
Research and Applications

Demonstrating an approach for evaluating synthetic

geospatial and temporal epidemiologic data utility: results

from analyzing >1.8 million SARS-CoV-2 tests in the United

States National COVID Cohort Collaborative (N3C)

Jason A. Thomas1, Randi E. Foraker 2,3, Noa Zamstein4, Jon D. Morrow4,5,

Philip R.O. Payne 2,3, and Adam B. Wilcox2,3; the N3C Consortium†

1Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, Washington, USA, 2Division of

General Medical Sciences, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA, 3School of Medicine,

Institute for Informatics, Washington University in St. Louis, St. Louis, Missouri, USA, 4MDClone Ltd., Be’er Sheva, Israel, and
5Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, New York, USA

†A list of consortial authors and N3C core team contributions are given in ‘Author Contributions’ and ‘Acknowledgments’ sec-

tions, respectively.

Corresponding Author: Jason A. Thomas, PhD, Philips North America, LLC, 22100 Bothell Everett Hwy, Bothell, WA 98021,

USA; thomasjt@uw.edu

Received 14 July 2021; Revised 11 March 2022; Editorial Decision 14 March 2022; Accepted 28 March 2022

ABSTRACT
Objective: This study sought to evaluate whether synthetic data derived from a national coronavirus disease

2019 (COVID-19) dataset could be used for geospatial and temporal epidemic analyses.

Materials and Methods: Using an original dataset (n¼1 854 968 severe acute respiratory syndrome coronavirus

2 tests) and its synthetic derivative, we compared key indicators of COVID-19 community spread through analy-

sis of aggregate and zip code-level epidemic curves, patient characteristics and outcomes, distribution of tests

by zip code, and indicator counts stratified by month and zip code. Similarity between the data was statistically

and qualitatively evaluated.

Results: In general, synthetic data closely matched original data for epidemic curves, patient characteristics,

and outcomes. Synthetic data suppressed labels of zip codes with few total tests (mean¼2.9 6 2.4; max¼16

tests; 66% reduction of unique zip codes). Epidemic curves and monthly indicator counts were similar between

synthetic and original data in a random sample of the most tested (top 1%; n¼171) and for all unsuppressed zip

codes (n¼5819), respectively. In small sample sizes, synthetic data utility was notably decreased.

Discussion: Analyses on the population-level and of densely tested zip codes (which contained most of the

data) were similar between original and synthetically derived datasets. Analyses of sparsely tested populations

were less similar and had more data suppression.

Conclusion: In general, synthetic data were successfully used to analyze geospatial and temporal trends. Analy-

ses using small sample sizes or populations were limited, in part due to purposeful data label suppression—an

attribute disclosure countermeasure. Users should consider data fitness for use in these cases.
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INTRODUCTION

Background and significance
Coronavirus disease 2019 (COVID-19) has illustrated the need to

disseminate accurate, timely, and useful epidemiologic public health

data—especially data related to ongoing pandemics or pandemic

preparedness. It has also highlighted the need to protect the privacy

of individuals.1,2 The National COVID Cohort Collaborative (N3C)

was created to share and harmonize individual-level electronic

health record (EHR) data into a single dataset.3 The N3C has

received, ingested, harmonized, and characterized4 data from across

the United States. To balance data access and privacy, N3C created

2 levels of datasets: (1) the limited dataset (LDS) which has 16

HIPAA Privacy Rule5,6 direct identifiers stripped out except dates

and zip codes, and (2) synthetic data which are computationally

derived from the LDS to mimic the LDS data statistical distributions,

covariance, and higher order interactions. Synthetic data generation

can potentially protect privacy because synthetic data rows are not

directly tied to the original source data.7–11 Pending a pilot study and

privacy validation, synthetic datasets are the only data under consid-

eration to be shared outside of the N3C enclave.3

Applying privacy-preserving methods to data comes at varying

cost to utility, producing a privacy-utility tradeoff.9,12–15 De-

identification removes granular geographic information such as

street-level address. Obscuring dates reduces the utility of temporal

data for some analyses, such as epidemic curves. However, these

geographic and temporal data are critical components needed to

measure key indicators of COVID-19 community spread16 used to

inform pandemic management decisions such as determining when

to reopen schools17 and businesses.18 Thus, synthetic data may be

the only privacy-preserving (pending privacy evaluations) N3C data

that can be used to analyze some of the most critically important

data related to pandemic management and preparedness while also

providing citizens more transparency into the underlying data.

