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Summary

Viruses remain a significant public health concern
worldwide. Recently, humanity has faced deadly viral
infections, including Zika, Ebola and the current sev-
ere acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The threat is associated with the abil-
ity of the viruses to mutate frequently and adapt to
different hosts. Thus, there is the need for robust
detection and classification of emerging virus strains
to ensure that humanity is prepared in terms of vac-
cine and drug developments. A point or stand-off
biosensor that can detect and classify viruses from
indoor and outdoor environments would be suited
for viral surveillance. Light detection and ranging
(LiDAR) is a facile and versatile tool that has been
explored for stand-off detection in different environ-
ments including atmospheric, oceans and forest
sensing. Notably, laser-induced fluorescence-light
detection and ranging (LIF-LiDAR) has been used to
identify MS2 bacteriophage on artificially

contaminated surgical equipment or released amidst
other primary biological aerosol particles in labora-
tory-like close chamber. It has also been shown to
distinguish between different picornaviruses. Cur-
rently, the potentials of the LIF-LiDAR technology for
real-time stand-off surveillance of pathogenic viruses
in indoor and outdoor environments have not been
assessed. Considering the increasing applications of
LIF-LiDAR for potential microbial pathogens detec-
tion and classification, and the need for more robust
tools for viral surveillance at safe distance, we criti-
cally evaluate the prospects and challenges of LIF-
LiDAR technology for real-time stand-off detection
and classification of potentially pathogenic viruses
in various environments.

Introduction

Microbial pathogens such as bacteria, viruses, fungi and
parasites are a major public health concern. Of these,
viruses have proven to be a great threat in recent times.
Humanity has been faced with deadly viral infections
including Zika virus, Ebolavirus and the ongoing severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic. The viral threat is attributed to their ability to
mutate frequently and adapt to different hosts. To out-
compete these viruses, there is the need for robust
detection and surveillance of emerging strains. This will
ensure that humanity is prepared in terms of vaccine
and drug development. A promising approach in this
respect is a point or stand-off biosensor that can detect
and classify viruses phylogenetically or based on their
pathogenicity from indoor and outdoor environments.
Stand-off detection and identification systems are
defined by their ability to detect and classify chemical,
biological and explosive (CBE) hazards without contact
with the hazardous material(s). The stand-off detection
range may be considered short (also referred to as non-
contact), medium or long, depending on the distance
between the stand-off detector and the material being
targeted for detection. The stand-off detection range has
been variably defined. Even though some studies have
presented < 10 m and > 10 m as short and long stand-
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off range, respectively (Bogue, 2018), this review adopts
the detection distances < 20 m, 20–100 m and > 100 m
as short, medium and long stand-off detection range,
respectively, in consonance with many other reports
(Sedlacek et al., 2002; Huestis et al., 2010; Babichenko
et al., 2018; Fellner et al., 2020). Stand-off detection
methods are suitable for operations in high risk and
harsh environments, as they could provide information
about CBE hazards in real-time from safe distances of
several centimetres to up to a kilometre (Jonsson et al.,
2009; Babichenko et al., 2018; Fellner et al., 2020).
Based on these advantages, stand-off detection will be
an ideal approach for viruses, which can be highly con-
tagious and dangerous.
Light detection and ranging (LiDAR) is a group of

techniques that are based on the principle that when a
pulsed laser (light amplification by stimulated emission of
radiation) impinges on particles, the particles absorb
and/or emit signals that can be characterized using a
suitable detector (Buteau et al., 2008). The emitted sig-
nals could be a backward scattered or polarized light, or
fluorescence (Yang et al., 2016). LiDAR is a facile and
versatile tool that has been applied in remote environ-
mental monitoring, including atmospheric, oceans and
forest sensing (Eitel et al., 2016; Almeida et al., 2019).
LiDAR has also become a powerful air- or space-borne
altimetric tool (Flood, 2001; Forfinski-Sarkozi and Par-
rish, 2016). In addition, the LiDAR sensor is fast becom-
ing a key component of autonomous vehicles, to provide
information about the surroundings of the vehicles with
high resolution (Royo and Ballesta-Garcia, 2019; Tang
et al., 2020).
Based on the nature of the scattered light, four basic

