ρ(j))

3

6ρ(i)ρ(j) if ρ(i), ρ(j) ∈ (0, 1] , ρ(i) > ρ(j),

3(ρ(i))
2

ρ(j)−3ρ(i)(ρ(j))
2
+6ρ(i)ρ(j)−2(ρ(i))

3

6ρ(i)ρ(j) if ρ(i), ρ(j) ∈ (0, 1] , ρ(i) ≤ ρ(j),

3(ρ(j))
2
+3ρ(j)−(ρ(j))

3

6ρ(i)ρ(j) if ρ(i) ∈ (1, ρ] , ρ(j) ∈ (0, 1] , ρ(i) > ρ(j) + 1,
6ρ(j)−1
6ρ(i)ρ(j) if ρ(i), ρ(j) ∈ (1, ρ] , ρ(i) > ρ(j) + 1,

(ρ(i)−ρ(j))
3−3(ρ(i))

2
+6ρ(i)ρ(j)+3ρ(i)−1−(ρ(j))

3

6ρ(i)ρ(j) if ρ(i) ∈ (1, ρ] , ρ(j) ∈ (0, 1] , ρ(i) ≤ ρ(j) + 1,

(ρ(i)−ρ(j))
3−3(ρ(i))

2
+6ρ(i)ρ(j)+3ρ(i)−3(ρ(j))

2
+3ρ(j)−2

6ρ(i)ρ(j) if ρ(i), ρ(j) ∈ (1, ρ] , ρ(j) < ρ(i) ≤ ρ(j) + 1,

−(ρ(i)−ρ(j))
3
+6ρ(i)ρ(j)−(ρ(i))

3−3(ρ(j))
2
+3ρ(j)−1

6ρ(i)ρ(j) if ρ(i) ∈ (0, 1] , ρ(j) ∈ (1, ρ] , ρ(j) ≤ ρ(i) + 1,

−(ρ(i)−ρ(j))
3−3(ρ(i))

2−3(ρ(j))
2
+6ρ(i)ρ(j)+3ρ(i)+3ρ(j)−2

6ρ(i)ρ(j) if ρ(i), ρ(j) ∈ (1, ρ] , ρ(i) ≤ ρ(j) ≤ ρ(i) + 1,

3(ρ(i))
2
+3ρ(i)−(ρ(i))

3

6ρ(i)ρ(j) if ρ(i) ∈ (0, 1] , ρ(j) ∈ (1, ρ] , ρ(j) > ρ(i) + 1,
6ρ(i)−1
6ρ(i)ρ(j) if ρ(i), ρ(j) ∈ (1, ρ] , ρ(j) > ρ(i) + 1.

The continuity of the function fG is shown in the supplementary material. For the detailed
discussion of the necessity of fG, see Remark 4.

In addition, we also give the notation used throughout this paper.

• For every matrix A, AT is the transpose of A, and A⊗2 := AAT .
• For every set of matrices A and B of the same size, A [B] := tr

(
ABT). Moreover, for any m ∈ N,

A ∈ Rm ⊗ Rm and u, v ∈ Rm, A [u, v] := vT Au.
• v(`) and A(`1,`2) denote the `-th element of a vector v and the (`1, `2)-th one of a matrix A,

respectively.
• For any vector v and any matrix A, |v| :=

√
tr (vTv) and ‖A‖ :=

√
tr (AT A).

• (Ω, P,F ,Ft) denotes the stochastic basis, where Ft := σ (x−λ, ws : s ≤ t).
• µ ( f (·)) denotes the integral of a µ-integrable function f where µ is a measure.

2.2. Assumptions

With respect to Xt, we assume the following conditions.

[A1] (i) For a constant C, for all x1, x2 ∈ Rd,

sup
α∈Θ1

‖a (x1, α)− a (x2, α)‖+ sup
β∈Θ2

|b (x1, β)− b (x2, β)| ≤ C |x1 − x2| .

(ii) For all p ≥ 0, supt≥−λ Eθ?

[
|Xt|p

]
< ∞.



Entropy 2020, 22, 1031 6 of 25

(iii) There exists a unique invariant measure ν0 on
(

Rd,B
(

Rd
))

and for all p ≥ 1 and
f ∈ Lp (ν0) with polynomial growth,

1
T

∫ T

−λ
f (Xt)dt→P

∫
Rd

f (x) ν0 (dx) .

Remark 1. For sufficient conditions of these regularity ones, please see [A1] and Remark 1 in Uchida
and Yoshida [7].

[A2] There exists C > 0 such that a : Rd ×Θ1 → Rd ⊗ Rr and b : Rd ×Θ2 → Rd have continuous
derivatives satisfying

sup
α∈Θ1

∣∣∣∂j
x∂i

αa (x, α)
∣∣∣ ≤ C (1 + |x|)C , 0 ≤ i ≤ 2, 0 ≤ j ≤ 2,

sup
β∈Θ2

∣∣∣∂j
x∂i

βb (x, β)
∣∣∣ ≤ C (1 + |x|)C , 0 ≤ i ≤ 2, 0 ≤ j ≤ 2.

With the invariant measure ν0, ξ :=
[
ρT , θT]T , and ξ? denoting the true value of ξ, we define

V1 (α|ξ?) := −
∫

Rd
‖G (x, α|ρ?)−G (x, α?|ρ?)‖2 ν0 (dx) ,

V2 (β|ξ?) := −
∫

Rd
|b (x, β)− b (x, β?)|2 ν0 (dx) .

For these functions, let us assume the following identifiability conditions hold.

[A3] There exist χ1 (α?) > 0 and χ′1 (β?) > 0 such that for all α ∈ Θ1 and β ∈ Θ2, V1 (α|ξ?) ≤
−χ1 (α?) |α− α?|2 and V2 (β|ξ?) ≤ −χ′1 (β?) |β− β?|2.

3. Estimation and Test of the Smoothing Parameter

In this section, we discuss the case where the smoothing parameter ρ of the kernel function Vρ,hn

is unknown. The estimation is significant for estimation of α and β since we utilise the estimate for ρ in
quasi-likelihood functions of α and β. The test problem for hypotheses H0 : ρ = 0 and H1 : ρ 6= 0 is
also important to examine whether our framework of convolutional observation is meaningful.

3.1. Estimation of the Smoothing Parameter

For simplicity of notation, let us consider the case ρ > 2; otherwise the discussion is quite parallel.
We should note that for all i = 1, . . . , d,

G(i,i) (x|ρ) =


A(i,i) (x) if ρ(i) = 0,

A(i,i) (x)
(

1− ρ(i)

3

)
if ρ(i) ∈ (0, 1] ,

A(i,i) (x)
(

1
ρ(i)
− 1

3(ρ(i))
2

)
if ρ(i) ∈ (1, ρ] .