However, previous research has reported deficits in how well-syn-

thetic data mimic original data including limitations in their: ability

to capture longitudinal relationships, model multiple data types, and

perform well on small sample sizes10,19,20 Due to the combination

of potential widespread synthetic data dissemination, heightened re-

search interest in COVID-19,21 and the rise of “citizen science,”22–

24 the user base and applications of pandemic-related synthetic data

will likely be heterogeneous and broad. Therefore, it is important to

evaluate N3C synthetic data in a manner that can inform users with

a wide range of intended use cases and definitions for synthetic data

fitness for use.25

The utility of synthetic health data has been evaluated in other

work15,19,20,26–30 outside of N3C which applied a variety of the

ways one can validate synthetic data.31 However, N3C synthetic

data utility has only been evaluated once before. Recently, the N3C

synthetic data validation task team evaluated the utility of N3C syn-

thetic data (MDClone, Be’er Sheva, Israel) across 3 use cases, one of

which had a geospatial and temporal focus.32 Foraker et al found

the synthetic data had high utility for construction of a single aggre-

gate epidemic curve of COVID-19 cases. However, it showed that

rural zip codes with smaller population counts were more likely

than urban zip codes to have zip code labels censored (suppressed)

in the synthetic data, which is where a categorical variable’s value is

replaced with the word “censored.” Zip code censoring is a method

that aims to protect privacy of patients with particularly uncom-

mon, and thus identifiable, features. To date, no analyses have been

conducted on the N3C synthetic data to assess utility for analyses by

individual zip codes and/or aggregate indicators beyond case counts

(eg, percent positive) over time.

Objective
In this article, we describe the N3C synthetic data validation task

team methods and results focused on evaluating whether synthetic

N3C data can be used for geospatial and temporal epidemic analy-

ses. Our replication studies focused on what we deemed were impor-

tant and common analyses to be performed, such as epidemic curves

for key indicators and creation of public-facing dashboards.33–35

Our validation included replication of studies and general utility

metrics31 for: analyses at the zip code-level over time, construction

of epidemic curves, and aggregate population characteristics. We

believe these approaches balance the need to provide broad utility

results for a wide range of analyses while also providing specific

validation results relevant to analyses of common interest.

MATERIALS AND METHODS

Synthetic data
The MDClone ADAMS Synthetic Engine (MDClone Ltd., Be’er

Sheva, Israel) derives a novel, synthetic dataset from input data, spe-

cifically computed to preserve the statistical properties, correlations,

and higher-order relationships between variables while containing

none of the individuals from the original data. The synthetic process

fits new data points to a derived, multi-dimensional model so that

information cannot be learned with certainty about any one individ-

ual in the population that cannot be learned about a group of other

similar individuals.

An authenticated researcher specifies the patient cohort of inter-

est from the underlying local data lake using the graphical query

tool in ADAMS. The user selects the variables to be included in the

output and can specify temporal relationships of interest. The deriv-

ative synthetic dataset is then computed from the original data for

the selected cohort and variables, without exposing the user to the

underlying original data.

For continuous variables, such computationally derived synthetic

data are inherently privacy-preserving because, unlike de-identified

data, the synthetic data process begins with a statistical model of the

original data and samples entirely novel points to fit that model,

maintaining the distribution, density, and co-variance between and

among features within that model. There is no one-to-one corre-

spondence between points in the original dataset and sampled points

in the computed synthetic derivative; this prevents information from

being learned from the latter about individuals from the former,

other than their overall inter-variable relationships and their

population-level descriptive properties. Indeed, if the process is run

repeatedly on the same source data, each set of output will be

unique, all sharing the same statistical properties as the source but

none identical to it or to one another.

For categorical variables (eg, ZIP codes, genders), the finite num-

ber of categories presents the inherent possibility of an inference at-

tack or other privacy-threatening methodology.36–38 The MDClone

engine therefore enforces a number of proprietary techniques, be-

yond the control of the user, to mitigate this risk.39 The rows (ie,

patients) in the source database are sorted by the discrete values of

categorical variables, thus grouping identical rows. If in any group

there are fewer than a system-defined number of rows, termed j,

some of these discrete values are replaced by the word “censored.”
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This process, which reduces the variance in the categorical variables,

is repeated until all rows are members of groups of size �j.

Each resulting unique group of rows includes a matrix represent-

ing the group’s associated numeric variables. Because knowledge of

some of the numeric values might permit an attacker to discover

something about other variables, MDClone replaces each matrix

with an alternative matrix of similar statistical properties. Specifi-

cally, the rows are clustered into sets of <j rows, minimizing the

scaled Euclidean distance between data points and preserving,

within each cluster, statistical characteristics for every pair of varia-

bles. As there is an unlimited number of possible alternative matrices

for each cluster that satisfies this requirement, the algorithm selects

each solution randomly, resulting in an irreversible process and pre-

venting the re-creation of the original data from the result.

Finally, to protect against a difference attack based on knowing

the exact size of the original population,40 the number of rows that

are created to fit the overall data model is altered slightly. This

small, arbitrary change in the number of rows prevents an attacker

from deducing the exact size of the original population but does not

affect the overall statistical properties of the resulting dataset.

Data model
The N3C data analyzed include individual-level EHR data enriched

with social determinants of health (SDOH) at the 5-digit zip code

level. The data have been harmonized into the Observational Medi-

cal Outcomes Partnership (OMOP) common data model (CDM)

v5.3.13,41 and are the same datasets described in a previous N3C

synthetic data validation use case.32 The N3C LDS as of November

30, 2020—which included 34 data source partners—was used as the

data source. MDClone received a copy of the LDS then transformed

these data from the N3C harmonized data model into MDClone’s

data model. Afterwards, the required data needed for the study

team’s analyses were extracted by MDClone from the transformed

LDS for use as the “original” dataset. A synthetic derivative of this

transformed original dataset was then created by MDClone.