types of LiDAR, including Rayleigh, Mie, Raman and flu-
orescence have been described (Veerabuthiran, 2003;
Zhang et al., 2011). The laser-induced optical beha-
viours have been exploited for the detection and charac-
terization of biogenic materials both in laboratory and
field conditions using LiDAR platforms. Raman scatter-
ing, for example, has been applied spectroscopically to
detect and identify pathogenic bacteria in clinical sam-
ples (Ho et al., 2019) and determine antibiotics suscepti-
bility and transcriptomic profile that reflect antibiotics
resistance in bacteria (Germond et al., 2018). A combi-
nation of Rayleigh and Raman scattering effectively
characterized extracellular vesicles (EVs) and lipopro-
teins, including differentiating tumour-derived EVs from
normal blood cells (Enciso-Martinez et al., 2020a,b).
Similarly, laser-induced fluorescence (LIF) has been
used for detection and/or identification of microorgan-
isms and pollens (Pan et al., 2010, 2011; Babichenko
et al., 2018; Swanson and Huffman, 2018).
Of the different types of LiDAR, fluorescence LiDAR,

particularly the LIF-LiDAR, has demonstrated high

potentials for stand-off detection and characterization of
primary biological aerosol particles (PBAPs) (Buteau
et al., 2008; Li et al., 2019). LIF-LiDAR has been used
to identify MS2 bacteriophage on artificially contaminated
surgical equipment (Babichenko et al., 2018). LIF-LiDAR
has also been used to identify MS2 bacteriophage
amidst other PBAPs in laboratory-like close chamber
and open field settings (Sivaprakasam et al., 2004; Bax-
ter et al., 2007; Jonsson et al., 2009; Farsund et al.,
2010) and thus highlighting the potentials of the tech-
nique for viral detection indoors or outdoors. In addition,
LIF-LiDAR was used to both detect and identify each
virus from a pool of pure isolates of seven viruses of the
Picornavirus family (Gabbarini et al., 2019). However,
the potentials of the LIF-LiDAR technology have not
been assessed for real-time stand-off surveillance of
pathogenic viruses in the environment. In view of the
increasing applications of LIF-LiDAR for potential patho-
gens detection, and the need for more robust tools for
non-contact viral surveillance at long range, this review
critically evaluates the prospect and challenges of LIF-
LiDAR technology for stand-off surveillance of potentially
harmful viruses in in-built or outdoor environments.
In this review, we critically provide an overview of the

types of LiDAR, LIF-LiDAR working principles, suitability
and prospects of LIF-LiDAR for virus surveillance, chal-
lenges of LIF-LiDAR approach in virus surveillance and
a perspective on overcoming the potential challenges.

Types of LiDAR

Based on the nature of the scattered light, many types
of LiDAR, including Rayleigh, Mie, Raman and reso-
nance fluorescence, have been described (Veerabuthi-
ran, 2003; Zhang et al., 2011). Both Rayleigh and Mie
scattering are elastic, meaning both incidence and scat-
tered light have the same wavelength, and no energy is
lost as the incidence light impinges on the particles
(Veerabuthiran, 2003). For Rayleigh, the incident light
has a much longer wavelength than the size of the
impinged particle, while Mie scattering occurs when the
particle has much larger size than the wavelength of the
impinging light (Veerabuthiran, 2003). Unlike Rayleigh
and Mie scattering, Raman scattering is inelastic and
involves energy (or wavelength) shift, based on the
molecular nature of the particles impinged by the light;
the Raman energy shift is unique to different molecules
and could be used to characterize different particles
(Turner et al., 2016). Resonance fluorescence scattering
is also inelastic and occurs when the wavelength of the
incidence light corresponds to the absorption line of the
atoms, ions or molecules, such that the atoms are
excited to a higher energy level by the incoming light
and re-emit photons of the same or longer wavelength

ª 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial
Biotechnology, 14, 126–135

LiDAR for stand-off surveillance of coronaviruses 127



than the incident light (Abo, 2005; Gardner and Collins,
2015). Although elastic scatterings could be used to map
clouds and detect PBAPs such as pollens, bacterial and
fungal cells, or spores at low concentrations and long
range, those types of LiDAR have poor resolution for
particles of different composition but similar sizes. A
detailed characterization of biological particles at long
range will therefore require inelastic scattering (Simard
et al., 2004; Buteau et al., 2006). Figure 1 summarizes
the differences between Rayleigh, Mie and Raman scat-
tering.

