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Abstract

Background: Replication capacity (RC) of specific HIV isolates is occasionally blamed for unexpected treatment responses.
However, the role of viral RC in response to antiretroviral therapy is not yet fully understood.

Materials and Methods: We developed a method for predicting RC from genotype using support vector machines (SVMs)
trained on about 300 genotype-RC pairs. Next, we studied the impact of predicted viral RC (pRC) on the change of viral load
(VL) and CD4+ T-cell count (CD4) during the course of therapy on about 3,000 treatment change episodes (TCEs) extracted
from the EuResist integrated database. Specifically, linear regression models using either treatment activity scores (TAS), the
drug combination, or pRC or any combination of these covariates were trained to predict change in VL and CD4,
respectively.

Results: The SVM models achieved a Spearman correlation (r) of 0.54 between measured RC and pRC. The prediction of
change in VL (CD4) was best at 180 (360) days, reaching a correlation of r = 0.45 (r = 0.27). In general, pRC was inversely
correlated to drug resistance at treatment start (on average r = 20.38). Inclusion of pRC in the linear regression models
significantly improved prediction of virological response to treatment based either on the drug combination or on the TAS
(t-test; p-values range from 0.0247 to 4 1026) but not for the model using both TAS and drug combination. For predicting
the change in CD4 the improvement derived from inclusion of pRC was not significant.

Conclusion: Viral RC could be predicted from genotype with moderate accuracy and could slightly improve prediction of
virological treatment response. However, the observed improvement could simply be a consequence of the significant
correlation between pRC and drug resistance.
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Introduction

Modern therapy for patients infected with the human

immunodeficiency virus type 1 (HIV-1) aims to reduce viral

replication by blocking a number of targets. Viral entry can be

blocked by either a fusion inhibitor binding to the viral gp41

protein or by a coreceptor antagonist that binds to the CCR5

coreceptor and therefore prevents the CCR5-using viruses from

entering the host cell. Reverse transcriptase (RT) inhibitors are

subdivided into two classes depending on their mechanism of

action. Nucleoside reverse transcriptase inhibitors (NRTIs) are

nucleoside analogs that block chain elongation after their

incorporation into newly synthesized DNA. Non-nucleoside

reverse transcriptase inhibitors (NNRTIs) bind to the viral RT

and allosterically hinder DNA polymerization by impairing the

mobility of particular RT domains [1]. Integrase inhibitors impede

the transfer of the newly synthesized viral DNA into the host

genome. Protease (PR) inhibitors (PIs) prevent the maturation of

infectious particles by blocking cleavage of gag-pol polyproteins by

the viral protease [2].

The extraordinary capability of HIV to escape from drug

pressure by developing resistance mutations promotes the

continuous development of new antiretroviral drugs. HIV RT

lacks a proof-reading mechanism, resulting in the high mutation

rate of HIV (3.4 N 1025 mutations per base per cycle of replication

[3]). The high error rate coupled with a short generation time

leads to a rapid selection of resistance mutations reducing

susceptibility to drugs, sometimes within days [4]. To maximally

suppress viral replication and minimize the rapid emergence of

drug resistance mutations, modern anti-HIV therapy combines

several compounds from different drug classes for achieving

different selective pressures and higher antiviral potency. This
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practice, called highly active antiretroviral therapy (HAART),

achieves a dramatic delay in disease progression to AIDS and

death [5].

However, after the introduction of HAART, the prevalence

of drug resistance in therapy-experienced – but also in therapy-

naı̈ve – patients increased and raised the need for assessing the

viral susceptibility to each compound before administration [6,7].

Drug resistance can be determined functionally by recombinant

virus assays testing viral replication against every compound in vitro

[8–10]. However, obtaining the drug resistance phenotype is

labour- and cost-intensive. Thus, sequencing of the relevant

regions of the HIV genome for detecting drug resistance associated

mutations has become standard-of-care. In contrast to phenotypic

information, data resulting from genotyping is complex and hard

to interpret. Several tools have been developed for interpretation

of the genotype. Rules-based algorithms apply sets of rules, which

were handcrafted by experts to assess resistance against a single

compound [11,12]. Approaches based on bioinformatics methods

try to predict the fold-change in resistance from genotype [13,14].