Let us consider the estimation of ρ(i) with using the next statistics: the full quadratic variation

1
nhn

n

∑
k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)2
→P



ν0

(
A(i,i) (·)

)
if ρ

(i)
? = 0,

ν0

(
A(i,i) (·)

)(
1− ρ

(i)
?
3

)
if ρ

(i)
? ∈ (0, 1] ,

ν0

(
A(i,i) (·)

)(
1

ρ
(i)
?

− 1

3
(

ρ
(i)
?

)2

)
if ρ

(i)
? ∈ (1, ρ] ,
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because of Proposition 3 in supplementary material Appendix A, and the reduced quadratic variation

defined as 1
nhn

∑2≤2k≤n

(
X(i)

2khn ,n − X(i)
(2k−2)hn ,n

)2
converges in probability as follows.

Lemma 1. Under [A1], we have the convergence in probability such that

1
nhn

∑
2≤2k≤n

(
X(i)

2khn ,n − X(i)
(2k−2)hn ,n

)2

→P



ν0

(
A(i,i) (·)

)
if ρ

(i)
? = 0,

ν0

(
A(i,i) (·)

)(
1− ρ

(i)
?
6

)
if ρ

(i)
? ∈ (0, 2] ,

ν0

(
A(i,i) (·)

)(
2

ρ
(i)
?

− 4

3
(

ρ
(i)
?

)2

)
if ρ

(i)
? ∈ (2, ρ] .

Then we define the ratio of those statistics such that

R(i)
n :=

(
1

nhn

n

∑
k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)2
)(

1
nhn

∑
2≤2k≤n

(
X(i)

2khn ,n − X(i)
(2k−2)hn ,n

)2
)−1

→P



1 if ρ
(i)
? = 0,(

1− ρ
(i)
?
3

)(
1− ρ

(i)
?
6

)−1
if ρ

(i)
? ∈ (0, 1] ,(

1
ρ
(i)
?

− 1

3
(

ρ
(i)
?

)2

)(
1− ρ

(i)
?
6

)−1
if ρ

(i)
? ∈ (1, 2] ,(

1
ρ
(i)
?

− 1

3
(

ρ
(i)
?

)2

)(
2

ρ
(i)
?

− 4

3
(

ρ
(i)
?

)2

)−1

if ρ
(i)
? ∈ (2, ρ]

=



1 if ρ(i) = 0,(
6− 2ρ

(i)
?

) (
6− ρ

(i)
?

)−1
if ρ

(i)
? ∈ (0, 1] ,(

6ρ
(i)
? − 2

)(
6
(

ρ
(i)
?

)2
−
(

ρ
(i)
?

)3
)−1

if ρ
(i)
? ∈ (1, 2] ,(

3ρ
(i)
? − 1

) (
6ρ

(i)
? − 4

)−1
if ρ

(i)
? ∈ (2, ρ] ,

=: R
(

ρ
(i)
?

)
,

where R has the next property.

Lemma 2. R is a
[
(3ρ− 1) (6ρ− 4)−1 , 1

]
-valued monotonically decreasing continuous function, and has a

continuous inverse R−1 :
[
(3ρ− 1) (6ρ− 4)−1 , 1

]
→ [0, ρ].

We define ρ̂n such that

ρ̂
(i)
n :=


0 if R(i)

n > 1,

R−1
(

R(i)
n

)
if R(i)

n ∈
[
(3ρ− 1) (6ρ− 4)−1 , 1

]
,

ρ if R(i)
n < (3ρ− 1) (6ρ− 4)−1 ,

and then continuous mapping theorem for convergence in probability verifies the next result.

Theorem 1. Under [A1], ρ̂n has consistency, i.e., ρ̂n →P ρ?.
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Remark 2. We can compute y = R−1 (x) , x ∈
[
(3ρ− 1) (6ρ− 4)−1 , 1

]
by solving the following equations:

(i) x = (6− 2y) (6− y)−1 if x ∈ (4/5, 1] ,

(ii) x = (6− 2y)
(

6y2 − y3
)−1

if x ∈ (5/8, 4/5] ,

(iii) x = (3y− 1) (6y− 4)−1 if x ∈
[
(3ρ− 1) (6ρ− 4)−1 , 5/8

]
.

3.2. Test for Smoothed Observation

For all i = 1, . . . , d, we consider the next hypothesis testing:

H0 : ρ(i) = 0, H1 : ρ(i) > 0.

Let us consider the following test statistic:

Ti,n :=
√√√√ n

2
3nh2

n
∑n

k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)4

×
(

1
nhn

n

∑
k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)2
− 1

nhn
∑

2≤2k≤n

(
X(i)

2khn ,n − X(i)
(2k−2)hn ,n

)2
)

=

√√√√ 3/2

∑n
k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)4

×
(

n

∑
k=1

(
X(i)

k,n − X(i)
k−1,n

)2
− ∑

2≤2k≤n

(
X(i)

2khn ,n − X(i)
(2k−2)hn ,n

)2
)

,

and we abbreviate Ti,n to Tn if d = 1. Under H0, we have the next result.

Theorem 2. Under H0 and [A1], we have the convergence in law such that

Ti,n →L N (0, 1) .

We also obtain the result to support the consistency of the test.

Theorem 3. Under H1 and [A1], we have convergence such that for any c ∈ R,

P (Ti,n < c)→ 1.

Remark 3. These results are intuitive since the quadratic variation and the reduced one with some appropriate
scaling should converge to the same value if H0 holds and the quadratic variation with some appropriate scaling
should converge to the value which is smaller than the value which the reduced one with scaling converge to.

Hence when we set the significance level αsig ∈ (0, 1), then we have the rejection region

Ti,n < Φ−1 (αsig
)

where Φ is the distribution function of the standard Gaussian distribution. Theorem 3 supports the
consistency of the test.

This test is essential in terms of examining the validity to consider the scheme of convolutional
observation: if ρ = 0, then the ordinary observation scheme can be applied, but if ρ 6= 0, then we have
the motivation to consider the convolutional observation scheme.
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4. Least Square Estimation of the Diffusion and Drift Parameters

Let us set the least-square quasi-likelihood functions such that

H1,n (α|ρ) := −
n

∑
k=1

∥∥∥∥ 1
hn

(
Xkhn ,n − X(k−1)hn ,n

)⊗2
−G

(
X(k−1)hn ,n, α|ρ

)∥∥∥∥2
,

H2,n (β|ρ) := −
n

∑
k=[maxi ρ(i)]+2

1
hn

∣∣∣Xkhn ,n − X(k−1)hn ,n − hnb
(

X(k−2−[maxi ρ(i)])hn ,n, β
)∣∣∣2 ,

and the least-square estimators α̂n and β̂n satisfying

H1,n (α̂n|ρ?) = sup
α∈Θ1

H1,n (α|ρ?) , H2,n
(

β̂n|ρ?
)
= sup

β∈Θ2

H2,n (β|ρ?) .

when ρ? is known, and

H1,n (α̂n|ρ̂n) = sup
α∈Θ1

H1,n (α|ρ̂n) , H2,n
(

β̂n|ρ̂n
)
= sup

β∈Θ2

H2,n (β|ρ̂n) .

when ρ? is unknown.

