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Parkinson’s disease (PD) is a common neurodegenerative disease characterized by the
progressive loss of dopaminergic (DAergic) neurons in the ventral brain. A disaccharide
trehalose has demonstrated the potential to mitigate the DAergic loss in disease models
for PD. However, trehalose is rapidly hydrolyzed into glucose by trehalase in the intestine,
limiting its potential for clinical practice. Here, we investigated the neuroprotective
potential of two trehalase-indigestible analogs, lactulose and melibiose, in sub-chronic
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD.
Treatment with MPTP generated significant motor deficits, inhibited dopamine levels,
and down-regulated dopamine transporter (DAT) in the striatum. Expression levels of
genes involved in anti-oxidative stress pathways, including superoxide dismutase 2
(SOD2), nuclear factor erythroid 2-related factor 2 (NRF2), and NAD(P)H dehydrogenase
(NQO1) were also down-regulated. Meanwhile, expression of the oxidative stress
marker 4-hydroxynonenal (4-HNE) was up-regulated along with increased microglia and
astrocyte reactivity in the ventral midbrain following MPTP treatment. MPTP also reduced
the activity of autophagy, evaluated by the autophagosomal marker microtubule-
associated protein 1 light chain 3 (LC3)-II. Lactulose and melibiose significantly rescued
motor deficits, increased dopamine in the striatum, reduced microglia and astrocyte
reactivity as well as decreased levels of 4-HNE. Furthermore, lactulose and melibiose
up-regulated SOD2, NRF2, and NQO1 levels, as well as enhanced the LC3-II/LC3-I
ratio in the ventral midbrain with MPTP treatment. Our findings indicate the potential of
lactulose and melibiose to protect DAergic neurons in PD.

Keywords: Parkinson’s disease, lactulose and melibiose, MPTP mice, oxidative stress,
neuroinflammation, autophagy
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INTRODUCTION

Parkinson’s disease (PD), characterized by resting tremor,
rigidity, bradykinesia, and postural instability, is a common
neurodegenerative disease in the elderly (Jankovic, 2008).
The pathological studies find a massive loss of dopaminergic
(DAergic) neurons in the pars compacta of the substantia
nigra (Surmeier et al., 2017). The neurodegeneration of PD
could be caused by a complex interaction of genetic and
environmental factors (Kalia and Lang, 2015). Genetic mutations
involved in the oxidative stress pathway, such as synuclein
alpha (SNCA), parkin RBR E3 ubiquitin-protein ligase (PRKN),
Parkinsonism associated deglycase (DJ1), PTEN induced kinase
1 (PINK1) and leucine-rich repeat kinase 2 (LRRK2), are
reported in patients with familial PD (Dias et al., 2013; Zuo
and Motherwell, 2013). Genetic variants in glucosylceramidase β

(GBA), proved to be the main risk for developing PD (Murphy
et al., 2014), affecting autophagy activities (Aharon-Peretz
et al., 2004; Gan-Or et al., 2015). A variety of environmental
insults, including pesticides and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), specifically increase oxidative stress,
damage DAergic neurons and produce parkinsonism similar
to the main features to PD (Tuite and Krawczewski, 2007),
although only prolonged chronic but not acute or sub-acute
MPTP exposure in mice triggers the formation of α-synuclein
inclusion pathology (reviewed in Konnova and Swanberg,
2018). Therefore, compounds that reduce oxidative stress
and up-regulate autophagy may be therapeutic strategies for
PD patients.

