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COVID-19, the disease responsible for the devastating pandemic that began at the end of 2019,

has been associated with a significantly increased risk of pulmonary thrombosis, even in pa-

tients receiving prophylactic anticoagulation. The predilection for thrombosis in COVID-19 may

be driven by at least two distinct, but interrelated, processes: a hypercoagulable state

responsible for large-vessel thrombosis and thromboembolism and direct vascular and endo-

thelial injury responsible for in situ microvascular thrombosis. The presence of pulmonary

thrombosis may explain why hypoxemia is out of proportion to impairment in lung compliance

in some patients with COVID-19 pneumonia. Because pulmonary embolism (PE) and COVID-19

pneumonia share many signs and symptoms, diagnosing PE in patients with COVID-19 can be

challenging. Given the high mortality and morbidity associated with severe COVID-19 and the

concern that aspects of the disease may be driven by thrombosis, many hospital systems have

instituted aggressive anticoagulation protocols above standard VTE prophylaxis. In this review,

the epidemiologic and pathophysiologic features, diagnosis, and treatment of COVID-19

pulmonary thrombosis and thromboembolism are discussed.
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In late December 2019, a cluster of patients
with pneumonia of unknown cause was
linked to a seafood and wet animal wholesale
market in Wuhan, China.1 By early January
2020, a novel coronavirus, SARS-CoV-2, was
isolated from these patients with virus-
infected pneumonia, and soon after, the
clinical syndrome caused by SARS-CoV-2
was labeled as COVID-19 by the World
Health Organization.2 Since then, this highly
transmissible and virulent disease has
devastated the world, overwhelming
hospitals with critically ill patients. A few
notable observations about COVID-19 were
made early in the course of the pandemic: (1)
many patients with COVID-19 demonstrate
CT pulmonary angiography; DIC =
gulopathy; PE = pulmonary embolism;
sistance; RV = right ventricular
ision of Pulmonary, Critical Care, and
ahn School of Medicine at Mount Sinai,

CORRESPOND

mountsinai.or
Copyright � 2
Elsevier Inc. A
DOI: https://d
markedly abnormal coagulation parameters,
particularly D-dimer elevation, which
correlates with mortality3; (2) patients with
COVID-19, particularly those in the ICU,
show a notably high incidence of thrombotic
complications4; (3) small autopsy series of
patients with COVID-19 have demonstrated
a high incidence of both pulmonary
macrothrombi and microthrombi, despite
the use of prophylactic anticoagulation5,6;
and (4) many patients with COVID-19 who
experience respiratory failure seemed to have
hypoxemia that was out of proportion to the
impairment in lung compliance, a disconnect
that perhaps could be explained by
pulmonary thrombosis.7 Given the high
ENCE TO: Hooman D. Poor, MD; email: hooman.poor@
g
021 American College of Chest Physicians. Published by
ll rights reserved.
oi.org/10.1016/j.chest.2021.06.016

1471

mailto:hooman.poor@mountsinai.org
mailto:hooman.poor@mountsinai.org
https://doi.org/10.1016/j.chest.2021.06.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chest.2021.06.016&domain=pdf
http://chestjournal.org


mortality and morbidity associated with severe COVID-
198,9 and the concern that aspects of the disease may be
driven by thrombosis, many hospital systems instituted
aggressive anticoagulation protocols beyond standard
VTE prophylaxis, despite the absence of randomized
clinical trials supporting such practices.10,11 In this
review, the epidemiologic and pathophysiologic features,
diagnosis, and treatment of COVID-19 pulmonary
thrombosis and thromboembolism are discussed.
Epidemiologic Features
Accurate assessments of the true incidence of VTE in
hospitalized patients with COVID-19 remain elusive, with
estimates ranging from 4.8% to 85%.12 The significant
variability in the reported incidence is likely a consequence
of multiple factors, including assessment setting (eg, ICU
vs non-ICU), type of events counted (eg, symptomatic
vs asymptomatic), testing strategies (eg, clinical suspicion
vs systematic screening), and degree of
thromboprophylaxis. Given infection control concerns
and strained resources during peak surge times early in the
pandemic, the threshold for diagnostic testing with CT
pulmonary angiography (CTPA), compression
ultrasonography, or both was high, leading to a low
frequency of testing.13 In a meta-analysis by Jimenez et al12

comprising 36 studies and more than 11,000 patients, the
pooled incidence of VTE in patients with COVID-19 was
17% (12% for DVT, 7.1% pulmonary embolism [PE]).