Theorem 4. Under [A1]–[A3], α̂n and β̂n are consistent, i.e., α̂n →P α? and β̂n →P β?.

Remark 4. The function G and fG are indeed complex and confusing; hence, we can consider some alternative
estimation methods with subsampling or pre-averaging. However, these methods also have the problem what
size of subsampling or pre-averaging is proper and the result of the estimation can be dependent on tuning the
subsampling size or pre-averaging one. Therefore, our work proposes the estimation method which uses the
observation without subsampling or pre-averaging.

5. Simulations

In this simulation section, we only consider the case where ρ is unknown and should be estimated
by data with the method proposed in Section 3.

5.1. 1-Dimensional Simulation

We examine the following 1-dimensional stochastic differential equation whose solution is a
1-dimensional Ornstein–Uhlenbeck (OU) process:

dXt =
(

β(1)Xt + β(2)
)

dt + αdwt, X−λ = 0,

α ∈ Θ1 := [0.01, 10], β ∈ Θ2 := [−10,−0.01] × [−10, 10], and λ = 10−7/3. The procedure of the
simulation is as follows: in the first place we iterate an approximated OU process by Euler–Maruyama
scheme, for example, see [26] with simulation parameters nsim = 105+m, hsim = 10−10/3−m, Tsim =

105/3 where m ∈ N is a parameter to determine the precision of approximation; secondly, we give the
approximation of convolution by summation such that

Xihn ,n u

 1
[10mρ] ∑10m−1

k=0 Xihn−khsim if [10mρ] ≥ 1,

Xihn if [10mρ] < 0,

where i = 0, . . . , n, the sampling frequency hn = 10−10/3 and n = 105/3. In this Section 5.1, we fix the
true value of α and β as α? = 3 and β? = [−2, 1]T , and change the true value of ρ ∈ Θρ := [0, 100] to see
the corresponding changes of performance of estimation for ξ, and test for ρ in comparison to estimation
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by an existent method called local Gaussian approximation (LGA) for parametric estimation of
discretely observed diffusion processes, e.g., see [4] which does not concern convolutional observation.
All the numbers of iterations for different ρ’s are 1000.

In the first place, we see the estimation and test with small values of ρ? such that
ρ? = 0, 0.1, 0.2, . . . , 1 to observe how the performance of statistics changes by difference in ρ. Table 1
summarises the results of simulation of ρ̂n for ρ’s with respective empirical means and root mean
square error (RMSE).

Table 1. Estimation performance of ρ with small ρ.

ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mean 0.00990 0.0971 0.198 0.298 0.398 0.498 0.598 0.699 0.799 0.899 0.999

RMSE (0.0182) (0.0256) (0.0235) (0.0215) (0.0197) (0.0180) (0.0164) (0.0150) (0.0135) (0.0123) (0.0110)

We can see the proposed estimator ρ̂n works well for small ρ. With respect to the performance of
the test statistic Tn proposed in Section 3.2, Table 2 shows the empirical ratio of the number of iterations
whose Tn is lower than some typical critical values where Φ indicates the distribution function of
1-dimensional standard Gaussian distribution as well as the maximum value of Tn in 1000 iterations.

Table 2. Empirical ratio of test statistic Tn less than some critical values, and the maximum value of Tn

in 1000 iterations.

Empirical Ratio of Tn Less Than ... Max. of Tn
Φ−1 (0.10) Φ−1 (0.05) Φ−1 (0.025) Φ−1 (0.01) Φ−1 (0.001)

ρ = 0.0 0.101 0.053 0.025 0.005 0.000 3.060
ρ = 0.1 0.989 0.980 0.966 0.914 0.759 −0.710
ρ = 0.2 1.000 1.000 1.000 1.000 1.000 −4.593
ρ = 0.3 1.000 1.000 1.000 1.000 1.000 −9.341
ρ = 0.4 1.000 1.000 1.000 1.000 1.000 −13.985
ρ = 0.5 1.000 1.000 1.000 1.000 1.000 −19.152
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 −24.816
ρ = 0.7 1.000 1.000 1.000 1.000 1.000 −30.848
ρ = 0.8 1.000 1.000 1.000 1.000 1.000 −37.557
ρ = 0.9 1.000 1.000 1.000 1.000 1.000 −44.829
ρ = 1.0 1.000 1.000 1.000 1.000 1.000 −52.759

Even for ρ = 0.1, the simulation result supports the theoretical discussion of the test with
consistency. Because Φ

(
10−16) = −8.222, all the iterations with ρ ≥ 0.3 result in rejection of H0 with

substantially significance level 10−16. Let us see the estimation for α and β by our proposal method
and that by the LGA in Table 3.
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Table 3. Estimation of θ by the proposed method and LGA with small ρ.

The Proposed Method LGA

α β(1) β(2) α β(1) β(2)

True Value 3.0 −2.0 1.0 3.0 −2.0 1.0

ρ = 0.0 mean 3.004 −2.091 1.036 2.999 −2.095 1.037
RMSE (0.0109) (0.318) (0.497) (0.00679) (0.320) (0.497)

ρ = 0.1 mean 2.999 −2.091 1.035 2.949 −2.026 1.003
RMSE (0.0146) (0.319) (0.496) (0.0509) (0.297) (0.480)

ρ = 0.2 mean 2.998 −2.091 1.035 2.898 −1.955 0.967
RMSE (0.0142) (0.319) (0.496) (0.102) (0.290) (0.464)

ρ = 0.3 mean 2.998 −2.092 1.036 2.846 −1.885 0.932
RMSE (0.0139) (0.319) (0.497) (0.155) (0.299) (0.452)

ρ = 0.4 mean 2.998 −2.091 1.036 2.792 −1.815 0.897
RMSE (0.0135) (0.319) (0.497) (0.208) (0.324) (0.442)

ρ = 0.5 mean 2.998 −2.092 1.036 2.738 −1.744 0.862
RMSE (0.0132) (0.319) (0.497) (0.262) (0.361) (0.436)

ρ = 0.6 mean 2.998 −2.091 1.036 2.683 −1.674 0.827
RMSE (0.0129) (0.319) (0.497) (0.317) (0.408) (0.434)

ρ = 0.7 mean 2.998 −2.092 1.036 2.626 −1.604 0.792
RMSE (0.0126) (0.319) (0.497) (0.374) (0.460) (0.434)

ρ = 0.8 mean 2.998 −2.092 1.036 2.568 −1.534 0.757
RMSE (0.0124) (0.319) (0.496) (0.432) (0.517) (0.439)

ρ = 0.9 mean 2.998 −2.092 1.036 2.509 −1.464 0.722
RMSE (0.0121) (0.319) (0.497) (0.491) (0.578) (0.445)

ρ = 1.0 mean 2.998 −2.091 1.036 2.449 −1.394 0.687
RMSE (0.0119) (0.319) (0.497) (0.551) (0.640) (0.456)

Note that the biases of the estimation by LGA increase as the true value of ρ gets larger, while
the estimation by our proposal method is not influenced by the true value of ρ. This result of the
simulation supports the theoretical discussion in Section 4 stating the consistency of θ̂n, and necessity
to consider the convolutional observation scheme where the LGA method does not work properly.