Trehalose, a disaccharide found in plants and animals,
demonstrates the potential to assist protein folding during
environmental stress (Elbein et al., 2003). In cell and rodent
models of Alzheimer’s disease (AD), trehalose protects neurons
by reducing aggregation of Aβ and could be a therapeutic
candidate for AD (Liu et al., 2005; Du et al., 2013). Trehalose also
demonstrates neuroprotective potential in other aggregation-
prone neurodegenerative diseases such as Huntington’s disease
(Tanaka et al., 2004), amyotrophic lateral sclerosis (Castillo et al.,
2013) and spinocerebellar ataxia (SCA) type 17 (Chen et al.,
2015). Neuroprotective and anti-neuroinflammatory effects of
trehalose were also observed in a chronic MPTP-induced
PD mouse model (Sarkar et al., 2014). Also, trehalose could
accelerate the clearance of mutant huntingtin/α-synuclein
(Sarkar et al., 2007), TATA-box binding protein (Lee et al.,
2015) and ataxin 3 (Lin et al., 2016) by enhancement of
autophagy. However, trehalose is rapidly hydrolyzed by trehalase
in the intestine (Dahlqvist, 1968), limiting its application for
disease treatment.

Previously two trehalase-indigestible analogs, lactulose, and
melibiose were found to up-regulate autophagy in aggregation-
associated SCA type 3 and 17 cell models (Lee et al.,
2015; Lin et al., 2016). In the present study, we examined
the neuroprotective potential of trehalose and these two
disaccharides in the MPTP-induced PD mouse model. Our
findings provide new drug candidates for PD via up-regulating
anti-oxidative stress and autophagy pathways as well as reducing
neuroinflammation.

MATERIALS AND METHODS

Test Disaccharides
Trehalose and melibiose were obtained from Sigma–Aldrich
Company (St. Louis, MO, USA). Lactulose was purchased from
ACROS Organics (Geel, Belgium).

Sub-chronic MPTP Mouse Model
The animal experiments were conducted following the guidelines
and were approved by the National Taiwan Normal University
(NTNU) Research Committee. Male C57BL/6 mice (8 weeks
old, 18–22 g) were purchased from the National Laboratory
Animal Center (Tainan City, Taiwan). The mice were kept
in individually ventilated cages under controlled temperature
(25 ± 2◦C), relative humidity (50%), and 12 h on/off light cycle
with ad libitum access to food and water at the Animal House
Facility of NTNU.

After 2-week habituation, mice were randomly divided into
five groups (n = 8). Regular drinking water or drinking water
with 2% trehalose, lactulose, or melibiose was applied to the mice
for 42 days. Experimental parkinsonism was established by i.p.
injections of 15 total doses of MPTP (30 mg/kg in 0.9% saline;
Toronto Research Chemicals, Toronto, ON, Canada) along with
probenecid (250 mg/kg in 0.1 M NaOH; Sigma–Aldrich), while
the control group received injections of saline. Probenecid was
administered 1 h before MPTP administration as it decreases
the clearance of MPTP and intensifies its neurotoxicity (Lau
et al., 1990). The 15 dose regimen was administered over
3 weeks with five doses per week (once daily for five consecutive
days, see flow chart in Figure 1A). Appropriate guidelines
were abided in handling MPTP. The water was changed once
a week and mouse body weight, blood glucose, and drinking
amount were monitored every week for 4 weeks. There was no
notable difference in terms of mouse body weight, blood glucose,
and drinking amount among these five groups. Behavioral
analyses were performed during the period to evaluate the
treatment effect.

Behavioral Test
The pole test is a practical method to detect the degree of
bradykinesia in the PD mouse model (Ogawa et al., 1985).
Mice were placed head down on top of a vertical wooden pole
(diameter 8 mm, height 50 cm), which was wrapped in gauze to
prevent slipping (Yang et al., 2011). The time it took for the mice
to climb down with all four feet on the floor was measured. Each
mouse was required to perform three successive trials at 5 min
interval. This test was performed at days 14, 21, 28, 35, and 42
(see flow chart). All the mice were pre-trained three times before
the formal tests.