MDClone provided both the original and synthetic datasets to the

research team for evaluation within the N3C secure enclave environ-

ment (Supplementary Figure S4 in the flowchart). Information on

the MDClone data model and pre-processing steps specific to this

study are described further in the Supplementary Material and in

general in past analyses of MDClone data.27

Both the original and synthetic data were formatted as a single

table adhering to the same schema, with each row representing a sin-

gle COVID-19 test. The table had the following columns: test result

(positive/negative; only each patient’s first negative and/or first posi-

tive test included), age at confirmed test result; admission start date

days from reference if admission occurred within 67 days of

COVID-19 positive test result; death (null/yes) during admission;

admission length of stay (LOS); patient’s state of residence; source

partner with which the patient was affiliated; and patient’s 5-digit

zip code. The data also included the following SDOH columns de-

termined by the patient’s zip code: total population in zip code; per-

cent of residents under the poverty line; percent without health

insurance; and median household income.

As in Foraker et al, we used consistent definitions for censored

and uncensored zip codes. Censored zip codes were those present

within the original data not found (n¼11 222) within the synthetic

dataset either because the zip code was suppressed by labeling the

zip code “censored” or removed within the synthetic dataset to pro-

tect privacy. Conversely, uncensored zip codes were defined as dis-

crete zip codes found in the original and the synthetic data

(n¼5819).

Analysis (excluding the post hoc privacy evaluation)
All analyses were conducted solely by 1 author (JAT). All code was

written in Python (v3.6.10) and—as required by N3C—ran within

the secure N3C enclave using the Palantir Foundry Analytic Plat-

form (Palantir Technologies, Denver, CO, USA). The entirety of

code used in this analysis is contained within a single Foundry Code

Workbook using a saved Spark environment to preserve required

software versions and dependencies. The code workbook and source

data have been stored within the N3C enclave so that they may in-

form and be reused in future validation work.

Summary of data
Descriptive statistics were calculated and reported in Table 1 for

age, number of unique zip codes present, LOS, and admission date

after positive test stratified by patients who were tested, positive, ad-

mitted, and who died during admission. Number of unique zip codes

present excluded null or censored zip codes. The difference between

original and synthetic values was reported as the raw synthetic dif-

ference (synthetic—original). The difference as a percentage of the

original value was reported as synthetic difference percentage (raw

synthetic difference/original).

Aggregate epidemic curves
We constructed aggregate epidemic curves using each dataset span-

ning January 1 through November 30, 2020 (Figure 1). The follow-

ing key indicators were calculated and visualized: tests, cases

(reproduced from Foraker et al to view others in context), percent

positive, admissions, and deaths during admission. Each indicator

had the following daily metrics calculated: count (discrete indica-

tors) or value (continuous indicators), 7-day midpoint moving aver-

age, and 7-day slope (count or daily value—its value 6 days prior).

To assess the statistical difference between original and synthetic ep-

idemic curves, we conducted the paired 2-sided t-test (scipy v1.5.3,

stats.ttest_rel) and 2-sided Wilcoxon signed-rank test (scipy v1.5.3,

stats.wilcoxon) for all metrics across all indicators (Table 2), treat-

ing each dataset’s daily results as a pair.

Distribution of tests; censoring of zip codes
To assess the distribution of tests by zip code and threshold of zip

code censoring, we calculated the total number of tests per zip code

in the original and synthetic data. In the synthetic data, we excluded

rows with a censored (n¼44 337; 2.4%) or null (n¼444 092;

23.9%) zip code. In the original data, we excluded rows with a null

(n¼444 380; 24.0%) zip code. We computed the 99th, 97.5th, and

90th percentiles of tests per zip code in the original data. The distri-

butions of tests by zip code were plotted as a histogram (Figure 2)

with the synthetic and original data overlaid. Additionally, we cal-

culated the distribution of tests by zip code in the original data that

were censored in the synthetic data, then plotted the result as a his-

togram (Supplementary Figure S3). We then calculated the differ-

ence in patients’ SDOH values within the original data, comparing

patients whose zip codes were censored within the synthetic data to

those whose zip codes were not censored (Table 3).

Top 1% paired zip codes’ epidemic curves
Next, we assessed synthetic epidemic curves’ performance at the zip

code level, focusing on zip codes with relatively abundant data. We
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created a list of zip codes from the original data in the 99th percen-

tile (n¼171) by total number of tests, then removed any zip codes

without an uncensored matched zip code pair in the synthetic data

(n¼0). We randomly sampled 10 zip codes from the list and con-

structed epidemic curves for these zip codes’ original and synthetic

data Figures 3 and 4). Each epidemic curve was constructed using

the same date range, methods, and metrics as the aggregate epidemic

curves described above with the following change: we only assessed

tests and admissions indicators due to the infrequency of death dur-

ing admission at the zip code level and manuscript space limitations.