Secondly, we consider the estimation and test with large ρ? such that ρ? = 10, 15, 20 to see if our
proposal methods work even for large ρ. We note that the maximum values of Tn for ρ = 10, 15, 20 in
1000 iterations are −55.091, −68.462 and −79.105, and hence we can detect the smoothed observation
easily. Table 4 shows the empirical means and RMSEs of ρ̂n for ρ = 10, 15, 20 and we can see that the
RMSEs increase as ρ’s increase; it indicates the difficulty to estimate ρ accurately when ρ? is large.

Table 4. The performance of ρ̂n for ρ = 10, 15, 20 in 1000 iterations.

ρ = 10 ρ = 15 ρ = 20

mean of ρ̂n 9.919 14.980 19.751

RMSE of ρ̂n (0.145) (0.240) (0.409)

Table 5 summarises the estimation for θ by means and RMSE, and tells us that although the large
RMSE of ρ̂n results in increase of RMSE of α̂n, estimation by our method is substantially better than
that by LGA.
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Table 5. Estimation of θ by the proposed method with large ρ.

The Proposed Method LGA

α β(1) β(2) α β(1) β(2)

True Value 3.0 −2.0 1.0 3.0 −2.0 1.0

ρ = 10 mean 2.989 −2.101 1.030 0.933 −0.204 0.0811
RMSE (0.0347) (0.323) (0.496) (2.067) (1.796) (0.920)

ρ = 15 mean 2.996 −2.095 1.027 0.765 −0.138 0.0473
RMSE (0.0475) (0.321) (0.495) (2.235) (1.862) (0.953)

ρ = 20 mean 2.977 −2.090 1.024 0.664 −0.104 0.0302
RMSE (0.0526) (0.319) (0.493) (2.336) (1.896) (0.970)

5.2. 2-Dimensional Simulation

We consider the following 2-dimensional stochastic differential equation whose solution is a
2-dimensional OU process:

d

[
X(1)

t

X(2)
t

]
=

([
β(1) β(2)

β(4) β(5)

] [
X(1)

t

X(2)
t

]
+

[
β(3)

β(6)

])
dt +

[
α(1) α(2)

α(2) α(3)

]
dwt, X−λ =

[
0
0

]
,

λ = 10−7/3. The simulation is conducted with the settings as follows: firstly, we iterate the OU
process by Euler–Maruyama scheme with the simulation sample size nsim = 105+m, Tsim = 105/3 and
discretisation step hsim = 10−10/3−m, where m = 2 is the precision parameter for approximation of
convolution; in the second place, we approximate the convoluted process with summation such that

X(j)
ihn ,n u


1

[10mρ(j)] ∑10m−1
k=0 X(j)

ihn−khsim
if
[
10mρ(j)

]
≥ 1,

X(j)
ihn

if
[
10mρ(j)

]
< 0,

where i = 0, . . . , n, j = 1, 2, the sampling scheme for inference is defined as n = 105 and hn = 10−10/3;
the true value of ρ, α and β are set as ρ? = [2, 4]T , α? = [2, 0, 3]T , β? = [−2,−0.4, 0, 0.1,−3, 5]T ;
the parameter spaces are defined as Θρ = [0, 10]2, Θ1 =

[
1 + 10−8, 10

]
×
[
−1 + 10−8, 1− 10−8] ×[

1 + 10−8, 10
]
, and Θ2 = [−10, 10]6; the total iteration number is set to 1000.

Table 6 summarises the estimation for ρ with the method proposed in Section 3 (the inverse of
r is computationally obtained) with empirical means and empirical RMSEs of ρ̂n in 1000 iterations.
We can see that ρ̂n is sufficiently precise to estimate the true value of ρ indeed in this result, which is
significant to estimate the other parameters α and β.

Table 6. Summary for ρ estimate.

ρ(1) ρ(2)

true value 2.0 4.0
empirical mean 1.988 3.966
empirical RMSE (0.0207) (0.0514)

We also note that the maximum values of the test statistics for smoothed observation proposed in
Section 3.2 in 1000 iterations are −17.947 and −33.159 for each axis. The p-value for them are smaller
than 10−16; therefore, we can conclude that it is possible to detect the smoothed observation with the
proposed test statistic in the case ρ(i) = 2.0 if d = 2 from this result.

With respect to the estimation for α and β, we compare the estimates by our proposal method
with that by LGA which does not concern convolutional observation. Table 7 is the summary for α

estimate by both the methods:
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Table 7. Summary for α estimate.

α(1) α(2) α(3)

True Value 2.0 0.0 3.0

Our proposal mean 1.993 0.000256 2.992
RMSE (0.0115) (0.00739) (0.0213)

LGA mean 1.295 −0.00320 1.442
RMSE (0.705) (0.0154) (1.558)

We can see that the estimation precision for α by our proposal outperforms those by LGA. This
results support validity of our estimation method if we have convolutional observation for diffusion
processes. Regarding β, the simulation result is summarised in Table 8:

Table 8. Summary for β estimate.

β(1) β(2) β(3) β(4) β(5) β(6)

True Value −2.0 −0.4 0.0 0.1 −3.0 5.0

Our proposal mean −2.137 −0.408 −0.0439 0.0788 −3.103 5.091
RMSE (0.362) (0.252) (0.540) (0.473) (0.399) (0.777)

LGA mean −0.917 0.340 −0.326 −0.696 0.221 1.243
RMSE (1.093) (0.802) (0.386) (0.804) (3.242) (3.765)

Though the estimation for β(3) by our method has the smaller bias in comparison to that by
LGA, the RMSE of our method is larger than that of LGA; in the estimation for other parameters, our
proposal method outperforms the method by LGA. We can conclude that our proposal for estimation
of α and β concerning convolutional observation performs better than that not considering this
observation scheme.

6. Real Data Analysis

In this section, we analyse the EEG dataset named S02E.mat provided in “2. Two class motor
imagery (002-2014)” of BNCI Horizon 2020 [20]. The datasets including S02E.mat are also studied by
Steryl et al. [27].

6.1. Estimation and Test for the Smoothing Parameters

In the first place, we pick up the first 15 axes of the dataset and compute ρ̂n and Tn proposed in
Section 3.1 and Section 3.2 respectively. The results are shown in Table 9.