VTE incidence in patients with COVID-19 is elevated
when compared with historical control participants.
Using a French National administrative database, Piroth
et al14 compared the 89,530 patients admitted to the
hospital with COVID-19 in France over a 2-month period
with the 45,819 patients admitted with influenza over a
similar 2-month period during the prior year. VTE and
PE rates were 4.9% and 3.4%, respectively, for patients
with COVID-19, but only 1.7% and 0.9%, respectively, for
patients with influenza. Poissy et al15 noted a PE
incidence of 20.6% in 107 consecutive patients with
COVID-19 admitted to the ICU during a 1-month period
in 2020, which was significantly higher than the
6.1% incidence of PE for the 196 patients admitted to the
ICU during the same interval in 2019, despite similar
severity of illness scores. Helms et al16 reported an
11.7% incidence of PE in COVID-19 ARDS compared
with a 2.1% incidence of PE in a historical prospective
cohort of patients with non-COVID-19 ARDS.

Critically ill patients in the ICU with COVID-19 show
significantly higher rates of VTE and thrombosis than
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patients with COVID-19 on the wards. Klok et al17

reported a 31% incidence of thrombotic events in 184
critically ill patients, 81% of the thrombotic events being
PE. Piazza et al18 reported that 35.3% of ICU patients
experienced major arterial or VTE, whereas the rate was
only 2.6% for patients on the wards. Notably, 77% of the
DVTs reported in this study were associated with a
catheter or device. In attempts to minimize recurrent
health care team exposure, many institutions undertook
high use of central venous catheters early in the
pandemic, especially in the ICU.19 Helms et al16 noted
that 28 of 29 patients with COVID-19 in the ICU who
received continuous renal replacement experienced
premature circuit clotting.

A significant percentage of the VTEs in patients with
COVID-19 are diagnosed early in the hospital
presentation. Mouhat et al20 reported a PE incidence of
27% in 349 hospitalized patients with COVID-19, of
whom 20% were diagnosed at admission. Lodgiani et al13

noted a 21% cumulative rate of thromboembolic events,
half occurring within the first 24 h of hospital admission.
For patients hospitalized with COVID-19, rates of PE
developing after hospital discharge are low, reported to be
2% within the first 6 weeks after discharge.21 COVID-19
hospitalization does not seem to increase the risk of VTE
after discharge compared with hospitalization as a result
of other acute medical illnesses.22

Systematic screening for VTE has been known to increase
detection rates in patients without COVID-19.23 Voicu
et al24 reported that 36% of mechanically ventilated
patients with COVID-19 were diagnosed with DVT
within 3 days after intubation when screened with
compression ultrasonography. In patients with COVID-
19 on the wards, Santoliquido et al25 demonstrated aDVT
incidence of 12% with systematic screening, although the
rate was 2.4% when counting only proximal DVT.
Mirsadraee et al26 performed systematic whole-body CT
scanning on 72 patients with COVID-19 on admission to
the ICU, noting that 34 patients (47%) demonstrated PE,
which had been suspected clinically in only 7%.

The presence of VTE in hospitalized patients with
COVID-19 is associated with greater disease severity
and increased mortality. Patients with PE more
frequently require mechanical ventilation and ICU
admission and have increased overall hospital length of
stay.27 In more than 3,000 consecutive hospitalized
patients with COVID-19 in a New York City hospital,
after multivariate adjustment, both venous and arterial
thrombosis were associated with increased mortality
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(adjusted hazard ratio, 1.82).28 It is unclear whether
thrombosis is a direct cause of these worse outcomes or
merely a marker of more severe disease.