Also, stride length was measured in a gait test (Klapdor
et al., 1997). To obtain footprints, the front and back paws were
painted with nontoxic red and blue paints, respectively. Mice
were allowed to walk along a narrow, paper-covered corridor
(50× 10 cm) toward a goal box, and stride length were measured
manually as the distance between two paw prints using a digital
vernier caliper. This test was performed on day 42, and the
average of three strides was taken for each animal.
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FIGURE 1 | Sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. (A) Experimental procotol. Parkinsonism was established by MPTP
injections in C57BL/6 mice on the 14th day (15 dose regimen administered over 3 weeks) of 42-day duration of experiment. Mice received tested disaccharides from
day 0 for 42 days. Saline-injected mice served as the control group. Pole test was performed on days 14, 21, 28, 35 and 42, and gait test was performed on day 42.
Subsequently, mice were sacrificed for dopamine (by HPLC), tyrosine hydroxylase (TH), 4-hydroxynonenal (4-HNE), nuclear factor erythroid 2-related factor 2 (NRF2),
ionized calcium-binding adapter molecule 1 (IBA1) and glial fibrillary acidic protein (GFAP; by IHC), and dopamine transporter (DAT), superoxide dismutase 2 (SOD2),
NRF2, NQO1 and light chain 3 (LC3; by Western) analyses. (B) Structure of trehalose, lactulose and melibiose (formula C12H22O11, molar mass 342.30).

HPLC Analysis of Dopamine
Levels of dopamine in the striatum were determined by
high-performance liquid chromatography (HPLC) analysis.
Briefly, the isolated brain striatum was homogenized in
500 µl of PRO-PREPTM protein extraction solution (iNtRON
Biotechnology Inc., Gyeonggi-do, Korea). The samples were
centrifuged at 10,000× g for 30 min and then filtered through
a 0.45 µm syringe membrane. Dopamine from the supernatant
was analyzed by the HPLC system using a C18 column with
a UV detector at 254 nm. The sample was passed through the
HPLC system using a mobile phase of 87.5% 90 mM of sodium
phosphate, 40 mM of citric acid, 10 mM of octane sulfonic acid,
3 mM of ethylenediaminetetraacetic acid and 12.5% acetonitrile
(pH 3.0) at a flow rate of 1.0 ml/min.

Immunohistochemistry Analysis
Brains of mice were washed in PBS, fixed in 4%
paraformaldehyde (PFA), cryoprotected in 30% sucrose in
PBS, and embedded in optimal cutting temperature (OCT)
compound before cryosectioning. Three 20-µm thick sections
of midbrain were cut, washed twice with PBS, and fixed in 4%
PFA in PBS for 20 min at room temperature. After two rinses
with PBS + 0.2% Triton (PBST) for 5 min each, sections were
blocked in PBST with 3% normal serum followed by incubation
with tyrosine hydroxylase (TH; 1:50; MyBioSource, San Diego,
CA, USA), 4-hydroxynonenal (4-HNE; 1:50; Cell Biolabs, San
Diego, CA, USA), nuclear factor erythroid 2-related factor 2

(NRF2; 1:50; Boster Biological Technology, Pleasanton, CA,
USA), ionized calcium-binding adapter molecule 1 (IBA1;
1:1,000; Wako, Osaka, Japan) or glial fibrillary acidic protein
(GFAP; 1:1,000; Invitrogen, Waltham, MA, USA) primary
antibody in blocking solution overnight at 4◦C. After the
incubation, cells were washed three times with PBST for
20 min and then incubated for 3 h with the secondary antibody
(anti-goat or anti-rabbit IgG, 1:1,000; Invitrogen) in blocking
solution in the dark. Sections were counterstained with 4′,6-
diamidino-2-phenylindole (DAPI; 1:1,000; Enzo Life Sciences,
Farmingdale, NY, USA) for 1 h. Quantitative analysis of TH,
4-HNE, NRF2, IBA1, or GFAP positive cells was carried out
as the number of immune-positive cells with a clearly defined
nucleus (identified by DAPI). MetaXpress software was applied
for the determination of positive TH/4-HNE/NRF2/IBA1/GFAP
cells. At least 500 cells were counted in each of the tested
animals. The fluorescent intensities of IBA1 and GFAP were
analyzed with ImageJ software (National Institutes of Health,
ImageJ 1.40).