We can observe that all the 15 time series data have the smoothing parameter ρ > 0 with statistical
significance when we assume ordinary significance levels. These results motivate us to use our
methods for parametric estimation proposed in Section 4 when we fit stochastic differential equations
for these data.
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Table 9. The values of ρ̂n and Tn for the first 15 axes of S02.mat by BNCI Horizon 2020 [20].

1st axis 2nd axis 3rd axis 4th axis 5th axis

ρ̂n 0.449 1.037 0.894 0.736 0.937
Tn −20.398 −58.631 −46.649 −35.201 −49.741

6th axis 7th axis 8th axis 9th axis 10th axis

ρ̂n 0.951 0.971 1.017 0.958 0.967
Tn −51.392 −52.607 −55.455 −51.221 −51.797

11th axis 12th axis 13th axis 14th axis 15th axis

ρ̂n 0.949 0.649 0.952 0.977 0.932
Tn −50.457 −30.094 −50.633 −50.978 −48.842

6.2. Parametric Estimation for a Diffusion Process

We fit a 1-dimensional OU process for the time series data in the 2nd column of the data file
S02E.mat with 512 Hz observation for 222 s (the plot of the path can be seen in Figure 1), whose
ρ̂n = 1.037 is the largest among those for the 15 axes and it is larger than 0 with statistical significance.
According to the simulation result shown in Section 5.1, this size of the smoothing parameter
gives critical biases when we estimate α and β with LGA method not concerning convolutional
observation scheme.

The stochastic differential equation with parameters α ∈ Θ1 := [0.01, 200] and β ∈ Θ2 :=
[−100,−0.01]× [−100, 100] is defined as follows:

dXt =
(

β(1)Xt + β(2)
)

dt + αdwt, X−λ = x−λ.

We set 5 s as the time unit: hence n = 113,664 and hn = 1/ (5× 512). If we fit the OU process
with the LGA method, i.e., we do not concern convolutional observation scheme, we obtain the fitting
result such that

dXt = ((−17.378) Xt + (−1.091))dt + (122.892)dwt, X−λ = x−λ.

In the next place, we fit α and β with the least square method proposed in Section 4, and then we
have the next fitting result:

dXt = ((−2.146) Xt + (0.552))dt + (151.919)dwt, X−λ = x−λ.

It is worth noting that this fitting result is substantially different to that by LGA as shown above:
hence these results indicate the significance to examine if the observation is convoluted with the
smoothing parameter ρ > 0 and otherwise the estimation is strongly biased.

7. Summary

We have discussed the convolutional observation scheme which deals with the smoothness
of observation in comparison to ordinary diffusion processes. The first contribution is to propose
this new observation scheme with the statistical test to confirm whether this scheme is valid in real
data. The second one is to prove consistency of the estimator ρ̂n for the smoothing parameter ρ,
those for parameters in diffusion and drift coefficient, i.e., α and β, of the latent diffusion process {Xt}.
Thirdly, we have examined the performance of those estimators and the test statistics in computational
simulation, and verified these statistics work well in realistic settings. In the fourth place, we have
shown a real example of observation where ρ 6= 0 holds with statistical significance.

If we combine the test for noise detection by Nakakita and Uchida [28] and that for smoothed
observation proposed in this paper, we can test if the observed process is diffusion or not in terms that
the observation is noisy or smoothed. Note that the realised volatilities of the noisy observation
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of diffusion processes increase as observation frequency increases while those of the smoothed
observation decreases as the frequency grows. On that point, the noisy observation in ordinary
meaning and the smoothed one are ‘opposite’ to each other.

These contributions, especially the third one, will cultivate the motivation to study statistical
approaches for convolutionally observed diffusion processes furthermore, such as estimation of kernel
function V appearing in the convoluted diffusion Xt := (V ∗ X) (t), test theory for parameters α

and β as likelihood-ratio-type test statistics, for example, see [29,30], large deviation inequalities for
quasi-likelihood functions and associated discussion of Bayes-type estimators, e.g., [6,31–33]. By these
future works, it is expected that the applicability of stochastic differential equations in real data analysis
and contributions to the areas with high frequency observation of phenomena such as EEG will be
enhanced.

8. Proofs

8.1. the Results for Some Laws of Large Numbers

In this subsection, we give the notations and statements of propositions without proofs except
for Proposition 3: the detailed proofs are given in supplementary material. We assume ∆ ≤ λ,
k ∈ N, M > 0, and consider a class of Rk ⊗ Rd-valued kernel functions on R denoted as K (∆, k, M)

such that for all Φ∆ ∈ K (∆, k, M), it holds:

(i) suppΦ∆ ⊂ [0, ∆] ,

(ii) for all f : [0, ∆]×Ω→ Rk, ω ∈ Ω,
∣∣∣∣∫ ∆

0
Φ∆ (∆− s) f (s, ω)ds

∣∣∣∣ ≤ M sup
s∈[0,∆]

| f (s, ω)|

(iii) for all t0 ≥ −λ, f : Rd → Rwhich is continuous and at most polynomial growth,

E
[∫ t

t−∆
Φ∆ (t− s) f (Xs)ds

∣∣∣∣Ft0

]
=
∫ t

t−∆
Φ∆ (t− s) E [ f (Xs)| Ft0 ]ds.

Remark 5. Note one sufficient condition for Φ∆ ∈ K (∆, k, M) is (i) Φ∆ : R → Rk ⊗ Rd, (ii) suppΦ∆ ⊂
[0, ∆], (iii)

∫ ∆
0 ‖Φ∆ (∆− s)‖ds ≤ M and (iv) B ([0, ∆])-measurable since∣∣∣∣∫ ∆

0
Φ∆ (∆− s) f (s, ω)ds

∣∣∣∣ ≤ ∫ ∆

0
‖Φ∆ (∆− s)‖ | f (s, ω)|ds ≤ M sup

s∈[0,∆]
| f (s, ω)|

for the Cauchy–Schwarz inequality, and Fubini’s theorem.

It is easily checked that Vρ,hn ∈ K (maxi=1,...,d ρihn, d, d).
Let p denote an integer such that supn∈N phn ≤ λ, ∆n := phn. We set the sequence of the kernels

{Φ∆n ,n}n∈N such that Φ∆n ,n ∈ K (∆n, d, M) for some M > 0,
∫ ∆n

0 Φ∆n ,nds = Id and there exist a matrix
B ∈ Rd ⊗ Rd such that∥∥∥∥∫ ∆n+hn

0
(Φ∆n ,n ((∆n + hn)− s)−Φ∆n ,n (∆n − s)) sds− hnB

∥∥∥∥ ≤ Ch2
n (1 + |x|)

C ,



Entropy 2020, 22, 1031 16 of 25

a set L ⊂ {0, . . . , p} such that there exist functions D` : Rd → Rd ⊗ Rd for ` ∈ L such that∥∥∥∥E
[(∫ ∆n+(1+`)hn

0
Φ∆n ,n (∆n − s1)

(∫ s1

0
a (x)dws2

)
ds1

)
(∫ ∆n+(1+`)hn

0
(Φ∆n ,n ((∆n + (1 + `) hn)− s1)−Φ∆n ,n (∆n + `hn − s1))

×
(∫ s1

0
a (x)dws2

)
ds1

)T
]
− hnD` (x)

∥∥∥∥∥
≤ Ch2

n (1 + |x|)
C ,

a function G : Rd → Rd ⊗ Rd such that∥∥∥∥E
[(∫ ∆n+hn

0
(Φ∆n ,n ((∆n + hn)− s1)−Φ∆n ,n (∆n − s1))

(∫ s1

0
a (x)dws2

)
ds1

)
(∫ ∆n+hn

0
(Φ∆n ,n ((∆n + hn)− s1)−Φ∆n ,n (∆n − s1))

(∫ s1

0
a (x)dws2

)
ds1

)T
]

−hnG (x)‖

≤ Ch2
n (1 + |x|)

C .