Pathophysiologic Features
Considering that VTE rates in patients hospitalized with
COVID-19 are significantly higher than in historical
control participants, likely other thrombotic
mechanisms beyond the classic VTE risk factors of
immobility and severe illness are a factor.29 The
predilection for thrombosis in COVID-19 is driven by at
least two distinct, but interrelated, processes: a
hypercoagulable state responsible for large-vessel
thrombosis and thromboembolism and direct vascular
and endothelial injury responsible for in situ
microvascular thrombosis (Fig 1).30

Hypercoagulable State

It became evident early in the pandemic that patients
with COVID-19 showed abnormal hemostasis profiles,
elevated D-dimer being the most frequent abnormality.3

In a study of 2,377 hospitalized patients with COVID-19
in a New York hospital, 76% showed elevated D-dimer
at presentation.31 D-dimer is a degradation product of
fibrinolysis, and although a multitude of inflammatory
processes can influence D-dimer levels, to some extent
its elevation likely reflects intravascular thrombosis in
patients with COVID-19.32,33 Elevated D-dimer has
been shown to correlate with rates of thrombosis in
COVID-19.20,27,28 Mouhat et al20 reported that a
Figure 1 – Illustrations demonstrating two different mechanisms for pulmonar
from thromboembolism and microvascular in situ immunothrombosis result
extracellular trap; vWF ¼ von Willebrand factor.
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D-dimer of > 2,590 ng/mL was associated with a 17-fold
increase in adjusted risk of PE in patients hospitalized
with COVID-19. Li et al34 noted that a > 50% increase
in D-dimer level during hospitalization was the strongest
independent predictor of symptomatic VTE in patients
with COVID-19. Elevated D-dimer levels also are
associated independently with more severe disease and
increased mortality in COVID-19.9,35

The biochemical coagulation phenotype in COVID-19
likely differs from disseminated intravascular
coagulopathy (DIC) and sepsis-induced coagulopathy.
DIC and sepsis-induced coagulopathy are consumptive
coagulopathies characterized by low platelet counts,
decreased plasma levels of clotting factors, and
prolongation of prothrombin time.36 In contrast,
neither platelet nor clotting factor consumption are
common features in COVID-19, suggesting a different
mechanism of coagulopathy in COVID-19.37 For
example, Huang et al38 reported that in hospitalized
patients with COVID-19, only 8% of patients in the
ICU and 4% of patients not in the ICU showed platelet
counts of < 100 � 109/L on admission. Helms et al16

reported that although > 95% of patients with COVID-
19 in the ICU showed elevated D-dimer and fibrinogen
levels, none demonstrated a positive International
Society of Thrombosis and Haemostasis DIC score.
Table 1 summarizes and compares the main
coagulation parameters of DIC and COVID-19
coagulopathy.
y thrombosis in COVID-19, which include large-vessel occlusion resulting
ing from direct vascular and endothelial injury. NET ¼ neutrophil
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TABLE 1 ] Alterations of Hematologic Parameters in
COVID-19 Coagulopathy and DIC

Hematologic Parameter
COVID-19

Coagulopathy DIC

D-dimer [ [

Platelets 4 Y

PT, aPTT 4 [

Fibrinogen [ Y

Thrombin [ [

Factor VIII, factor V [ Y

aPTT ¼ activated partial thromboplastin time; DIC ¼ disseminated
intravascular coagulation; PT ¼ prothrombin time.
Other commonly noted coagulation abnormalities in
COVID-19 include dramatically increased thrombin
production39 and elevated concentrations of both von
Willebrand factor and factor V.16,40 Factor VIII, one of
the more potent triggers of hypercoagulability, has been
shown to be increased significantly in COVID-19.41

Thromboelastography studies of severe COVID-19
demonstrate rapid clot formation with impaired
fibrinolysis.41 Additionally, platelets from patients with
COVID-19 are activated more efficiently than are
platelets from both healthy control participants and
patients with non-COVID-19 ARDS.42

Immunothrombosis

Elevated markers of systemic inflammation, particularly
C-reactive protein and IL-6, are observed commonly in
patients with COVID-19.43 Extensive cross talk occurs
between the immune and coagulation systems to
provide effective host defense.44 Immune cells and
inflammatory cytokines incite the development of
immunothrombi, which consist of fibrin, monocytes,
neutrophils, and platelets. By creating a sterile barrier
against further pathogen invasion, these physiologic
thrombi initially serve a protective purpose.45,46