Western Blot Analysis
The ventral midbrain was removed immediately after the
mouse was sacrificed. The tissue was homogenized by
Bullet Blender (Next Advance, Averill Park, NY, USA) with
zirconium oxide grinding beads (1 mm; Next Advance) for
3 min in RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM
NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40, 0.5% sodium
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FIGURE 2 | Neuroprotective effects of trehalose and analogs in the MPTP-induced Parkinson’s disease (PD) mouse model. (A) Pole test was conducted at days
14, 21, 28, 35 and 42. The time for mice to turn completely downward and land on the floor was recorded (n = 8). (B) Gait test was conducted at day 42. Stride
length (fore-paw and hind-paw), base width (fore-paw and hind-paw) and overlap (left-paw and right-paw) were measured manually as the distance between two
paw prints (n = 8). P-values, ANOVA with LSD post hoc test, MPTP vs. control (#P < 0.05, ##P < 0.01 and ###P < 0.001) and disaccharide-treated vs. untreated
(*P < 0.05, **P < 0.01 and ***P < 0.001).

deoxycholate, 0.1% SDS) containing protease inhibitor
(Sigma–Aldrich). The samples were incubated in ice for
30 min and then centrifuged at 15,000 g for 30 min at 4◦C.
The supernatant was collected and quantified by Bradford
protein assay (Bio-Rad, Hercules, CA, USA). Proteins
were separated on SDS-polyacrylamide gel electrophoresis
and blotted on to polyvinylidene fluoride membranes
(Pall Corporation, Port Washington, NY, USA) by reverse
electrophoresis. After blocking, the membrane was probed
with anti-dopamine transporter (DAT; 1:500; Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-superoxide
dismutase 2 (SOD2; 1:500; Santa Cruz Biotechnology),
anti-NRF2 (1:1,000; Boster Biological Techology), anti-NQO1
(NAD(P)H dehydrogenase, quinone 1; 1:1,000; Abcam,
Cambridge, UK), anti-LC3 (microtubule-associated protein
1 light chain 3; 1:2,000; MBL international corporation,
Woburn, MA, USA) or anti-GAPDH (glyceraldehyde-
3-phosphate dehydrogenase; 1:5,000; MDBio, Taipei,
Taiwan) at 4◦C overnight. The immune complexes were
subsequently detected by horseradish peroxidase-conjugated
goat anti-rabbit IgG antibody (1:5,000; GeneTex, Irvine, CA,
USA) and chemiluminescent substrate (Millipore, Billerica,
MA, USA).

Statistical Analysis
For each set of values, three independent experiments were
performed and data were expressed as the means ± standard

deviation (SD). Differences between groups were evaluated by
student’s t-test or ANOVA followed by an LSD post hoc test
where appropriate. All P-values were two-tailed, with values of
P < 0.05 considered significant.