LIF-LiDAR: Working principles and its suitability for
viral surveillance

The detailed working principle of LIF-LiDAR has been
well described in various reports (Joshi et al., 2013; Woj-
tanowski et al., 2015; Yang et al., 2016). Briefly, a LIF-
LiDAR has a source which emits laser of desired excita-
tion wavelength to be directed to a target such as
bioaerosols, and a receiving system which collects the
echoed signals (such as a scattered light and fluores-
cence) from the laser-interrogated target. Typically, a
receiving system is comprised of a telescope which col-
lects the scattered light, a dichroic mirror which sepa-
rates the light into spectra based on frequencies, an
array of photomultiplier tubes which receive high fre-
quency light for signal amplification, and a spectrograph
which receives and directs the lower frequency (longer
wavelength) light to gated intensified charge coupled
device (ICCD) camera (Joshi et al., 2013). In addition, a

LIF-LiDAR system has a data acquisition platform, which
displays the amplified signals in a visible/readable for-
mat.
Microorganisms contain biomolecules in various sub-

cellular structures and the biomolecules possess intrinsic
fluorescence ability (Yang et al., 2016). Hence, when
microorganisms are impinged with light of an appropriate
wavelength, they emit fluorescence of maximal intensity
(Yang et al., 2016). The fluorescence excitation and
emission spectra are a function of the nature of fluo-
rophores (the fluorogenic biomolecules) in the biomolec-
ular architecture of the microorganisms and are
discriminatory enough for identification and classification
of the microorganisms (Buteau et al., 2006; Joshi et al.,
2013). Viruses vary in their structures, even though they
are basically comprised of nucleic acid (DNA or RNA)
encased in a protein capsid (Louten, 2016) and some
viruses, in addition to this basic structure, also possess
enzymes and lipid-derived envelopes (Mesters et al.,
2006). Altogether, viruses possess different fluorophores
that can be interrogated by light/laser to identify and/or
classify them.

Prospects of LIF-LiDAR for viral detection and
classification

The fluorogenic ability of viruses has been well-estab-
lished. Sivaprakasam and colleagues reported fluores-
cence intensities of 16 bioaerosols, including MS2
bacteriophage, at 350, 450 and 550 nm spectra bands
when the bioaerosols were excited with 266 and 355 nm
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Fig. 1. Schematic representations of Rayleigh, Mie and Raman scattering. A. Energy diagram of Rayleigh scattering. There is no change in fre-
quency of the incident and scattered light (V = V’). B. Energy diagram of Stokes Raman scattering. There is a shift in frequency of the scattered
light such that (V> V’). C. Energy diagram of anti-Stokes Raman scattering. There is a shift in the frequency of the scattered light such that
(V < V’). D. Rayleigh scattering. This occurs when the wavelength of the incident light is greater than the diameter of the impinged particle (e)
Mie scattering. This occurs when the wavelength of the incident light is less than the diameter of the impinged particle. V = frequency of inci-
dent light. V’ = frequency of scattered light.
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laser pulses at 400 nanosecond intervals (Sivaprakasam
et al., 2004). Notably, the highest fluorescence intensity
was obtained for the bacteriophage at the 350 spectra
band and 266 nm excitation wavelength. At the two exci-
tation wavelengths, the spectral signature of MS2 bacte-
riophage was discriminatory against 15 aerosol particles,
including vegetative bacteria, spores and proteins. In
contrast, a small scale LIF-LiDAR platform built to remo-
tely detect biological weapons using a single excitation
wavelength of 266 nm showed a significant overlap
(14.8%) between MS2 bacteriophage and dirty diesel
exhaust fluorescence spectra (Baxter et al., 2007). This
discrepancy highlights the potentials of multiwavelength
excitation to increase the discriminatory power of LIF-
LiDAR for virus detection and identification in aerosols.
Field trials of two LiDAR systems, namely from the