However, dysregulation of thrombosis and
inflammation can devolve into an injurious vicious
cycle, leading to exuberant thrombosis with consequent
organ dysfunction.33,47 The immune and coagulation
systems also are linked via neutrophil extracellular traps,
weblike structures of DNA decorated with antimicrobial
proteins. Neutrophil extracellular traps are expelled
from neutrophils to capture and immobilize pathogens
physically and also can activate immunothrombosis.48

Neutrophil extracellular trap levels have been shown to
be elevated in patients with COVID-19 when compared
with control participants and also to correlate with
disease severity.49
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Endothelial Injury

Autopsy studies early during the pandemic revealed
diffuse endothelial inflammation in many organs,
including the lung, heart, liver, and kidney, with
evidence of direct viral infection of endothelial cells by
the SARS-CoV-2 virus.50 Because in vivo biosynthesis of
von Willebrand factor is restricted to endothelial cells
and megakaryocytes, high plasma von Willebrand factor
concentrations in patients with COVID-19 suggest
significant endothelial cell derangement.40,41 Immune
cell arteritis was found in the lungs of nearly half of
those who had died of COVID-19 in one autopsy
series.51 Endothelial injury, particularly in the context of
a hypercoagulable milieu, likely is responsible for the
high rates of microthrombosis noted in the pulmonary
vasculature. Although pulmonary microthrombosis has
been noted previously in classical ARDS,52 the extent
evident in COVID-19 is significantly greater. Ackerman
et al6 noted that autopsies from patients with COVID-19
showed nine times more alveolar capillary microthrombi
compared with autopsies from patients with ARDS
secondary to H1N1 influenza. The high rates of
microthrombosis are not limited to the lungs; they also
have been reported in the heart53 and skin.54 Imaging
studies demonstrate that thrombotic lesions in COVID-
19 are smaller and more peripherally located compared
with those in non-COVID acute PE, suggesting that
some filling defects on CTPA, particularly isolated
subsegmental PE, may reflect in situ pulmonary
thrombosis instead of the typical embolization of
thrombi originating from peripheral DVT.12,55

Mirsadraee et al26 reported that of the critically ill
patients with COVID-19 found to have pulmonary
thrombosis via screening CTPA, 77% did not have
radiologic evidence of peripheral DVT.
Gas Exchange vs Lung Compliance

Early in the pandemic, Gattinoni et al7 noted that
although many patients with COVID-19 technically
fulfilled the Berlin criteria for ARDS, many showed
marked hypoxemia and elevated shunt fraction with
only minimally affected lung compliance, particularly
early in the course of disease. Chiumello et al56 noted
that venous admixture was unrelated to the fraction of
nonaerated lung tissue in COVID-19 ARDS, yet was
correlated to the fraction of nonaerated lung tissue in a
historical cohort of patients with non-COVID ARDS
who were matched for both PaO2 to FIO2 ratio and
compliance. Additionally, many nonintubated patients
with COVID-19 demonstrate dramatic hypoxemia, yet
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lack proportional signs of respiratory distress, a
condition coined happy hypoxemia.57 Some have
hypothesized that the presence of pulmonary thrombi,
both microthrombi and macrothrombi, may help to
explain the disconnect between gas exchange and lung
compliance in severe COVID-19.58

Hemodynamic Perturbations

Pulmonary emboli increase pulmonary vascular
resistance (PVR) and pulmonary artery pressure, with
higher thrombotic burden correlating with higher PVR
and pulmonary artery pressure.59 With sufficiently
elevated right ventricular (RV) afterload, pulmonary
emboli can induce RV dilation and dysfunction.60

Somewhat strikingly, patients with COVID-19 requiring
mechanical ventilation show invasive hemodynamic
profiles that are characterized by low, not high, PVR.61

This finding is surprising given the high prevalence of
PE in patients with COVID-19 in the ICU, as well as the
high prevalence of elevated PVR in non-COVID
ARDS.62