Monthly zip code pairwise synthetic error
We compared the difference in monthly counts of tests, cases,

and admissions between the original data and paired uncensored

synthetic zip codes. To do so, we calculated each dataset’s num-

Table 1. Testing and outcomes characteristics: comparison of original versus synthetic data

Original Synthetic Synthetic difference (raw) Synthetic difference (%)

Tests (n) 1 854 968 1 854 950 �18.00 0.00

Age (mean) 44 44 0.00 0.00

Age (stdev) 22.16 22.16 0.00 0.00

Age (median) 43.52 43.51 �0.01 �0.02

Age (IQR) 35.08 35.04 �0.04 �0.11

Unique zip codes (n) 17 041 5819 �11 222.00 �65.85

Positive (count) 195 200 195 198 �2.00 0.00

Positive (%) 10.52 10.52 0.00 0.00

Age (mean) 41.54 41.53 �0.01 �0.02

Age (stdev) 20.4 20.42 0.02 0.10

Age (median) 39.65 39.56 �0.09 �0.23

Age (IQR) 31.84 31.81 �0.03 �0.09

Unique zip codes (n) 6660 1798 �4862.00 �73.00

Negative (n) 1 659 768 1 659 752 �16.00 0.00

Negative (%) 89.48 89.48 0.00 0.00

Age (mean) 44.29 44.29 0.00 0.00

Age (stdev) 22.34 22.34 0.00 0.00

Age (median) 44.08 44.08 0.00 0.00

Age (IQR) 35.36 35.34 �0.02 �0.06

Unique zip codes (n) 16 668 5805 �10 863.00 �65.17

Admitted (n) 23 044 23 044 0.00 0.00

Admitted (%) 1.24 1.24 0.00 0.00

Age (mean) 57.87 57.85 �0.02 �0.03

Age (stdev) 19.77 19.74 �0.03 �0.15

Age (median) 59.98 60 0.02 0.03

Age (IQR) 28.2 28.22 0.02 0.07

Days after positive test (mean) �0.07 �0.1 �0.03 42.86

Days after positive test (stdev) 1.77 1.74 �0.03 �1.69

Days after positive test (median) �0.05 �0.04 0.01 �20.00

Days after positive test (IQR) 0.88 0.88 0.00 0.00

LOS (mean) 6.48 8.32 1.84 28.40

LOS (stdev) 290.81 10.66 �280.15 �96.33

LOS (median) 5 5 0.00 0.00

LOS (IQR) 8 8 0.00 0.00

Unique zip codes (n) 3132 1515 �1617.00 �51.63

Died (n) 2032 2032 0.00 0.00

Died (%) 0.11 0.11 0.00 0.00

Age (mean) 71.81 71.81 0.00 0.00

Age (stdev) 14.57 14.65 0.08 0.55

Age (median) 73.26 73.21 �0.05 �0.07

Age (IQR) 19.68 19.58 �0.10 �0.51

Days after positive test (mean) �0.32 �0.32 0.00 0.00

Days after positive test (stdev) 1.39 1.36 �0.03 �2.16

Days after positive test (median) �0.14 �0.11 0.03 �21.43

Days after positive test (IQR) 0.91 0.93 0.02 2.20

LOS (mean) 13.69 13.71 0.02 0.15

LOS (stdev) 12.93 13.05 0.12 0.93

LOS (median) 10 10 0.00 0.00

LOS (IQR) 13 13 0.00 0.00

Unique zip codes (n) 831 16 �815.00 �98.07
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ber of tests, cases, and admissions for every zip code stratified

by month for each month the zip code had �1 test. Then, the

datasets were outer merged on month and zip code (Figure 5).

Synthetic error, defined as the difference between the synthetic

monthly count and the original data monthly count value, was

computed for every zip code month pair. The distribution of

synthetic error was visualized (Figure 6) for tests, cases, and

admissions.

Figure 1. Aggregate epidemic curves with counts (vertical bars) and 7-day moving averages (smoothed line) for (A) tests, (B) cases, (C) percent positive, (D)

admissions, and (E) deaths during admission. Color encodings include original data (light blue) and synthetic data (light red), with their overlap (purple). As

counts get smaller from tests to deaths, the epidemic curves visually appear less similar.

Table 2. Tests for significant differences between aggregate original and synthetic epidemic curves

Key indicator Metric Wilcoxon result P-value T-test stat P-value

Tests Counts 25 354.5 0.300 �0.007 0.994

7-day average 25 458.5 0.428 �0.025 0.980

7-day slope 26 075 0.735 �0.002 0.998

Cases Counts 26 288 0.496 �0.002 0.998

7-day average 26 005 0.775 �0.006 0.996

7-day slope 25 788.5 0.898 �0.002 0.998

Percent positive Counts 26 407 0.426 �0.932 0.352

7-day average 24 038 0.072 �2.258 0.025

7-day slope 27 083 0.972 0.129 0.896

Admissions Counts 21 405 0.247 �0.007 0.995

7-day average 24 299 0.197 �0.030 0.976

7-day slope 22 825.5 0.894 �0.011 0.991

Deaths Counts 13 881 0.748 0 1

7-day average 19 171.5 0.247 �0.023 0.982

7-day slope 16 632 0.866 �0.011 0.992

Boldface values significant at < 0.05.
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Table 3. SDOH and age of patients in the original data whose zip codes were censored versus uncensored