Norwegian Defense Research Establishment (FFI) and
Swedish Defense Research Agency (FOI), have been
reported for simulated detection of different bacterial
species, ovalbumin and MS2 bacteriophage, in a plume
of expected atmospheric interferents, such as pollens, oil
fog, smoke and diesel fumes have been reported (Jon-
sson et al., 2009). Using 355 nm excitation wavelength
pulsed at 5 ns and 10 Hz pulse repetition frequency
(PRF), fluorescence spectra with peak within the 450 nm
band was acquired for the MS2 bacteriophage released
at a concentration of 3 9 109 – 1.5 9 1011 plaque-form-
ing units per millilitre (PFU/ml), 230 m – 1 km away from
the LiDAR systems and 100–200 m upwind. A compar-
ison of 355 and 294 nm excitation wavelengths for
stand-off detection of bioaerosols containing bacterium,
MS2 bacteriophage and ovalbumin released in a semi-
closed chamber that was 210 m away from the LIF-
LiDAR platform indicated a better spectral resolution with
the 294 than 355 nm (Farsund et al., 2012). Farsund
et al. also observed highest fluorescence intensity for
MS2 bacteriophage within the 350 nm spectral band
when the virus was excited with the 294 nm wavelength.
In another study, a LiDAR platform named BC-Sense
device obtained a unique spectral signature of 430 nm
maximal fluorescence for MS2 bacteriophage when the
virus was excited with a 248 nm laser of PRF of 10 Hz
(Babichenko et al., 2018). The spectral profile of BC-
Sense device was discriminatory enough to identify MS2
bacteriophage on several surfaces that were co-contami-
nated with bacteria and fungi and placed about 20 m
away from the LIF-LiDAR with a limit of detection of
9.5 9 104 PFU/cm2. However, this limit of detection is
high and may not be suitable for stand-off virus surveil-
lance.
Autofluorescence of F2 bacteriophage has been

observed to depend almost entirely on amino acid con-
tents (particularly tryptophan and tyrosine) of its nucleo-
capsid rather than its RNA genome; when F2

bacteriophage was excited with a UV light of 265–
295 nm, it emitted fluorescence spectra within 320 nm
band (Kitchell et al., 1977). A latter study using two bac-
teriophages, Ø6 and Ø12, and their bacterial hosts
showed that the fluorescence signature of tryptophan
varies with different protein environments and hence
tryptophan fluorescence profile of the two phages differs
from their Pseudomonad hosts (Alimova et al., 2004).
These findings suggest that, with appropriate laser exci-
tation wavelengths, viruses could be discriminated from
bacteria and other biogenic materials.
A study which investigated spectrally resolved fluores-

cence cross sections of bioaerosols at 266, 273, 280,
365 and 405 nm excitation wavelengths reported excita-
tion-emission spectra of Venezuelan equine encephalitis
virus (VEEV), as well as MS2 bacteriophage and several
vegetative bacteria and spores. VEEV and MS2 bacte-
riophage strongly emitted fluorescence within 280–
400 nm spectra band, with peak fluorescence occurring
at 310–320 nm, when the viruses were interrogated with
266, 273, and 280 nm wavelengths (Pan et al., 2014).
Interestingly, Pan and colleagues also observed dissimi-
lar excitation-emission signatures between VEEV and
MS2 bacteriophage, with the former showing strong fluo-
rescence only within the 280–400 nm band, while the
latter had strong fluorescence within 280–400 nm and
400–600 nm bands. VEEV and MS2 bacteriophage
belong to two different families of viruses, Togaviridae
and Leviviridae, respectively, and suggest that viruses
belonging to different families may have different excita-
tion-emission spectra signature that could be explored
for LIF-based viral classification.
A LIF platform was used to identify seven viruses that

belong to the Picornavirus family. When the viral sam-
ples were interrogated with a 266 nm laser of 10 kHz
PRF in the LiDAR set up, the viruses emitted fluores-
cence spectra between 350 and 700 nm. These spectra
signatures were unique to the viruses except for two ser-
otypes—Coxsackie A7 and A9, which had poor separa-
tion based on principal component analysis (PCA)
(Gabbarini et al., 2019). However, further analysis
showed that support vector machine (SVM), a super-
vised machine learning algorithm developed for classifi-
cation and regression analysis, especially using complex
data (Bhavsar and Panchal, 2012; Pisner and Schnyer,
2020) and neural network algorithm, perfectly classified
the seven viruses investigated. Further, the limit of
detection of LIF platform was 2 9 104 – 2 9 105 tissue
culture 50% infectious dose (TCID50)/ml for hepatitis A,
although the limit of detection was not determined for
the other six viruses.
Collectively, the studies highlighted above indicate that

viruses have excitation–emission spectral profile that
could be explored to differentiate them from one another,
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from other microbial agents and from environmental
interferents such as pollens and hydrocarbon effluents.
However, despite these promising findings, the suitability
of LIF-LIDAR for stand-off viral surveillance in real-life to
warrant field deployment of the technique has not been
established.