Recent bioinformatics approaches go even further and predict in

vivo response to antiretroviral combination therapy [15,16].

Resistance mutations bear a clear advantage for the virus in the

presence of drugs. They alter the viral proteins in a way that they

remain functional even in the presence of the given drugs.

However, most of the resistance mutations lead to disadvantages

for the virus in the absence of drugs, as they are neither observed in

their natural, drug-free environment, nor usually after interruption

of therapy [17]. In other words, being able to replicate in the

presence of drugs comes at the cost of reduced function of the target

protein with respect to the wild type protein. Therefore, resistance

has an impact on viral fitness, which stands more generally for the

ability to yield progeny virus in a given environment, as compared

to a reference strain in the same environment [18]. A number of

resistance mutations are indeed termed compensatory or secondary

drug resistance mutations since they restore at least partially the

enzyme function possibly compromised by the true resistance

mutation(s). The efficacy of the viral replication machinery in drug

resistant strains thus depends on the interaction between impairing

and compensating effects and influences the velocity of viral

replication – captured by the term replicative capacity (RC). RC

determination has been faced in numerous ways and can be

assessed by counting the number of newly assembled infectious

viruses within a fixed amount of time. Strictly speaking, comparing

the RC of a clinical isolate to the RC of a laboratory reference

strain grown in the same (drug-free) environment is a measure of in

vitro fitness. Thus, some aspects of viral fitness can be measured in

vitro in terms of RC [19,20].

A low viral fitness is often held responsible for high CD4+ T-cell

counts despite the presence of a high viral load [21]. However,

although viral fitness is associated with response to antiretroviral

therapy [22], it has never been applied as an additional covariate

for inferring response to treatment with statistical methods. In this

work, statistical models for predicting RC from genotype based on

two datasets comprising genotype-RC pairs are described and

validated on clinical data. The focus of this work is the assessment

of the clinical relevance of predicted RC (pRC) in relation to

measures of treatment response (viral load and CD4+ T-cell

count).

Materials and Methods

Prediction of Replication Capacity from Genotype
Basis for this work were two datasets relating experimentally

determined HIV RC to PR and RT sequences. In both datasets,

RC was expressed as a percentage value relative to a wild-type

reference strain (pNL4-3; GenBank accession no. M19921).

The first dataset, termed Monogram, had been the subject of

study in previous works [23,24]. The dataset comprised 317 RC-

sequence pairs, and was kindly provided by one of the authors of

the work by Segal et al. [24]. RC was measured using a modified

version of the PhenoSense assay (Monogram Biosciences) [25].

Amino acid sequences from population-based sequencing were

given for positions 4 to 99 of the PR and positions 38 to 223 of the

RT. The genotypes did not contain ambiguities.

The second dataset comprised 253 RC-sequence pairs. Here,

RC was measured using a novel assay developed at the University

of Erlangen-Nürnberg. Genotypes were derived from patient

samples by population-based sequencing and occasionally contain

ambiguities. The whole PR sequence and the RT sequence up to

position 220 were used. This dataset is termed Erlangen.

For predicting viral RC from genotype, support vector

regression (SVR) models were trained on both experimental

datasets. SVR was selected because it is a powerful and well-

established technique that has worked well with biological

sequence data in previous studies, e.g. in a work by Beerenwinkel

et al. [13]. The associated computations were carried out with the

R programming language and environment [26], and in particular

the SVR implementation in package e1071 [27]. All subsequent

statistical analyses were also performed in R. The HIV raw

genotypic information in the training datasets was encoded as

numerical vectors for generating a suitable input to the SVR.

Every position in an amino acid sequence was replaced by a

sequence of 20 indicators. Each indicator corresponded to one of

the 20 possible amino acids (in a predefined order). An indicator

was set to 1 (0), if its associated amino acid was (not) present. In the

case of an ambiguity at a sequence position, the indicators for the

occurring amino acids are set to 1/n, with n being the number of

inferred amino acids. For a protein sequence of length m,

concatenating the indicator representations of the amino acids

along the sequence led to the full indicator vector of length 20m. In

the context of statistical modelling, every indicator constituted an

input feature (predictor) for the prediction method. Constant

features as well as each feature corresponding to the consensus

amino acid at a certain sequence position (usually the wild-type)

were removed from the indicator matrix of the training data, as

such features contain no additional information. For improving

robustness against outliers, the decadic logarithm of the RC

percentage was used as response for the regression models rather

than the RC percentage itself.