SDOH Censored status mean Standard deviation Median IQR

Age (years) Uncensored 44.0 22.2 43.5 35.0

Censored 46.4 22.0 48.7 40.1

Uncensored �2.4 0.2 �5.2 �5.1

Difference (raw)

Median household income ($) Uncensored 64 092.6 23 973.9 59 324.0 29 241.0

Censored 63 101.5 28 964.1 55 625.0 28 857.0

Uncensored 991.1 �4990.2 3699.0 384.0

Difference (raw)

Percent under the poverty line Uncensored 13.7 9.0 11.3 11.2

Censored 13.3 9.6 11.2 10.9

Uncensored 0.4 �0.6 0.1 0.3

Difference (raw)

Percent without health insurance Uncensored 8.7 5.1 7.6 7.0

Censored (raw) 9.2 6.7 7.8 7.7

Uncensored �0.5 �1.6 �0.2 �0.7

Difference (raw)

Total population of zip code Uncensored 29 758.7 17 992.4 28 479.0 25 220.0

Censored 15 493.9 17 967.1 7935.0 23 119.3

Uncensored 14 264.8 25.3 20 544.0 2100.7

Difference (raw)

Figure 2. Distributions of total tests by zip code shown by original data (light blue) and synthetic data (light red), and their overlap (purple). (A) All data binned by

100. (B) Filtered data with a bin size of 10 to only show the distribution of tests by zip code in zip codes with <100 tests. Both y-axes use a log scale. As seen in

panel A, the vast majority of tests are conducted in a minority of zip codes. As seen in panels A and B, the distribution of the synthetic data closely matches the

original data at >10 tests per zip code.
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Figure 3. Zip code-level epidemic curves with counts (vertical bars) and 7-day moving averages (smoothed line). Color encodings include original data (light blue)

and synthetic data (light red), with their overlap (purple). Each row (A–E) corresponds to a different randomly sampled zip code visualizing cases (left column)

and admissions (right column). Synthetic data are more similar to original data when indicator density is higher. Overall, synthetic data closely match overall

trends and closely match start and end dates.
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Figure 4. Zip code-level epidemic curves with counts (vertical bars) and 7-day moving averages (smoothed line). Color encodings include original data (light blue)

and synthetic data (light red), with their overlap (purple). Each row (A–E) corresponds to a different randomly sampled zip code visualizing cases (left column)

and admissions (right column). Synthetic data are more similar to original data when indicator density is higher. Overall, synthetic data closely match overall

trends and closely match start and end dates.
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Visualizations
All visualizations (Plotly v4.14.1, Plotly Technologies Inc.) were in-

teractive, allowing N3C enclave users to zoom in/out, pan, and

hover to see values and/or labels. In this manuscript, static figures

are presented. Log scales were avoided when possible and, when

used, annotated to draw attention to the scale.

Visualizations that overlaid both datasets adhered to consistent

style conventions. We encoded synthetic and original data sources as

red and blue, respectively. Vertical overlaid bars were set to an opac-

ity of 0.35 to (1) provide contrast between 2 datasets and (2) allow

additional tracings, such as 100% opacity 7-day moving averages

used in epidemic curves, to be seen on top of the bars.

All visualizations were created using colorblind-safe color map-

pings. Categorical mappings encoding values besides data source

(synthetic or original) used hexadecimal color codes found in the

seaborn colorblind palette.42,43 Each visualization was qualitatively

tested for colorblind deuteranopia, protanopia, and tritanopia

interpretability by 1 member of the research team (JAT) using Color

Oracle.44

Post hoc privacy evaluation
A post hoc assessment was done to determine the privacy preserva-

tion of the synthetic data produced for this study, by addressing the

possibility that the presence of an individual in the original dataset

could be inferred from the synthetic data. Specifically, we queried

whether there were any rows in the synthetic dataset that share iden-

tical attributes across continuous and categorical values with rows

in the original dataset. Since exact matches across continuous varia-

bles are expected to be rare,45 we also examined whether subjects

with a unique value in a categorical variable or bearing a rare com-

bination of categorical values were reproduced in the derivative syn-

thetic dataset.

RESULTS

There were nearly 2 million tested patients (original n¼1 854 968;

synthetic n¼1 854 950) in each dataset. As seen in Table 1, the

overall central tendencies of variables of interest overall were similar

between the synthetic data and original data, especially for age and

percent positive/admitted/died. The raw synthetic difference was 0,

rounded to 2 decimal points, roughly one-third (18/50 rows in Ta-

ble 1) of the time. The variable with the greatest synthetic difference

was unique zip codes, with between a 65% and 98% reduction in

unique zip codes. Median LOS and interquartile range (IQR) for ad-

mitted patients were exactly the same, yet the mean LOS was 6.48

(6290.81) and 8.32 (610.66) days for original and synthetic values,

respectively. The extreme LOS standard deviation observed in the

original data was due to an erroneous outlier. A single row in the

original data had an extreme negative LOS (��44 000 days; ��120

years) and 11 rows with a LOS ¼ �1. The synthetic data also had

negative LOS values (n<10), but the values were greatly attenuated,

ranging from �1 to roughly �175. As a result of noticing this ex-

treme LOS, all columns in the original and synthetic data were

assessed for implausible outliers likely to be the result of data quality

issues. None were found.