Challenges to LIF-LiDAR approach in viral
surveillance

First, most studies reporting on viral fluorescence spectra
used purified viral isolates and hence the results obtained
may not reflect a real-life environment where viruses exist
amidst plethora of chemical and biological interferents
(Pan, 2015). Even though environmental interference was
simulated in some of the studies in the previous section,
the spectrum of the interfering simulants used was too
narrow to capture the varieties of PBAPs and other aero-
sol components in the atmosphere.
Second, the concentration of viruses in the atmo-

sphere, indoor air or surfaces, may be less than those
detectable by the LIF platforms tested. Although data on
viral concentration in indoor and outdoor air are scant,
total virus-like particles (VLPs) of 1 9 105/m3 and
2.6 9 105/m3 have been reported for indoor and outdoor
air, respectively (Prussin et al., 2015). In addition, a
metagenomics-based study in Korea indicated that the
VLPs concentration of near surface atmosphere (about
1 m above the ground level) varies seasonally from
1.7 9 106 to 4.0 9 107 VLP/m3 with winter and spring
having the highest and lowest VLP concentrations,
respectively (Whon et al., 2012). The total VLPs in out-
door environments that were reported by Whon et al.
and Prussin et al. were lower than the viral concentration
that was measured in the Jonsson et al., 2009 study
(3 9 109 – 1.5 9 1011 PFU/ml). Although the reported
total VLP concentrations are comparable to the 104

PFU/cm2 and 2 9 104 – 2 9 105 TCID50/ml limits of viral
detection of the LIF platforms used by Babichenko et al.
and Gabbarini et al., respectively (Babichenko et al.,
2018; Gabbarini et al., 2019), the limits of detection of
the LIF platforms are likely less than the atmospheric
viral concentrations when individual viruses are consid-
ered rather than total VLP.
Third, bioaerosol surveillance using LIF-LiDAR

requires the use of high-energy pulsed excitation laser
(Baxter et al., 2007; Farsund et al., 2012) and this raises
genuine biosafety concerns, especially that a high-en-
ergy laser could cause irreversible damage to the eyes
(Sayed, 2014; Birtel et al., 2017). Although some
researchers have tried to reduce the high-energy laser
to eye-safe energy level by enlarging the beam radius of
the laser to 10 mm (Duschek et al., 2017), biosafety is
still not guaranteed.

Fourth, a key advantage of the LIF-LiDAR is the
potential for a long-range detection of harmful bioaero-
sols, especially those classified as biological weapons.
However, choosing the right excitation wavelength for
stand-off interrogation of viruses in the atmosphere faces
some difficulties. For instance, whereas studies have
indicated that shorter excitation wavelengths (248–
294 nm) elicit more intense and distinct fluorescence
spectra for viruses than longer excitation wavelengths
such as 355 nm (Sivaprakasam et al., 2004; Farsund
et al., 2012; Babichenko et al., 2018), the shorter wave-
lengths are more easily attenuated in the atmosphere
than the longer wavelengths. Hence, choosing the
appropriate excitation wavelength may be difficult.
The fifth hurdle is about the cost of LIF-LiDAR plat-

forms, which is due to various factors; it is expected that
the cost will be directly proportional to the stand-off dis-
tance, and the area to be monitored among other fac-
tors. The average cost of UV-LIF bioaerosol sensors
runs into hundreds of thousands of US Dollars (Swanson
and Huffman, 2018), which is prohibitive for their com-
mercialization and routine application, especially in poor-
resourced countries, which coincidentally have higher
burden of infectious pathogens, including viruses (Fenol-
lar and Mediannikov, 2018).

LIF-LiDAR for viral surveillance: What will it take?

Excitation-emission spectra of viruses are needed

Although extensive characterization of laser excitation-
emission spectra of bacteria, fungi and pollens have
been undertaken (O’Connor et al., 2011; P€ohlker et al.,
2011; Dartnell et al., 2013), similar studies on viruses
are lacking. Hence, to adapt LIF-LiDAR for stand-off viral
surveillance, studies are needed to determine the opti-
mum excitation–emission spectra of viruses that are
potentially highly pathogenic to humans. This baseline
data are required for building databases that are needed
for real-time detection, classification and identification of
viruses. Such studies should consider irradiating different
classes of virus with a range of UV-laser excitation
wavelengths to determine laser specifications that would
yield maximum intensity and most distinct signature
spectra for individual viruses and classes of viruses.