RESULTS

Effects of Trehalose, Lactulose, and
Melibiose on MPTP-Induced Motor
Behavior in Mice
MPTP, a prodrug to the neurotoxin MPP+ which selectively
destroys DAergic neurons in the brain, was frequently applied
to establish a mouse model for PD (Blandini and Armentero,
2012). MPTP treatment in mice also down-regulated autophagy
and increased the level of α-synuclein, while enhancement of
autophagy reduced the loss of DAergic neurons (Liu et al.,
2013). Given that trehalose could up-regulate autophagy and
demonstrate neuroprotective potential in MPTP-treated mice
(Sarkar et al., 2007, 2014), we established a sub-chronic MPTP
mouse model (Figure 1A) to examine the neuroprotective
effects of trehalose and its analogs lactulose and melibiose
(Figure 1B) on PD. Trehalose is formed by a 1,1-glycosidic
bond between two α-glucose units. Lactulose is a synthetic
disaccharide comprising fructose and galactose. It is produced
by the isomerization of lactose with chemical or enzymatic
methods (Aider and de Halleux, 2007). Melibiose exists in
natural plants such as cacao beans and is formed by an α-1,
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FIGURE 3 | Effects of trehalose and analogs in dopamine secretion and oxidative damage on dopaminergic neurons. (A) Relative levels of dopamine determined by
HPLC assay in mouse striatum (n = 8). (B) Western blotting to examine altered protein levels of DAT and SOD2 in ventral midbrain (n = 8, divided into four batches).
(C) Immunohistochemistry of TH (red) and 4-HNE (green) positive neurons in ventral midbrain with MPTP/trehalose/lactulose/melibiose treatment. Nuclei were
counter stained with 4′,6-diamidino-2-phenylindole (DAPI; blue). Percentage of dopaminergic neurons with oxidative damages, based on TH and 4-HNE
co-localization, were shown below (n = 8). P-values, ANOVA with LSD post hoc test, MPTP vs. control (#P < 0.05, ##P < 0.01 and ###P < 0.001) and
disaccharide-treated vs. untreated (*P < 0.05, **P < 0.01 and ***P < 0.001).
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FIGURE 4 | Trehalose and both analogs enhanced autophagy and decreased oxidative stress on dopaminergic neurons. (A) Western blotting to examine the
altered protein levels of NRF2, NQO1 and LC3-II/I in ventral midbrain (n = 8, divided into four batches). (B) Immunohistochemistry of TH (red) and NRF2 (green)
positive neurons in ventral midbrain with MPTP/trehalose/lactulose/melibiose treatment. Nuclei were counter stained with DAPI (blue). Percentages of dopaminergic
neurons with anti-oxidative damage, identified by TH and NRF2 co-localization, were shown below (n = 8). P-values, ANOVA with LSD post hoc test, MPTP vs.
control (#P < 0.05) and disaccharide-treated vs. untreated (*P < 0.05 and **P < 0.01).

6 linkage between galactose and glucose. In the pole test, before
MPTP administration (day 14), there were no differences in
the time of landing between the five groups (control group:
6.0 ± 0.6 s, MPTP group: 5.9 ± 0.9 s, trehalose-treated
group: 5.8 ± 0.6 s, lactulose-treated group: 6.0 ± 0.3 s,
and melibiose group: 5.9 ± 0.6 s; P > 0.05), indicating the
presence of similar baselines for all groups (Figure 2A). After
neurotoxin injection, MPTP-treated mice showed a marked

motor deficit (24–27% increase of landing time) as compared
with the control group (5.4 ± 0.4 s vs. 4.3 ± 0.5 s at day
35, 5.7 ± 0.7 s vs. 4.5 ± 0.7 s at day 42; P < 0.001).
On the other hand, mice with trehalose treatment displayed
recovery (4.3 ± 0.7 s at day 35, P < 0.01; 4.1 ± 0.6 s at
day 42, P < 0.001) in comparison to mice with MPTP only.
Moreover, treatment of lactulose or melibiose also exhibited
significant improvement on landing time (decrease of time to
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FIGURE 5 | Trehalose and both analogs reduced neuroinflammation in the ventral midbrain. (A) Immunohistochemistry of IBA1 positive microglia in the ventral
midbrain with MPTP/trehalose/lactulose/melibiose treatment. Nuclei were counter stained with DAPI (blue). Percentages of IBA1+ cells and fluorescent intensity of
IBA1 were shown below (n = 8). (B) Immunohistochemistry of GFAP positive astrocytes in the ventral midbrain with MPTP/trehalose/lactulose/melibiose treatment.
Nuclei were counter stained with DAPI (blue). Percentages of GFAP+ cells and fluorescent intensity of GFAP were shown below (n = 8). P-values, ANOVA with LSD
post hoc test, MPTP vs. control (#P < 0.05 and ##P < 0.01) and disaccharide-treated vs. untreated (∗P < 0.05 and ∗∗P < 0.01).

reach the floor: 13% at day 35, P < 0.01; 24–26% at day 42,
P < 0.001).