In our statistical analysis, no differences were found between the

aggregate epidemic curves besides the 7-day average of percent posi-

tive ([t-test P-value¼ .025; Wilcoxon P-value¼ .072], Table 2).

Differences were observed between patients’ SDOH values

whose zip codes were uncensored in the synthetic data compared

to patients whose zip codes were censored in the synthetic data

(Table 3). The largest differences were found in the total population

of zip code and age. Patients with uncensored zip codes lived in

more populous zip codes (median total population:

uncensored¼28 479, censored¼7935) and were younger (median

age: uncensored¼ 43.5, censored¼48.7).

The randomly sampled top 1% paired zip codes’ epidemic curves

are presented in Figures 3 and 4.

Distribution of tests by zip code and of censored zip

codes
The 90th, 97.5th, and 99th percentiles for total tests by zip code in

the original data were 125, 784, and 1636 tests, respectively (see

Figure 2A). Thus, a small minority of zip codes account for the vast

majority of total tests. There were 15 108 (88.7%) unique zip codes

in the original data with <100 total tests and 11 039 (64.7%) with

Figure 5. Workflow of synthetic error experiment showing synthetic data on the left, original data on the right which are then merged to allow the calculation of

synthetic error to be made.
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<10 tests. Above this threshold (n�10 tests), the synthetic data

mimic the original data distribution closely (see Figure 2B). There

were 17 041 unique zip codes and 5819 unique uncensored zip codes

in the original and synthetic data, respectively. The vast majority of

censored zip codes are those that had <10 total tests in the original

data (mean¼2.9 6 2.4; median¼2, IQR¼3; max¼16) as seen in

Supplementary Figure S3.

Monthly zip code pairwise synthetic error
The absolute value of pairwise synthetic error stratified by month

and zip code increased as the original data value of counts increased

(see Figure 6; Supplementary Table S1). Thus, as sample size of data

increased, so did the absolute synthetic error and vice versa. The

synthetic error for tests ranged from an IQR¼2 when the original

value of tests was between 0–19 and IQR¼9 when the original

value of tests was between 250 and 1705. All synthetic error for zip

codes with an original bin value of zero count was positive. All other

bins’ synthetic error across key indicators was skewed negative, indi-

cating that the synthetic data had lower counts than the original

data.

Post hoc privacy evaluation
In the post hoc privacy assessment, 6839 of 1 854 975 rows (0.37%)

in the synthetic dataset contained all the same values in all 13 col-

umns as corresponding rows in the original dataset. However, this

included numerous values that were null or missing; all but 6 of the

6839 rows included at least 8 missing values among the 13 variables,

which greatly mitigates the likelihood of a meaningful identify dis-

Figure 6. Synthetic error distributions per zip code stratified by month for tests (top row), cases (middle row), and admissions (bottom row) shown both at original

scale (left column) and zoomed in to the peak of each row’s middle bin (legend showing bin ranges and color encodings seen on the far right of each row). Origi-

nal data value denotes the monthly count in the original data for the key indicator of interest. Box plots of synthetic error are shown in the top 30% of each sub-

plot (A–F), with a histogram of synthetic error shown in the bottom 70%. Within each sub-plot, the box plot and histogram have a shared x-axis corresponding to

synthetic error and shared bins corresponding to the original data value. The y-axis shows the number of zip codes stratified by month (eg, zip code month pairs).

Boxes in the box plots span from Q1 to Q3, with median marked inside the box. Fences span 61.5 times the IQR. Error increased as the size (count) of the original

data increased, which allows users to estimate the level of error in their data of interest. The synthetic data systematically underestimate the monthly count of

key indicators in zip codes with the most tests, cases, and deaths, and overestimate them in zip codes with the least.
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closure, particularly given the vastly larger number of rows com-

pared to columns. In a second run of the synthetic algorithm, none

of the 6 rows with fewer than 8 missing values appeared again in the

new synthetic derivative, indicating that the initial replication was

due to chance rather than individual characteristics of the rows.

When the rows in both datasets were grouped into unique combina-

tions of their categorical values (Supplementary Figure S2), groups

(or equivalent classes) of individuals with fewer than 10 members

existed in the original dataset but did not appear in the synthetic

dataset; this is consistent with the censoring algorithm’s minimum

equivalence class of 10 rows, chosen in conformance with a gener-

ally accepted cutoff.46,47

DISCUSSION

Overall, analyses on the population-level and of densely tested zip

codes (which contained most of the data) were similar between orig-

inal and synthetically derived datasets. Analyses of sparsely tested

populations with smaller sample sizes were notably less similar and

had more data suppression, which is in agreement with prior

work.19,32 Synthetic data most closely matched the original data on

aggregate data tasks such as aggregate epidemic curves (Figure 1)

and broad summary statistics (Table 1). At the aggregate level, only

one metric (percent positive, 7-day average) across all indicators

showed a significant difference between synthetic and original data

aggregate epidemic curves (Table 2). Scarcity of data—as data col-

lection used in this article tapered off in November—is likely a con-

tributing factor to the difference.