We define

Xt,n =
∫ t

t−∆n
Φ∆n ,n (t− s) Xsds,

and the following random quantities such that

νn ( f (·, ξ)) :=
1
n

n

∑
i=1

f
(
Xihn ,n, ξ

)
,

I`,n (v (·, ξ)) :=
1

nhn

n

∑
i=1+`

v
(

X(i−1−`)hn ,n, ξ
) [

Xihn ,n − X(i−1)hn ,n − (hnB) b
(

X(i−1−`)hn ,n

)]
,

Qn (M (·, ξ)) :=
1

nhn

n

∑
i=1

M
(

X(i−1)hn ,n, ξ
) [(

Xihn ,n − X(i−1)hn ,n

)⊗2
]

,

where f : Rd × Ξ → R, v : Rd × Ξ → Rd, M : Rd × Ξ → Rd ⊗ Rd are in C2-class, and their first and
second derivatives and themselves are at most polynomial growth uniformly in ξ ∈ Ξ.

Proposition 1. Under [A1], νn ( f (·, ξ))→P ν0 ( f (·, ξ)) uniformly in ξ ∈ Ξ.

Proposition 2. If ` ∈ L and [A1] hold, I`,n (v (·, ξ))→P ν0
(
∂xv

[
DT
`

]
(·, ξ)

)
uniformly in ξ ∈ Ξ.

Proposition 3. Under [A1], Qn (M (·, ξ))→P ν0 (M [G] (·, ξ)) uniformly in ξ ∈ Ξ.

We set p = [ρ] + 1, ∆n = phn and see the evaluation of B, D` and G when setting our kernel

{Φ∆,n} =
{

Vρ,hn

}
as follows (for the derivation of the evaluation, see the supplementary material):

we have ∆n = phn, B = Id, D0 (x) = D0 (x|ρ)|ρ=ρ?
, where D(i,j)

0 (x|ρ) = A(i,j) (x) fD0

(
ρ(i), ρ(j)

)
,
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fD0

(
ρ(i), ρ(j)

)
:=



0 if ρ(j) = 0,
ρ(j)

2 if ρ(i) = 0, ρ(j) ∈ (0, 1] ,
2ρ(j)−1

2ρ(j) if ρ(i) = 0, ρ(j) ∈ (1, ρ] ,

6ρ(i)ρ(j)−3(ρ(i))
2−3ρ(i)

6ρ(i)ρ(j) if ρ(i) > 0, ρ(i) + 1 < ρ(j),

(ρ(i)−ρ(j))
3
+3(ρ(j))

2−3ρ(j)+1
6ρ(i)ρ(j) if ρ(j) > 1, ρ(i) < ρ(j) ≤ ρ(i) + 1,

3(ρ(j))
2−3ρ(j)+1

6ρ(i)ρ(j) if ρ(j) > 1, ρ(i) ≥ ρ(j),

(ρ(i)−ρ(j))
3
+(ρ(j))

3

6ρ(i)ρ(j) if ρ(j) ∈ (0, 1] , ρ(i) ∈
(

0, ρ(j)
)

,

(ρ(j))
3

6ρ(i)ρ(j) if ρ(j) ∈ (0, 1] , ρ(i) ≥ ρ(j),

D` = O for ` ≥
[
maxi=1,...,d ρ

(d)
∗
]
+ 1 because of independent increments of the Wiener process, and

G (x) = G (x|ρ)|ρ=ρ?
where G (x|ρ) = G (x, α|ρ)|α=α?

.

8.2. Proof of the Results in Section 3.1

Proof of Lemma 1. By following the proof of the Proposition 3, it is sufficient to evaluate

∫ (p+2)hn

0

∫ (p+2)hn

0
A(i,i) (x)min

{
s, s′
} (

V(i,i)
ρ,hn

((p + 2) hn − s)−V(i,i)
ρ,hn

(phn − s)
)

(
V(i,i)

ρ,hn

(
(p + 2) hn − s′

)
−V(i,i)

ρ,hn

(
phn − s′

))
ds′ds

for the asymptotic behaviour of the reduced quadratic variation by choosing

M(`1,`2) =

{
1 if `1 = `2 = i,

0 otherwise.

If ρ(i) = 0,

∫ (p+2)hn

0

∫ (p+2)hn

0
A(i,i) (x)min

{
s, s′
} (

V(i,i)
ρ,hn

((p + 2) hn − s)−V(i,i)
ρ,hn

(phn − s)
)

(
V(i,i)

ρ,hn

(
(p + 2) hn − s′

)
−V(i,i)

ρ,hn

(
phn − s′

))
ds′ds

= A(i,i) (x)
∫ (p+2)hn

0

∫ (p+2)hn

0
min

{
s, s′
}
(δ ((p + 2) hn − s)− δ (phn − s))(

δ
(
(p + 2) hn − s′

)
− δ

(
phn − s′

))
ds′ds

= A(i,i) (x) ((p + 2) hn − 2phn + phn)

= 2hn A(i,i) (x) ,
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and if ρ(i) ∈ (0, ρ],

∫ (p+2)hn

0

∫ (p+2)hn

0
A(i,i) (x)min

{
s, s′
} (

V(i,i)
ρ,hn

((p + 2) hn − s)−V(i,i)
ρ,hn

(phn − s)
)

(
V(i,i)

ρ,hn

(
(p + 2) hn − s′

)
−V(i,i)

ρ,hn

(
phn − s′

))
ds′ds

=
A(i,i) (x)(
ρ(i)hn

)2

∫ (p+2)hn

0

∫ (p+2)hn

0
min

{
s, s′
}

×
(

1[0,ρ(i)hn] ((p + 2) hn − s)− 1[0,ρ(i)hn] (phn − s)
)

×
(

1[0,ρ(i)hn]
(
(p + 2) hn − s′

)
− 1[0,ρ(i)hn]