It is possible that the hemodynamic effect of pulmonary
thrombosis is mitigated by a primary pulmonary
vasodilatory process in some patients with COVID-19.
Dual-energy CT imaging has demonstrated pulmonary
vessel dilation in COVID-19 pneumonia.63 Ackerman
et al,6 in addition to demonstrating high rates of
pulmonary microthrombosis in COVID-19, also noted
high rates of intussusceptive and sprouting angiogenesis.
Reynolds et al64 reported that 83% of mechanically
ventilated patients with COVID-19 showed positive
bubble study findings as assessed by contrast-enhanced
transcranial Doppler imaging, likely indicative of
abnormal pulmonary capillary dilation, pulmonary
arteriovenous malformations, or both. Additionally, the
Figure 2 – Illustration showing how concomitant vasodilation can mitigate th
vasculature. B, Pulmonary thrombosis, which increases pulmonary vascular r
vasodilation potentially can “cancel out” the increases in pulmonary vascula
pulmonary arterial.
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degree of transpulmonary bubble transit correlated with
PaO2 to FIO2 ratio, suggesting that these pulmonary
vascular dilations may be a significant cause of
hypoxemia in COVID-19 ARDS. Whereas pulmonary
macrothrombi and microthrombi increase PVR,
pulmonary vasodilation decreases PVR; when both
processes occur simultaneously, each can “cancel out”
the hemodynamic effect of the other (Fig 2).65 The
coexistence of both obliterative and vasodilatory
processes in the pulmonary vasculature is reminiscent of
what can occur in chronic liver disease, specifically
portopulmonary hypertension (obliterative) and
hepatopulmonary syndrome (vasodilatory).66

Ultimately, in COVID-19 ARDS, the obliterative
processes may dominate, leading to severe RV failure
and cardiogenic shock.67

Although the vasodilatory and obliterative processes
may offset each other hemodynamically, their
coexistence may amplify hypoxemia in COVID-19.
Vasodilated regions experience increased blood flow,
creating low _V/ _Q ratios. Microthrombi and
vasoconstriction in other areas of the lung reroute
additional blood flow to the vasodilated regions and
drive down the _V/ _Q ratio further.65 Mathematical
modeling demonstrates that the large amount of
pulmonary venous admixture in the setting of relatively
minor parenchymal involvement observed in early
COVID-19 can be explained reasonably by a
combination of pulmonary thrombosis and
vasodilation.68
Diagnosis
In the absence of systematic screening, the diagnosis of
PE begins with clinical suspicion. Unexplained dyspnea
e hemodynamic effects of pulmonary thrombosis. A, Normal pulmonary
esistance and leads to increased PA pressure. C, Concomitant pulmonary
r resistance and PA pressure caused by pulmonary thrombosis. PA ¼
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and hypoxemia, particularly in the setting of normal
chest radiography findings, raises the clinical suspicion
for PE.69 Clinical suspicion of PE in a patient with
COVID-19 pneumonia often is diminished because the
signs and symptoms of COVID-19 pneumonia mimic
those of PE; a patient’s dyspnea and hypoxemia may be
attributed solely to COVID-19 pneumonia, and further
diagnostic testing for potential PE may be deferred.
Although clinical probability scores, such as the Wells
score,70 are helpful in raising clinical suspicion of PE in
patients, they have not been validated in patients with
COVID-19 and likely underestimate the probability of
PE in COVID-19.71

D-dimer, in conjunction with clinical probability
assessment, has great usefulness in ruling out PE in
patients with low or intermediate probability of PE,
although its usefulness in COVID-19 is unclear.72

Although D-dimer levels in COVID-19 correlate with
rates of thrombosis, it is not clear whether a particular
D-dimer value “rules in” or “rules out” PE. In the study
by Mirsadraee et al26 in which screening CTPA was
performed for patients with COVID-19 on admission to
the ICU, D-dimer levels did not discriminate between
patients with and without PE. Li et al34 developed a
three-factor score consisting of admission fibrinogen,
admission D-dimer, and D-dimer increment > 1.5 fold,
the score performing with a sensitivity of 0.93 and
specificity of 0.71 for symptomatic VTE.