The summary statistics shown of both datasets’ populations in

Table 1 were similar. Major exceptions were the number of

unique zip codes due to censoring in the synthetic data and atten-

uation in the synthetic data of a single extreme outlier (��44 000

day LOS) caused by a data quality issue in the original data.

Other erroneous negative LOS values persisted within the syn-

thetic data, yet the bulk of the erroneous values remaining were a

LOS ¼ �1 which has been reported as a data quality issue attrib-

uted to daylight savings.48,49 Thus, we show that synthetic data

can reduce the impact of data quality issues by removing or atten-

uating erroneous outliers with the aim of protecting the privacy of

rare, and thus identifiable, data.

At the zip code and month level, the synthetic data error per-

formed well on an absolute level; the error increased as the size of

the original data increased (Figure 5 and Supplementary Table S1).

Therefore, the amount of synthetic error is predictable which gives

users the ability to estimate the level of error in their data of interest.

Additionally, the synthetic error relative to the original data value is

likely small enough for most uses of synthetic data. For example, a

zip code in the synthetic data with a monthly positive count of 6–49

is off from the original data by an average of �0.59 6 2.63. The

overrepresentation of negative tests in the original data by 8.5-fold

(Table 1) appears to bias synthetic error. Since it is impossible to

have less than zero count, the synthetic data cannot add privacy-

producing noise in the negative direction for zip code monthly

counts equal to 0. Consequently, the synthetic data systematically

underestimate the monthly count of key indicators in zip codes with

the most tests, cases, and deaths, and overestimate them in zip codes

with the least. Our results relate to Petti and Flaxman,12 which ob-

served a similar effect resulting from a non-negativity constraint in

the US Census’ TopDown differential privacy algorithm. The magni-

tude of the synthetic error skewing negative in a smaller concentra-

tion of zip codes increased as a key indicator became less frequent,

which is fundamentally a signal problem in low-density datasets and

is not specific to synthetic data generation.

The top 1% most tested zip codes’ epidemic curves provide users

with 10 qualitative examples of densely tested zip codes. Overall,

the synthetic data closely matched the start and end dates of the

original data and followed the overall trend of the original data over

time (eg, Figure 3A matched spike in late April). The 10 examples

show users the 99th percentile best-case scenario of key indicator

original data availability and synthetic data performance at the zip

code level, yet the size and testing density of N3C data will likely

continue to increase.

Our findings show the importance of understanding the charac-

teristics and limitations of the original data since we found these

biases affected synthetic data utility. Data biases resulting in poorer

performance of software tools, clinical guidelines, and other applica-

tions for groups underrepresented in source data have been previ-

ously reported for separate tasks.12,50–53 Foraker et al found that

censored zip codes had greater missingness of SDOH values in the

original data than uncensored zip codes. In our study, we found the

bulk of patients in the N3C data live in a small minority of zip codes

(Figure 2), likely those most adjacent to institutions contributing

data. These zip codes are therefore more likely to be urban and less

likely to have their zip code censored (Table 3). As a consequence,

rural zip codes, which are already underrepresented in the original

data, become even less available to directly analyze. Additionally,

patients with censored zip codes were older, potentially due to older

patients traveling from sparsely tested regions to receive care offered

at distant academic medical centers which participate in N3C. Tra-

ditional de-identification methods would likely censor or suppress

zip codes with few tests as well or group them together into higher-

level geographic regions. Thus, it is important to view our findings

in relation to common alternatives.

While our results demonstrate the utility of using synthetic data

for a broad range of geospatial analyses, a caveat to synthetic data

use is its utility to analyze rural N3C populations since nearly all zip

codes with <10 tests were censored and much more likely to be ru-

ral within the original data. Suppression of non-zero counts <10 is a

common convention within state and federal guidelines to avoid in-

advertent disclosure of protected health information for publicly re-

leased data.46,47,54 Analyses such as choropleth maps at the zip code

level including sparsely tested regions would benefit from using the

LDS to obtain access to all zip codes without suppression, or by gen-

erating and using a different MDClone synthetic dataset that reports

geospatial data at a lower level of granularity (eg, 3-digit zip codes).

Our results may inform future N3C discussions about dataset bal-

ancing ranging from (1) creation of artificially balanced hybrid data-

sets to improve statistical models’ performance on underrepresented

data,50,55 (2) source partners sending a random sample of negative

tests alongside all positive tests, or (3) expansion of data ingestion

from rural regions.

Whether these synthetic data are “good enough” hinges on a fit-

ness for use determination to be made by each user. The authors be-

lieve the data will be useful enough for a wide variety of use cases.

Educational software engineering projects or pandemic prepared-

ness tool development could be especially well-served by these data.