On the gait test, MPTP injection led to a shorter stride
length at day 42 compared to the normal control (fore-paw:

6.8 ± 0.4 vs. 7.1 ± 0.6 cm; hind-paw: 6.8 ± 0.4 vs. 7.2 ± 0.6 cm;
P > 0.05; Figure 2B). Although not significant, there was
also a trend toward improving gait distance for both fore-paw
and hind-paw in the trehalose (7.0 ± 0.3 cm) and lactulose
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(7.1± 0.4 cm)-treated groups (P > 0.05) compared to the
MPTP only group. However, treatment with melibiose markedly
prevented the decrease of the stride length (7.5 ± 0.7 cm for
both fore-paw and hind-paw, P < 0.05). For base width, MPTP
injection led to a significant increase compared to the normal
control (fore-paw: 1.4 ± 0.1 vs. 1.2 ± 0.1 cm, P < 0.01; hind-
paw: 2.5± 0.2 vs. 2.3± 0.1 cm, P < 0.05; Figure 2B). Treatment
with trehalose, lactulose and melibiose markedly decreased base
width for both fore-paw (1.1 ± 0.1 cm for trehalose, P < 0.01;
1.2 ± 0.1 cm for lactulose, P < 0.05; 1.2 ± 0.1 cm for melibiose,
P < 0.05) and hind-paw (2.2 ± 0.1 cm for trehalose, P < 0.01;
2.3 ± 0.2 cm for lactulose, P < 0.05; 2.4 ± 0.1 cm for melibiose,
P < 0.05). Similar trends of stride overlap in left-paw and
right-paw with MPTP injection (increase of stride overlap:
right-paw, P < 0.01; left-paw, P < 0.001) and disaccharide
treatment (decrease of stride overlap, right-paw, P < 0.01; left-
paw, P < 0.001) were also observed (Figure 2B). Thus, through
pole and gait tests, neuroprotective effects of trehalose, lactulose
and melibiose were observed in sub-chronic MPTP-induced PD
mouse model.

Effects of Trehalose, Lactulose and
Melibiose on Dopamine, TH, DAT,
SOD2 and 4-HNE Levels in MPTP-Treated
Mice
In mice, MPTP treatment promotes the formation of reactive
free radicals and the reduction of dopamine production
(Blandini and Armentero, 2012). By examining the dopamine
levels of the striatum with HPLC, we consistently found that
administration of MPTP significantly reduced dopamine levels
(0.66 ± 0.61 µg/g tissue, P < 0.001) compared with controls
(10.95 ± 2.44 µg/g tissue), while treatment with trehalose
(15.85± 2.96 µg/g tissue, P < 0.001), lactulose (7.61± 1.43 µg/g
tissue, P < 0.001) and melibiose (6.14 ± 0.91 µg/g tissue,
P < 0.001) successfully rescued the reduction of striatal
dopamine level caused by MPTP (Figure 3A). Interestingly,
treatment with trehalose improved striatal dopamine levels
greater than that of lactulose (P < 0.001) and melibiose
(P < 0.001). In addition, MPTP administration significantly
reduced DAT (80%, P < 0.05) and SOD2 (77%, P < 0.05)
levels, and treatment with lactulose and melibiose successfully
rescued the reduction of DAT (106–121% vs. 80%, P < 0.05)
and SOD2 (106% vs. 77%, P < 0.05; 112% vs. 77%, P < 0.01)
levels in the ventral midbrain (Figure 3B). Although the number
of TH+ neurons was not significantly changed by MPTP
and/or trehalose/lactulose/melibiose treatment, administration
of MPTP significantly up-regulated the oxidative stress marker
4-HNE in TH+ neurons in the ventral midbrain (from 7%
to 40%, P < 0.01), while treatment with trehalose, lactulose,
and melibiose successfully rescued the up-regulation of 4-HNE
in TH+ neurons (4–10% vs. 40%, P < 0.01; Figure 3C).
Consistent with other studies (Fornai et al., 2005; Konnova and
Swanberg, 2018), we did not find any intracellular inclusions
immunoreactive for α-synuclein (data not shown). These results
suggest the potential of trehalose, lactulose, and melibiose in
ameliorating MPTP-induced damage on DAergic neurons in the

ventral midbrain and the capacity to recover dopamine levels in
the striatum.