A multiwavelength excitation approach is required

A key requirement for viral surveillance using LIF-LiDAR
is the ability to discriminate viruses from other microbes
or materials. Viruses differ from microorganisms, in
terms of biomolecular composition, in many respects.
Notably, reduced nicotinamide adenine dinucleotide
(NADH), a redox carrier and co-enzyme in energy meta-
bolic pathways in viable cells, and other co-enzymes
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(e.g. riboflavin–vitamin B2) and vitamins which are fluoro-
genic, are absent in viruses. Interestingly, NADH is the
most dominant fluorogenic co-enzyme in microbial cells,
with well-characterized fluorescence excitation–emission
spectra (P€ohlker et al., 2011). Direct excitation wave-
length of NADH ranges from 340 to 370 nm while its
emission wavelength is 440–470 nm (Kaye et al., 2005;
P€ohlker et al., 2011; Babichenko et al., 2018; Fennelly
et al., 2018). Reported excitation and emission wave-
lengths for viruses are mostly in the range of 248–
295 nm and 310–450 nm, respectively (Sivaprakasam
et al., 2004; Farsund et al., 2012; Babichenko et al.,
2018; Gabbarini et al., 2019). Hence, probing bioaerosol
clouds with excitations of 340–370 nm and 248–295 nm
wavelengths may yield spectra features to discriminate
viruses from viable bacteria and fungi. Similarly, non-vi-
able bacterial and fungal cells, and spores and pollens,
which may lack NADH, equally possess fluorogenic
biopolymers that could discriminate them from viruses
(P€ohlker et al., 2011). Bacteria, fungi and pollens pos-
sess cellulose and sporopollenin, respectively, and in
their cell walls, and fungi also have chitin as one of their
cell wall components. These biopolymers are all absent
in viruses. Interrogating a bioaerosol particle with care-
fully selected multiple wavelengths could discriminate
viral from non-viral particles based on their fluorescence
spectra signatures.

Size differences could enhance viral discrimination

Viruses could also be discriminated from other PBAPs
based on their differences in size. Apart from members
of the Poxviridae which are up to 300 nm in diameter,
human pathogenic viruses are generally small, often less
than 200 nm in diameter (Gelderblom, 1996). Bacteria
and fungi, on the other hand, are generally larger than
viruses. With the size differences, an excitation wave-
length, which is smaller than microbial cells but larger
than viral particles, will elicit Rayleigh and Mie scattering
upon impinging a virus and bacterium or a fungus,
respectively. It also suggests that Rayleigh scattering
could be used to locate viruses among bacteria and
fungi using < 300 nm excitation wavelengths.

Discrimination of viruses by Rayleigh-LIF-LiDAR
hyphenation and time-resolved fluorescence

The differential capacity of Rayleigh scattering is
enhanced in a system combining Rayleigh with an
inelastic scattering (Enciso-Martinez et al., 2020a,b).
Hence, a LiDAR system for viral detection and identifica-
tion in real-life environment will potentially use a multi-
wavelength excitation approach to probe bioaerosol
clouds to acquire Rayleigh scattering information which

will help to locate the viruses and LIF spectra data for
virus classification/identification. In addition, the speci-
ficity of the Rayleigh-LIF-LiDAR platform could be
enhanced by using multiple channels of resolution for
acquiring the LIF spectra (Kaye et al., 2005; Ruske
et al., 2017). The specificity of the hyphenated LiDAR
platform could further be enhanced by acquiring data on
fluorescence lifetimes (time-resolved LIF data) of the
viruses and other aerosol particles, as was recently
demonstrated for detection, classification and identifica-
tion of some CBE agents (Fellner et al., 2020).
The time-resolved LIF is based on observations that

the fluorescence decay time depends on the immediate
environment of the fluorophores. Some of the variables
that may influence fluorescence lifetimes include the
concentration of ions in the environment and the pres-
ence of neighbouring fluorophores (Meier et al., 2010).
Since viruses differ from one another and from other
PBAPs by amino acid composition, and lack co-en-
zymes, such as NADH and riboflavin which are present
in viable cells, the microenvironment, and by extension,
the fluorescence decay time of fluorophores is expected
to differ significantly among viruses and from other fluo-
rogenic materials. This suggests that a combination of
Rayleigh, LIF and time-resolved LIF-LiDAR will be a
potentially robust platform for detection and specific iden-
tification of viruses in real-life environments where inter-
ferents which possess overlapping fluorescence spectra
may be present. However, for this to be achieved, stud-
ies are needed to generate reference data regarding the
fluorescence lifetimes of viruses, bacteria, fungi, spores,
pollens and other potential interferents in the atmo-
sphere.