CTPA is the first-choice method for the diagnosis of PE
because of its high accuracy, wide availability, and ability
to assess for other pulmonary pathologic features. Its use
may be limited in critically ill patients with COVID-19
who are not stable enough for transfer and in patients
with renal failure, a common complication in severe
COVID-19.73 _V/ _Q scanning can be used for patients in
whom CTPA is contraindicated or inconclusive. Scans
performed on patients with abnormal chest radiography
findings, as is often the case in patients with COVID-19
pneumonia, are more likely to result in false-positive
results because the images rarely appear as normal or
showing a low probability of PE in such patients.
Compression ultrasonography can be performed to
assess for DVT when chest imaging is contraindicated or
indeterminate; however, the absence of DVT does not
imply the absence of pulmonary thrombosis, especially
because in situ pulmonary thrombosis is a potential
mechanism in COVID-19. A diagnosis of DVT may
eliminate the need to evaluate for PE because the
indication for therapeutic anticoagulation will have been
established. Echocardiography can raise suspicion for
1476 CHEST Reviews
the diagnosis of PE with the presence of clot in the right
side of the heart or new right heart strain. Although it
has limited diagnostic value, echocardiography is most
useful for risk stratification of confirmed PE.74
Prophylaxis
Considering that PE is one of the most common
preventable causes of hospital death,
thromboprophylaxis is a crucial component in the care
of hospitalized patients,75 and COVID-19 is no
exception. A retrospective study by Rentsch et al76

demonstrated that the administration of prophylactic
anticoagulation within 24 h of admission in patients
with COVID-19 was associated with decreased mortality
when compared with no prophylactic anticoagulation.
Multiple society guidelines recommend prophylactic
anticoagulation for hospitalized patients with COVID-
19 who do not have a contraindication to treatment.77,78

However, standard doses of prophylactic anticoagulation
likely are insufficient for the prevention of VTE in
patients with COVID-19; many VTE events are
diagnosed within the first 24 h after admission,13 and the
reported rates of VTE are notably high despite the use of
anticoagulant thromboprophylaxis.15,17,24

As a result of the high rates of VTE despite standard-
dose thromboprophylaxis, many institutions have
implemented protocols using higher doses, including an
intermediate dose and even a therapeutic dose.
Tacquard et al11 reported in a study of 538 patients with
COVID-19 in eight French ICUs that high-dose
prophylactic anticoagulation (intermediate or
therapeutic dose) was associated with a significant
reduction in thrombotic complications (hazard ratio,
0.81) without an increase in bleeding risk. In more than
4,000 patients with COVID-19 at a New York hospital
with an aggressive anticoagulation protocol, Nadkarni
et al10 noted a trend toward a mortality reduction with
therapeutic anticoagulation compared with prophylactic
anticoagulation, a finding that did not meet statistical
significance (P ¼ .08).

However, recent randomized controlled trials do not
support the use of higher than standard doses for
prophylactic anticoagulation in critically ill patients with
COVID-19. In 600 critically ill patients, intermediate-
dose anticoagulation with enoxaparin 1 mg/kg daily was
not superior to standard prophylactic anticoagulation
with enoxaparin 40 mg daily in reducing the composite
outcome of venous or arterial thrombosis, treatment
with extracorporeal membrane oxygenation, or
[ 1 6 0 # 4 CHES T OC TO B E R 2 0 2 1 ]



Acute PE Anticoagulation
SBP < 90 mm Hg or requiring

vasopressors/inotropes?

NO

NO

YES

YES

NOYES

RV dysfunction, PESI > II, or
troponin positive?

LOW RISKINTERMEDIATE RISK

RV dysfunction AND troponin positive?