Enhancement of Autophagy, Anti-oxidant
Stress Components, and Reduction of
Neuroinflammation by Trehalose,
Lactulose, and Melibiose in MPTP-Treated
Mice
We further investigated the potential effects of trehalose,
lactulose and melibiose on anti-oxidative stress and autophagic
pathways, as well as anti-neuroinflammation by examining the
expression levels of NRF2 and NQO1 (anti-oxidative markers),
LC3 (autophagic marker), IBA1 (microglial activation marker)
and GFAP (astrocyte activation marker) in the ventral midbrain.
Treatment with trehalose, lactulose and melibiose significantly
rescued the down-regulation of NRF2 (trehalose: 180%, P < 0.05;
lactulose: 212%, P < 0.01; melibiose: 174%, P < 0.05) and NQO1
(trehalose: 145%, P < 0.05; lactulose: 193%, melibiose: 201%,
P < 0.01) in the ventral midbrain of mice treated with MPTP
(MPTP only: NRF2: 80%, NQO1: 63%, P < 0.05; Figure 4A). The
immunohistochemical study consistently showed that NRF2 in
TH-positive DAergic neurons in the ventral midbrain was
down-regulated by MPTP (19%, P < 0.01), while treatment
with trehalose/lactulose/melibiose rescued this down-regulation
(trehalose: 50%, lactulose: 47%, melibiose: 54%, P < 0.01;
Figure 4B). In the ventral midbrain, the LC3-II/I ratio, an
indicator of autophagy activity, was reduced by MPTP (52%,
P < 0.01), while treatment with trehalose/lactulose/melibiose
rescued this reduction of LC3-II/I ratio (trehalose: 91%, lactulose:
110%, melibiose: 95%, P < 0.01; Figure 4A). MPTP increased the
percentage of IBA1+ microglia (from 3.9% to 5.7%, P < 0.05),
while treatment with trehalose/lactulose/melibiose reduced this
microglial activation (trehalose: 3.5%, lactulose: 4.1%, melibiose:
4.5%, P < 0.01; Figure 5A). Consistently, IBA1 fluorescent
intensity was up-regulated byMPTP treatment (328%, P < 0.01),
while treatment with trehalose/lactulose/melibiose reduced
IBA1 fluorescent intensity (trehalose: 145%, lactulose: 136%,
melibiose: 113%, P < 0.01). The percentage of GFAP+ astrocytes
was increased by MPTP treatment (from 12.8% to 21.9%,
P < 0.01). Treatment with trehalose/lactulose/melibiose reduced
the percentage of GFAP+ astrocytes (trehalose: 15.0%, lactulose:
14.5%, melibiose: 14.9%, P < 0.05; Figure 5B). GFAP fluorescent
intensity was also up-regulated by MPTP treatment (221%,
P < 0.01), while treatment with trehalose/lactulose/melibiose
reduced fluorescent intensity of GFAP (trehalose: 107%,
lactulose: 97%, melibiose: 101%, P < 0.01). Taken together,
trehalose, lactulose and melibiose improved the down-regulation
of anti-oxidative stress pathways and autophagy activity, as well
as decreased neuroinflammation induced by MPTP.