The number of predictor variables was further reduced by a

feature selection step to achieve maximal performance of the

regression models. Support vector regression with a linear kernel

was applied for estimating feature importance. First, to obtain

reasonably performing linear SVR models the cost parameter C

was optimized by cross-validation for both datasets. Feature

importance was defined as the standard score (z-score) of the

coefficients in the linear SVR model. To achieve a stable feature

ranking for each dataset, 100 linear SVR models from a 10610-

fold cross-validation were computed and the z-scores were

averaged. The final RC prediction models were SVR models

with polynomial kernels (of degree three) comprising only features

with an average z-score of 1.5 and above (about 7% of the total).

Leave-one-out cross-validation (LOOCV) was used for assessing

the performance of RC prediction. Briefly, LOOCV uses a single

observation from the dataset for validation and all remaining

samples for training the model. The process is repeated for all

observations from the dataset in order to obtain one prediction for

every sample. In addition, a 10610-fold cross-validation of the
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Monogram model was performed. Prediction error variance (the

lower the better) and residual sum of squares (RSS) were

computed for comparing the model performance to those

previously published by Segal et al. [24] and Birkner et al. [23],

respectively.

Validation of Predicted RC on Clinical Data
The main focus of this work was the estimation of significance of

viral RC in the clinical context. However, in a pre-analysis the RC

prediction was validated on clinical data. More precisely, in order

to validate our model beyond the correlation of measured and

predicted values, pRC was challenged to confirm well-known

correlations of RC with drug resistance, number of treatment

lines, and treatment interruptions.

For addressing both issues, a set of clinical data in the form of

treatment change episodes (TCEs) was extracted from the EuResist

database [28]. This TCE dataset consisted of 2913 samples, each

corresponding to one antiretroviral therapy. For each sample,

information on the applied drug combination, the HIV genotype,

and viral load (VL) before onset of the treatment (baseline) were

included. For 2376 samples, baseline CD4+ T-cell counts were also

available. Moreover, follow-up measurements of viral load and

CD4+ T-cell count after 90 (630), 180 (645), 360 (660), 720

(690), and 1080 (6120) days were available for some samples

(Table 1).

As a first validation, the baseline sequences of the TCE dataset

were used to study the connection between RC and drug

resistance. The cumulative resistance score (CRS) characterizes HIV

strains with respect to resistance against all 17 compounds

as predicted by the geno2pheno system [13] (http://www.

geno2pheno.org). Precisely, the resistance against each drug,

regardless of the use in the ongoing treatment, was predicted from

genotype using geno2pheno. Subsequently, the resulting fold-

change values were compared to drug-specific cut-offs (already

applied in [29]), and a score of 1 (‘‘resistant’’ or ‘‘no activity’’), 0.5

(‘‘intermediate activity’’), or 0 (‘‘no resistance’’ or ‘‘full activity’’)

was assigned to each drug. Thus, higher scores indicated a higher

overall level of drug resistance. Furthermore, the relation between

resistance against single drugs and RC was studied by computing

the resistance against a drug with geno2pheno and using only the

sequence of the drug target for the RC prediction (the remaining

sequence positions were padded according to the wild-type strain

HXB2). Hence, by examining the association of resistance and

predicted RC values, an indication of the validity of an RC

prediction method could be gained.

In addition, 5475 genotypes from 3869 patients were extracted

from the EuResist database along with the number of therapies

prior to the date of genotyping. These genotypes were used to

investigate the relation between pRC and cumulative treatment

exposure. If multiple genotypes with the same number of previous

therapies were available for the same patient, only the earliest was

considered. CRS and pRC were correlated with the number of

previous treatments.