(
phn − s′

))
ds′ds

=
A(i,i) (x)(
ρ(i)hn

)2

∫ (p+2)hn

(p+2−ρ(i))hn

∫ (p+2)hn

(p+2−ρ(i))hn
min

{
s, s′
}

ds′ds

− 2A(i,i) (x)(
ρ(i)hn

)2

∫ (p+2)hn

(p+2−ρ(i))hn

∫ phn

(p−ρ(i))hn
min

{
s, s′
}

ds′ds

+
A(i,i) (x)(
ρ(i)hn

)2

∫ phn

(p−ρ(i))hn

∫ phn

(p−ρ(i))hn
min

{
s, s′
}

ds′ds

=
A(i,i) (x)(
ρ(i)hn

)2

∫ (p+2)hn

(p+2−ρ(i))hn

(∫ (p+2)hn

s
sds′ +

∫ s

(p+2−ρ(i))hn
s′ds′

)
ds

− 2A(i,i) (x)(
ρ(i)hn

)2 1(2,ρ]

(
ρ(i)
) ∫ (p+2)hn

phn

∫ phn

(p−ρ(i))hn
s′ds′ds

− 2A(i,i) (x)(
ρ(i)hn

)2 1(2,ρ]

(
ρ(i)
) ∫ phn

(p+2−ρ(i))hn

(∫ phn

s
sds′ +

∫ s

(p−ρ(i))hn
s′ds′

)
ds

− 2A(i,i) (x)(
ρ(i)hn

)2 1(0,2]

(
ρ(i)
) ∫ (p+2)hn

(p+2−ρ(i))hn

∫ phn

(p−ρ(i))hn
s′ds′ds

+
A(i,i) (x)(
ρ(i)hn

)2

∫ phn

(p−ρ(i))hn

(∫ phn

s
sds′ +

∫ s

(p−ρ(i))hn
s′ds′

)
ds

=


2hn A(i,i) (x)

(
1− ρ(i)

6

)
if ρ(i) ∈ (0, 2] ,

2hn A(i,i) (x)
(

2
ρ(i)
− 4

3(ρ(i))
2

)
if ρ(i) ∈ (2, ρ] .

Hence, we obtain the proof (for details, see the supplementary material).

Proof of Lemma 2. Continuity is obvious, and monotonicity is obtained as follows: if ρ(i) ∈ (0, 1],

d
dρ(i)

(
6− 2ρ(i)

) (
6− ρ(i)

)−1
=
(
(−2)

(
6− ρ(i)

)
−
(

6− 2ρ(i)
)
(−1)

) (
6− ρ(i)

)−2

= (−12)
(

6− ρ(i)
)−2

< 0,
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and if ρ(i) ∈ (1, 2],

d
dρ(i)

(
6ρ(i) − 2

)(
6
(

ρ(i)
)2
−
(

ρ(i)
)3
)−1

=

(
6
(

6
(

ρ(i)
)2
−
(

ρ(i)
)3
)
−
(

6ρ(i) − 2
)(

12ρ(i) − 3
(

ρ(i)
)2
))(

6
(

ρ(i)
)2
−
(

ρ(i)
)3
)−2

= 6ρ(i)
(
−7ρ(i) + 4 + 2

(
ρ(i)
)2
)(

6
(

ρ(i)
)2
−
(

ρ(i)
)3
)−2

< 0,

and if ρ(i) ∈ (2, ρ],

d
dρ(i)

(
3ρ(i) − 1

) (
6ρ(i) − 4

)−1
= (−18)

(
6ρ(i) − 4

)−2
< 0.

The inverse can be obtained directly.

Proof of Theorem 1. It follows from Lemma 1, 2 and continuous mapping theorem.

8.3. Proofs of the Results in Section 3.2

Proof of Theorem 2. We can clearly prove the result by using Lemma 7 in Kessler [4], Proposition 7 in
Nakakita and Uchida [28], and Slutsky’s theorem.

Proof of Theorem 3. By Lemma 1, there exists a number ` < 0 such that

1
nhn

n

∑
k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)2
− 1

nhn
∑

2≤2k≤n

(
X(i)

2khn ,n − X(i)
(2k−2)hn ,n

)2
→P ` < 0,

and hence it is sufficient to show that

sup
n∈N

E

[
2

3nh2
n

n

∑
k=1

(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)4
]
< ∞;

and it is obvious that(
X(i)

khn ,n − X(i)
(k−1)hn ,n

)4
≤ C

(
X(i)

khn ,n − X(k−ρ−1)hn

)4
+ C

(
X(i)
(k−1)hn ,n − X(k−ρ−1)hn

)4
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and

E
[(

X(i)
khn ,n − X(k−ρ−1)hn

)4
∣∣∣∣F(k−ρ−1)hn

]

= E

( 1

ρ
(i)
? hn

∫ khn(
k−ρ

(i)
?

)
hn

(
X(i)

s − X(k−ρ−1)hn

)
ds

)4
∣∣∣∣∣∣F(k−ρ−1)hn


≤ E

( 1

ρ
(i)
? hn

∫ khn(
k−ρ

(i)
?

)
hn

∣∣∣X(i)
s − X(k−ρ−1)hn

∣∣∣ds

)4
∣∣∣∣∣∣F(k−ρ−1)hn



≤ E


 1

ρ
(i)
? hn

∫ khn(
k−ρ

(i)
?

)
hn

sup
s′∈
[(

k−ρ
(i)
?

)
hn ,khn

]
∣∣∣X(i)

s′ − X(k−ρ−1)hn

∣∣∣ds


4
∣∣∣∣∣∣∣∣F(k−ρ−1)hn


= E

 sup
s∈
[(

k−ρ
(i)
?

)
hn ,khn

]
∣∣∣X(i)

s − X(k−ρ−1)hn

∣∣∣4
∣∣∣∣∣∣∣F(k−ρ−1)hn


≤ Ch2

n

(
1 +

∣∣∣X(k−ρ−1)hn

∣∣∣)C

by Proposition A in Gloter [9], and a parallel result holds for
(

X(i)
(k−1)hn ,n − X(k−ρ−1)hn

)4
. Hence we

obtain the result.

8.4. Proof of the Results in Section 4

Proof of Theorem 4. We only deal with the case where ρ? is unknown because the discussion for the
case where ρ? is known is parallel. First of all, we prove the consistency of α̂n. We obtain that
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∣∣∣∣ 1nH1,n (α|ρ̂n)−
1
n
H1,n (α|ρ?)

∣∣∣∣
=

∣∣∣∣∣− 1
n

n

∑
k=1

∥∥∥∥ 1
hn

(
Xkhn ,n − X(k−1)hn ,n

)⊗2
−G

(
X(k−1)hn ,n, α|ρ̂n

)∥∥∥∥2

+
1
n

n

∑
k=1

∥∥∥∥ 1
hn

(
Xkhn ,n − X(k−1)hn ,n

)⊗2
−G

(
X(k−1)hn ,n, α|ρ?