INTERMEDIATE-LOW
RISK

Anticoagulation
Consider reperfusion

therapy

INTERMEDIATE-HIGH
RISK

HIGH RISK

Reperfusion
therapy

Figure 3 – Risk-stratification algorithm and treatment strategy, adapted from the European Society of Cardiology Guidelines.75 Reperfusion therapy in-
cludes thrombolysis and embolectomy. PE¼ pulmonary embolism; PESI¼ pulmonary embolism severity index; RV¼ right ventricular; SBP¼ systolic BP.
mortality within 30 days. Although bleeding events were
rare, major and clinically relevant nonmajor bleeding
events were nonsignificantly more frequent with
intermediate-dose anticoagulation (6.2% for
intermediate dose, 3.1% for standard dose; P ¼ .08).79 A
large National Institutes of Health multiplatform
randomized controlled trial incorporating three global
networks (A Randomised, Embedded, Multi-factorial,
Adaptive Platform Trial for Community-Acquired
Pneumonia [REMAP-CAP], Anti-Thrombotic Therapy
to Ameliorate Complications of COVID-19 [ATTACC],
and Accelerating COVID-19 Therapeutic Interventions
and Vaccines-4A [ACTIV-4A]) examining the benefit of
therapeutic dose vs standard dose prophylactic
anticoagulation in more than 1,000 critically ill patients
with COVID-19 discontinued enrollment because
statistical criteria for futility were met. Importantly,
despite therapeutic anticoagulation decreasing major
thrombotic events, an 89% probability was found that
therapeutic anticoagulation was inferior to standard
dose prophylactic anticoagulation in achieving the
primary outcome of survival or days free of organ
support.80 The mechanism for this likely harm is
unclear, given that major bleeding was increased only
mildly with therapeutic anticoagulation (3.1% vs 2.4%).
These findings suggest that initiating therapeutic
anticoagulation after severe COVID-19 has developed
chestjournal.org
may be too late to alter the clinical course beneficially. In
contrast, for moderately ill hospitalized patients with
COVID-19, the National Institutes of Health recently
announced via press release that therapeutic-dose
anticoagulation was superior to standard-dose
prophylactic anticoagulation in reducing the need for
organ support and mortality.81 The full results and
official publication of these studies are awaited anxiously
because they undoubtedly will help to establish the
optimal anticoagulation dosing strategies for patients
with COVID-19.

Treatment
Anticoagulation is the mainstay of the treatment for
acute PE, both for patients with and without COVID-19,
to prevent further thrombosis and thromboembolism.74

Initial treatment options for anticoagulation include
unfractionated heparin, low-molecular-weight heparin,
fondaparinux, and, in low-risk patients, direct oral
anticoagulants. As is the case with non-COVID-19 PE,
risk stratification is the central tool used to identify
patients at increased risk of early death who may benefit
from reperfusion therapy (ie, thrombolysis or
embolectomy), mechanical circulatory support, or both.
Per the European Society of Cardiology guidelines,74

high-risk PE is characterized by cardiac arrest, systolic
BP < 90 mm Hg, or requiring vasopressors, inotropes,
1477
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or both. Intermediate-risk PE is characterized by
normotension with signs of RV dysfunction on
echocardiography or CTPA, elevated troponin levels, or
an elevated PE severity index score. Of note, the role of
troponin levels as a prognostic biomarker for PE in
COVID-19 is confounded by the fact that troponin
frequently is elevated in patients with COVID-1982; in
that context, it likely reflects myocardial inflammation,
cardiac microthrombosis, or both, rather than RV
pressure overload. Low-risk PE is characterized by
normotension, lack of RV dysfunction, and a low PE
severity index score. Figure 3 summarizes the European
Society of Cardiology risk stratification algorithm and
treatment strategy.

If possible, patients with high-risk PE should undergo
reperfusion therapy, mechanical circulatory support, or
both. Patients with intermediate-risk PE should be
monitored closely for signs of clinical deterioration, with
select patients proceeding to reperfusion therapy.74

Given the risk of viral transmission from transporting
patients with COVID-19 to operating rooms and
invasive laboratories, the use of procedural-based
therapies (eg, surgical embolectomy, catheter-based
therapies) may be limited in patients with PE and
COVID-19. Ultimately, the use of PE response teams
can aid in providing multidisciplinary recommendations
and rapid mobilization of resources.83

Given the potential pathophysiologic role of pulmonary
microthrombosis, thrombolysis has been used in small
case series of COVID-19 ARDS. Although these reports
note improvement in hypoxemia, dead-space
ventilation, and hemodynamics in patients with
COVID-19 ARDS, the therapeutic responses seem to be
short-lived.58,84 It is possible that concomitant
anticoagulation during the administration of a
thrombolytic is necessary to prevent immediate
rethrombosis.58 Currently, randomized trials evaluating
the use of tissue plasminogen activator (ClinicalTrials.
gov Identifier: NCT04357730) and tenecteplase
(ClinicalTrials.gov Identifier: NCT045055920) in
patients with COVID-19 ARDS are underway.
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