DISCUSSION

Increased oxidative stress and decreased antioxidant capacity
including reduced SOD and increased 4-HNE are among
pathological findings in postmortem brains of human PD
and the MPTP-induced PD mouse model (Yoritaka et al.,
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1996; Castellani et al., 2002; Sofic et al., 2006; Li and Pu,
2011; Lv et al., 2012). Recently, in vitro studies showed
that treatment with trehalose significantly reduced oxidative
stress induced by chloroquine or cadmium via activating
the NRF2 pathway, suggesting its strong anti-oxidant effect
(Mizunoe et al., 2018; Wang et al., 2018). It is important
to note that trehalose is readily digested by trehalase in the
gut of humans (Dahlqvist, 1968), which implicates trehalase-
indigestible analogs rather than trehalose as the potential
treatments for aggregation-associated neurodegenerative disease.
Here, we demonstrated the anti-oxidative and neuroprotective
effects of two trehalase-indigestible analogs, lactulose, and
melibiose, in the MPTP-induced PDmouse model. Although the
elevations of striatal dopamine levels by lactulose and melibiose
may be lower compared with trehalose, both of them still
demonstrate improvements of motor deficits similar to trehalose.
Furthermore, lactulose and melibiose increased DAT, SOD2,
NRF2, and NQO1, and decreased 4-HNE, IBA1, and GFAP in
the ventral midbrain of MPTP-induced PD mice. These findings
suggest that lactulose and melibiose, similar to trehalose, may
exert their anti-oxidative and anti-neuroinflammatory capacity
to provide neuroprotection. Consistent with our findings, Sarkar
et al. (2014) also demonstrate that trehalose can reduce the
activation of microglia and astrocytes in the MPTP-induced PD
mouse model.

Lines of evidence implicate targeting autophagy as a potential
PD therapeutic strategy (Moors et al., 2017; Zhu et al., 2019). The
depletion of autophagy gives rise to neurotoxicity accumulation
and causes the loss of nerve cells (Hara et al., 2006; Komatsu et al.,
2006). It has been proved that α-synuclein fibrils or aggregates are
cleared by the autophagy-lysosomal pathways (Bae et al., 2014).
Moreover, PD-associated proteins including LRRK2 (Orenstein
et al., 2013; Manzoni et al., 2016), PINK1 (Lazarou et al.,
2015), PRKN (Narendra et al., 2008) and ATP13A2 (ATPase
cation transporting 13A2; Bento et al., 2016) are involved in
autophagy-processing modulation as well. As an autophagy
inducer, trehalose has the therapeutic potential on cellular and
animal models of aggregation-prone neurodegenerative diseases
(Sarkar et al., 2007; Rodríguez-Navarro et al., 2010; Casarejos
et al., 2011; Lan et al., 2012; Schaeffer et al., 2012; Lee et al.,
2015; Lin et al., 2016). In SCA17 and SCA3 cell models, we found
that lactulose and melibiose demonstrate anti-aggregation and
neuroprotection effects mainly through autophagy-activation
(Lee et al., 2015; Lin et al., 2016). Our results showed MPTP
treatment down-regulated autophagy function by reducing the
conversion of LC3-II from LC3-I. Similar to trehalose, lactulose
and melibiose increased the ratio of LC3-II/LC3-I in the ventral
midbrain of MPTP-treated mice, suggesting their potential to
up-regulate autophagy in PD.

This study demonstrates the neuroprotective potential of
lactulose and melibiose in the MPTP-induced PD mouse model,

by activating NRF2 and autophagy pathways. However, their
neuroprotective effects may not be better than trehalose, even
though they are trehalase-indigestible. Although not broken
down by human enzymes, lactulose and melibiose can be
metabolized in the colon by Bifidobacterium, Lactobacillus or
Saccharomyces species (Ostergaard et al., 2000; Bouhnik et al.,
2004; De Souza Oliveira et al., 2011), which may lead to
less concentration of lactulose and melibiose in the brain.
Further investigations to refine their metabolism by intestinal
flora of microorganisms will be necessary to enhance their
neuroprotective effects.

In conclusion, our results show that lactulose and melibiose
reduce motor deficits, inhibit the loss of striatal dopamine,
increase DAT, decrease 4-HNE level, reduce activation of
microglia and astrocytes, and enhance anti-oxidative and
autophagy functions in the ventral brain of MPTP-induced PD
mice. Future studies in different PD models will be warranted to
confirm their potentials as treatments for human PD.
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