)∥∥∥∥2
∣∣∣∣∣

≤
∣∣∣∣∣ 2
nhn

n

∑
k=1

(
G
(

X(k−1)hn ,n, α|ρ̂n

)
−G

(
X(k−1)hn ,n, α|ρ?

)) [(
Xkhn ,n − X(k−1)hn ,n

)⊗2
]∣∣∣∣∣

+

∣∣∣∣∣ 1n n

∑
k=1

(∥∥∥G(X(k−1)hn ,n, α|ρ̂n

)∥∥∥2
−
∥∥∥G(X(k−1)hn ,n, α|ρ?

)∥∥∥2
)∣∣∣∣∣

≤ 2
nhn

n

∑
k=1

∣∣∣Xkhn ,n − X(k−1)hn ,n

∣∣∣2
×

d

∑
i=1

d

∑
j=1

∣∣∣A(i,j)
(

X(k−1)hn ,n, α
)∣∣∣ ∣∣∣ fG (ρ̂

(i)
n , ρ̂

(j)
n

)
− fG

(
ρ
(i)
? , ρ

(j)
?

)∣∣∣
+

1
n

n

∑
k=1

d

∑
i=1

d

∑
j=1

∣∣∣A(i,j)
(

X(k−1)hn ,n, α
)∣∣∣2 ∣∣∣ f 2

G

(
ρ̂
(i)
n , ρ̂

(j)
n

)
− f 2

G

(
ρ
(i)
? , ρ

(j)
?

)∣∣∣
≤ C

nhn

n

∑
k=1

(
1 +

∣∣∣X(k−1)hn ,n

∣∣∣)C ∣∣∣Xkhn ,n − X(k−1)hn ,n

∣∣∣2
×

d

∑
i=1

d

∑
j=1

∣∣∣ fG (ρ̂
(i)
n , ρ̂

(j)
n

)
− fG

(
ρ
(i)
? , ρ

(j)
?

)∣∣∣
+

C
n

n

∑
k=1

(
1 +

∣∣∣X(k−1)hn ,n

∣∣∣)C d

∑
i=1

d

∑
j=1

∣∣∣ f 2
G

(
ρ̂
(i)
n , ρ̂

(j)
n

)
− f 2

G

(
ρ
(i)
? , ρ

(j)
?

)∣∣∣
→P 0 uniformly in α,

because continuous mapping theorem holds. Therefore, it follows from Proposition 1 and
Proposition 3 that

1
n
H1,n (α|ρ̂n)−

1
n
H1,n (α?|ρ?)

=
2

nhn

n

∑
k=1

G
(

X(k−1)hn ,n, α|ρ?
) [(

Xkhn ,n − X(k−1)hn ,n

)⊗2
]

− 1
n

n

∑
k=1

∥∥∥G(X(k−1)hn ,n, α|ρ?
)∥∥∥2

− 2
nhn

n

∑
k=1

G
(

X(k−1)hn ,n, α?|ρ?
) [(

Xkhn ,n − X(k−1)hn ,n

)⊗2
]

+
1
n

n

∑
k=1

∥∥∥G(X(k−1)hn ,n, α?|ρ?
)∥∥∥2

+ o∗P (1)

→P V1 (α|ξ?) uniformly in α

where o∗P (1) indicates the term converging in probability to zero uniformly in θ. Then we obtain that
α̂n → α? in the same way as Kessler [4] with Assumption [A3].
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In the next place, we consider the consistency of β̂n. Firstly, we consider the case maxi ρ
(i)
? ∈

(`− 1, `) for an integer ` ∈ {1, . . . , [ρ] + 1}. Then it is sufficient to show

1
nhn

H2,n (β|ρ̂n)−
1

nhn
H2,n (β?|ρ?)→P V2 (β|ξ?) uniformly in β

due to Assumption [A3]. Because the evaluation Dj (x) = O where j ≥
[
maxi=1,...,n ρ

(i)
∗
]
+ 1 using

independent increments of the Wiener process, Proposition 1 and Proposition 2 verify

F` (β)− 1
nhn

H2,n (β?|ρ?)→P V2 (β|ξ?) uniformly in β,

where

Fj (β) := − 1
nh2

n

n

∑
k=1+j

∣∣∣Xkhn ,n − X(k−1)hn ,n − hnb
(

X(k−1−j)hn ,n, β
)∣∣∣2 .

In addition, the exact convergences such that

P
(

1{`}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

)
→ 1, P

(
1{j}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

)
→ 0

hold for all j 6= `, since for all j = 1, . . . , [ρ] + 1,

P
(

1{j}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

)
= P

(
max

i
ρ̂
(i)
n ∈ [j− 1, j)

)
.

Therefore, for any ε > 0,

P

(
sup
β∈Θ2

∣∣∣∣ 1
nhn

H2,n (β|ρ̂n)−
1

nhn
H2,n (β?|ρ?)−V2 (β|ξ?)

∣∣∣∣ > ε

)

≤ ∑
j 6=`

P
(

1{j}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

)

+ P
({

1{`}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

}
∩
{

sup
β∈Θ2

∣∣∣∣F` (β)− 1
nhn

H2,n (β?|ρ?)−V2 (β|ξ?)
∣∣∣∣ > ε

})
→ 0.

For the case maxi ρ
(i)
? = ` for an integer ` = {0, . . . , [ρ] + 1}, we similarly obtain

1
nhn

H2,n (β|ρ̂n)−
1

nhn
H2,n (β?|ρ?)→P V2 (β|ξ?) uniformly in β

because we have

F` (β)− 1
nhn

H2,n (β?|ρ?)→P V2 (β|ξ?) uniformly in β,

F`+1 (β)− 1
nhn

H2,n (β?|ρ?)→P V2 (β|ξ?) uniformly in β,
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and

P
(

1{`}

([
max

i
ρ̂
(i)
n

]
+ 1
)
+ 1{`+1}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

)
→ 1,

P
(

1{j}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 0

)
→ 1, for all j 6= `, `+ 1,

and it holds that for any ε > 0,

P

(
sup
β∈Θ2

∣∣∣∣ 1
nhn

H2,n (β|ρ̂n)−
1

nhn
H2,n (β?|ρ?)−V2 (β|ξ?)

∣∣∣∣ > ε

)

≤ ∑
j 6=`,`+1

P
(

1{j}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

)

+ P
({

1{`}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

}
∩
{

sup
β∈Θ2

∣∣∣∣F` (β)− 1
nhn

H2,n (β?|ρ?)−V2 (β|ξ?)
∣∣∣∣ > ε

})

+ P
({

1{`+1}

([
max

i
ρ̂
(i)
n

]
+ 1
)
= 1

}
∩
{

sup
β∈Θ2

∣∣∣∣F`+1 (β)− 1
nhn

H2,n (β?|ρ?)−V2 (β|ξ?)
∣∣∣∣ > ε

})
→ 0.

Hence it is shown that β̂n →P β? with Assumption [A3].
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