A major limitation of the data, however, is that they are output in a

different data model than the OMOP CDM.41 Thus, tools built

on the synthetic data would not be transferable to run on the LDS

without modification. Other users may find the synthetic data well

suited to rapid, iterative hypothesis generation/testing without the

delays of acquiring the relatively more restricted LDS.3
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We performed a basic privacy assessment consistent with analy-

ses in other published studies of synthetic data. This post hoc assess-

ment demonstrated a lack of matches between the original and

synthetic data, indicating that the data in the synthetic dataset do

not represent specific individuals from the original dataset. Matches

of values across datasets were rare (<0.4% of rows), non-

informative (vast majority occurred for rows with sparse data), and

random (matches were not duplicated in additional derived data-

sets). In addition, the absence of unique rows for categorical values

demonstrated that value matches with categorical variables, which

would be more common, are not unique. These results are not unex-

pected, given the applied algorithm’s approach to generating syn-

thetic data and censoring. While we consider this privacy assessment

sufficient for this study, which focuses on demonstrating the utility

of a synthetic dataset for analysis, more work can be done in evalu-

ating privacy with synthetic data approaches. We are currently com-

pleting an independent and more rigorous evaluation of synthetic

data privacy using an adversarial network approach. Additional re-

search is still needed to evaluate synthetic data privacy validation

approaches and the actual risk of information gain if variable sets

are matched. These issues are beyond the scope of this article but

represent the challenges in advancing the use of synthetic data.

Others who have studied practical and legal implications of syn-

thetic datasets have recommended their use over de-identified

data56; this article demonstrates the utility of synthetic data for geo-

graphic and temporal analyses, which is a specific functional advan-

tage over Safe Harbor de-identified data.

Limitations and future work
To date, no privacy analysis has been published on these synthetic

data to provide context for its utility in relation to its privacy. N3C

is currently assessing the privacy of the data used in this study. In a

forthcoming manuscript, N3C will be able to quantify the privacy-

utility tradeoff of these data through pairing the privacy analysis

with these results. Such a full privacy analysis is well beyond the

scope of the present paper. However, the methodology described

above reflects that the synthetic data process, when computing a de-

rivative dataset for a user-defined patient cohort and selection of

properties, is inherently privacy-preserving. While the algorithm

maintains the statistical properties—and therefore the utility—of the

data, the underlying original data are not visible to the user during

the synthesis process. Categorical values are censored, when neces-

sary, to mitigate their inherent exposure to inference attack. The

synthetic algorithm is intentionally non-reversible, with multiple

layers of protection against privacy attack. The mathematical calcu-

lation of alternate matrices is based on Euclidean distance, which is

not simply “straight-line” distance, but rather the shortest path

through the matrix and is by nature non-reversible. The size of the

output population is modified slightly, without altering the statisti-

cal model, to further thwart potential attack.

The data used in this article do not reflect the current size nor

state of the N3C LDS. Other statistical techniques such as equiva-

lence testing, bhattacharyya distance,57,58 or adversarial chal-

lenges28 could be used in the future to compare similarity between

epidemic curves. The Wilcoxon signed-rank and paired t-tests as-

sume the null hypothesis that the original and synthetic datasets are

equivalent. Equivalence testing, which flips the null hypothesis, may

be better suited. Equivalence testing was not used in this manuscript

due to the challenge of selecting an equivalence bound without

knowing what threshold(s) data end-users would find most applica-

ble. Additionally, adjustments for multiple testing were not made

for differences between synthetic and original epidemic curves. Had

they been, no P-values would be <.05. Future work conducting

equivalence testing specific to well-defined, high-impact use cases

may be merited. However, the work required to do so in an ad hoc

manner may suggest the LDS is a better alternative in those cases. In

future work, the effect of data quality on synthetic data may be

worth studying through generation of synthetic data at each cycle of

iterative data quality improvement.

CONCLUSION

Overall, the synthetic data are promising for a wide range of use

cases including: population-level summary statistics, epidemic

curves for the data in aggregate and for the most densely tested zip

codes, and analyses necessitating monthly counts of key indicators

for the top third of zip codes by number of tests. However, analyses

requiring unsuppressed zip code analyses on populations with <10

tests may be better served by the LDS. Biases found in the original

data—namely an underrepresentation of positive tests and tests in

rural zip codes—were reflected in the synthetic data. Therefore, it is

important to understand the limitations and biases of the original

data in addition to the synthetic data impacted downstream from it.

We expect the user base of N3C synthetic data to be heterogeneous

and the use cases of the data to be broad, resulting in a wide range

of fitness for use definitions. To date, there is no published evalua-

tion that quantifies the privacy afforded by this synthetic dataset

specifically—nor of the MDClone system itself broadly—to contex-

tualize this synthetic dataset’s utility in relation to a privacy-utility

tradeoff; such evaluations are beyond the scope of this work. Future

privacy evaluations of MDClone will not necessarily reflect the pri-

vacy of the synthetic data analyzed in this study unless the same

dataset and/or the same MDClone system version and parameters

are evaluated. Our evaluation of the N3C synthetic data utility pro-

vides users the ability to assess whether the synthetic data are fit for

use through its combination of general-purpose data utility assess-

ments and visualized replications of analyses of common interest.
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