A last analysis was conceived to investigate the change of pRC

during treatment interruptions. The corresponding dataset

comprised a total of 162 HIV genotypes from 57 patients, some

of them previously included in [17]. The sequences were obtained

at or around (lower quartile: 2.5 days before, upper quartile: 2

days after) the end of a treatment and at up to four different points

during the therapy break. The baseline and the first follow-up

genotype – usually from about two months after the end of therapy

(median: 58 days, lower/upper quartile: 40/91 days) – were

available for every patient, but the number of missing cases

increased for each of the three later follow-ups.

Clinical Relevance of Predicted RC
In order to study the clinical relevance of pRC, a treatment

activity score (TAS) that summarized the activity of the ongoing

antiretroviral therapy (ART) was computed. The score is closely

related to the well-established genotypic and phenotypic

susceptibility scores (G/PSS) [30]. Precisely, for the TAS only

resistance against the compounds used in the regimen was

computed and compared to the drug-specific cut-offs (as opposed

to the CRS that considered all drugs regardless of their use in the

regimen). Moreover, boosting of PIs by RTV was taken into

account in this step, by using modified cut-offs for the PIs and

disregarding the score of RTV itself. In addition, the scale of the

measure was reversed compared to the CRS. Thus, the higher

the score, the higher is the expected efficacy of the applied drug

combination, and consequently, the lower the score, the stronger

the overall resistance of the viral population against the current

therapy.

The relevance of pRC for inferring a patient’s response to ART

was studied on the TCE dataset. In a first analysis, the TAS and

pRC were computed based on the baseline genotype. The

Spearman correlation between these measures and indicators of

disease progression (i.e. VL and CD4+ T-cell count) was computed

for the different time-points in the dataset. For further assessing

the effects of predicted RC on prediction of therapy outcome,

linear models for the prediction of changes in VL or CD4+ T-cell

count based on the following sets of input features were trained: (i)

Treatment activity expressed in terms of TAS. (ii) Resistance

against the applied drugs, as predicted from genotype by

geno2pheno. In place of the TAS, the raw predictions were used

and the values were not combined to a single score, but used

directly as inputs to the linear regression. Resistance values for

compounds not included in the treatment were set to zero. Hence,

the input vector comprised 17 real valued entries. (iii) The

combination of applied drugs, represented as a vector of 17 binary

indicators. Here no resistance was taken into account. (iv) The

applied drug combination (as in iii) complemented by the TAS (as

in (i)). Hence, the input vector comprised 17 binary and 1 real

valued entries. In addition, each of these sets of predictors was

supplemented by including both pRC features (predictions based

on the Erlangen and Monogram datasets, respectively). For every

time step in the TCE dataset and for each of the different feature

Table 1. Number of viral load and CD4+ T-cell count measurements at different points in time in the main clinical dataset.

time

measure baseline
90 days
follow-up

180 days
follow-up

360 days
follow-up

720 days
follow-up

1080 days
follow-up

viral load 2913 2031 2047 1457 675 333

CD4+ T-cell count 2376 1621 1613 1154 526 252

doi:10.1371/journal.pone.0009044.t001
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sets, a 565-fold cross-validation scheme was applied to train and

to evaluate linear models for predicting the change in VL and

CD4+ T-cell count, respectively. Performance of the model was

assessed by computing the correlation between the real change in

VL (CD4+ T-cell count) and the change predicted by the model.

Results

Predictive Performance of RC Models
Comparison of the pRC values with the true in vitro

measurements resulted in Spearman correlations (r) of 0.546 for

the model based on Monogram data and r = 0.542 for the model

based on Erlangen data. Scatter plots of the LOOCV results are

shown in Figure 1. For comparison, the geno2pheno models for

the difficult to predict drugs stavudine (d4T) and zalcitabine (ddC)

yielded r = 0.586 and r = 0.596, respectively. Further measures of

prediction accuracy were computed for facilitating a comparison

of the performance of the SVM models to previously published

results. The prediction error variance (used by Segal et al. [24], the

lower the better) of RC percentages (non-logarithmized) predicted

by the polynomial SVR on the Monogram data is 444.1,

compared to 575.6 for the best random forest model reported

by Segal et al. Moreover, with a residual sum of squares (RSS) of

158.4, the cross-validated accuracy of the SVR prediction model

Figure 1. Leave-one-out cross-validation results for the Monogram data (left) and Erlangen data (right). Spearman correlations of true
and predicted RC values are r= 0.546 (Monogram) and r= 0.542 (Erlangen). For the Erlangen data, seven outliers with very high measured RC would
appear further to the right side of the plot, but are not shown.
doi:10.1371/journal.pone.0009044.g001