Machine learning algorithms are required

Considering that a feasible LiDAR platform for viral
surveillance will likely acquire both elastic and inelastic
radiation data that involves multiple spectra features,
analysis of the acquired data may be very challenging.
The primary focus of the data analysis will be to deter-
mine whether an interrogated PBAP is a virus, what
virus it is, and if it poses a threat or not. Machine learn-
ing algorithms (MLA) with high predictive power and
trained with a robust database of viral spectra features
and fluorescence lifetimes will be required to build an
online virus classifying platform for real-time viral surveil-
lance. A decision tree (implemented in the online virus
classifying platform) could be grown from the size, spec-
tra, fluorescence lifetimes datasets and lists of potentially
harmful viral agents to indicate if a virus identified poses
a threat (positive alarm) or not (negative alarm), following
a model that has previously been described (Fischbach
et al., 2015).
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Several MLAs, such as support vector machine, princi-
pal component analysis, decision tree, neural network
and wavelet transform, have been used for extraction of
relevant spectra features and reduction of high-dimen-
sional spectra data to lower dimensions and thereby
reducing computational complexity and increasing classi-
fication accuracy (Sobolev and Babichenko, 2013; Gab-
barini et al., 2019). Genetic algorithm (an evolutionary
algorithm), which has higher classification accuracy than
SVM, principal component analysis, Fisher’s linear dis-
criminant and forward feature selection, has also been
reported (Nyhavn et al., 2011). Future studies on viral
surveillance using LiDAR could explore the appropriate
algorithms, as well as consider other algorithms such as
the t-Distributed Stochastic Neighbour embedding, which
is suitable for both linear and non-linear data, for high-di-
mensional spectra data reduction.

Cost reduction and biosafety concern

There is a high potential for miniaturization and signifi-
cant reduction of the cost of LIF-LiDAR platforms for
bioaerosol agents’ surveillance. Although early LIF plat-
forms that have been built for bioaerosol surveillance
require high end instrumentation and therefore make
them quite expensive for widespread use, recent LIF
platforms have used innovative instrumentation such as
the replacement of Q-switch solid-state lasers with UV
light-emitting laser diodes (LED) as an effective and
inexpensive laser excitation source (Zhang et al., 2013;
Swanson and Huffman, 2018).
Biosafety concern should be thoroughly addressed

before considering LIF-LiDAR for viral surveillance,
especially in residential or other places where people
are likely going to be exposed to the high-energy laser.
Although the laser safety concern cannot be completely
addressed presently, keeping the excitation wavelength
below 400 nm, which is considered ‘eye-safe’ (Franks,
1991) should be considered. In addition, standard safety
precautions for use of laser, including laser-safe eye
goggle should be mandatory (Smalley, 2011).

Conclusion

Viral infections have caused unprecedented hardship to
humanity, partly due to the ability of viruses to mutate
fast and adapt to new hosts. To manage and avert viral
infections that evolve into outbreaks like the current
COVID-19 pandemic, robust viral surveillance and moni-
toring of emerging viruses is imperative. Here, we have
assessed the potential of LIF-LiDAR approach for detec-
tion of viruses before, during and beyond pandemics, by
looking at the prospects, challenges and perspectives of
the approach that may be associated with stand-off viral

surveillance. Taking together all the factors that have
been addressed in this review, we conclude that sub-
stantial effort is still required to achieve a long-distance
viral surveillance in the atmospheric environment using
the LIF-LiDAR approach. However, the platform may
have successful short stand-off range applications in
food and medical virology. For instance, LIF-LiDAR is
amenable to virus surveillance on fomites such as medi-
cal equipment, medical laboratory workbench, theatre
tables and conveyor belts in food industries, among
others.
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