Table 2. Top ten mutations for each RC dataset according to weights derived from the initial linear SVR.

rank Monogram mutation influence Erlangen rank Erlangen mutation influence Monogram rank

1 RT M184V dec. 19 RT Q207E inc. 240

2 PR K43T dec. 568 PR V82A dec. 127

3 RT A158S dec. 126 RT Y181C inc. 150

4 PR Q92R dec. 401 RT T215Y dec. 18

5 PR I64L dec. 886 RT K20I inc. 49

6 PR K55R dec. 602 PR I13V dec. 132

7 PR E34K dec. 483 RT E122K inc. –

8 PR I47V dec. 366 RT L74V inc. 141

9 PR V32I dec. 131 RT S162C inc. 255

10 PR P39S dec. 141 RT T39E dec. 267

Along with a mutation, its influence on RC compared to the wild-type is listed – ‘‘dec.’’ for ‘‘decreasing’’, ‘‘inc.’’ for ‘‘increasing’’ – as well as its position in the feature
ranking of the other dataset. With the exception of RT A158S, PR I64L, PR P39S, RT Q207E, RT E122K, RT S162C, and RT T39E, all of theses mutations are known to be
associated with HIV drug resistance and/or fitness [20,31]. In total, the two feature rankings consist of 878 mutations from the Monogram dataset and 1018 mutations
from the Erlangen dataset; the difference is mainly due to the fact that fewer sequence positions are included in the Monogram genotypes. Note that the mutation RT
E122K does not occur in the Monogram ranking. In the Monogram dataset, lysine (K) – not the wild-type glutamic acid (E) – is the consensus amino acid at position 122
of the RT sequence, so that E122K was removed from the training dataset in the input coding phase. The clear dominance of RC-decreasing mutations in the Monogram
dataset may be partly due to the stronger bias towards low-RC samples in this dataset (median measured RC of 38.45%, compared to 46.47% in the Erlangen dataset;
see also Figure 1).
doi:10.1371/journal.pone.0009044.t002
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ranks between that of the two final deletion/substitution/addition

models presented by Birkner et al. (RSS of 148.3 and 178.7) [23].

Important Mutations
Based on feature rankings derived from linear SVR models and

an averaged z-score threshold of 1.5, 61 mutations were selected as

significant features for each of the two RC datasets independently.

Table 2 lists the top ten mutations for each dataset. The feature

rankings derived from the two datasets differ widely. Only the

following nine mutations present significant features for both

datasets (sorted by significance): RT M184V, RT T215Y, PR

L90M, PR K20I, PR I72V, RT I202V, RT V118I, PR L33F, PR

L10I. For all of these mutations except for PR I72V and RT

I202V, a link to drug resistance or viral fitness has been reported

[20,31]. Leaving aside the substituted amino acids and considering

only mutated sequence positions, there are 22 common occur-

rences among the significant features of both datasets.

Validation of RC Prediction
A graphical representation of the association of pRC and CRS

for the genotypes of the main clinical dataset is depicted in

Figure 2. The box plot shows the spread of the RC values for every

discrete value of CRS from four to seventeen (i.e. complete

resistance to all drugs). As expected, the correlation between

predicted RC and overall drug resistance of a viral strain was

clearly negative for both RC models. However, with r = 20.534

the correlation between the Monogram model and drug resistance

was more pronounced than the correlation of the Erlangen model

and CRS (r = 20.233).

Figure 3 depicts the correlation of predicted RC and predicted

resistance against individual antiretroviral drugs. For almost all

compounds negative correlation coefficients, independent of the

dataset used to derive the RC prediction model, were observed.

Exceptions were the NNRTIs delavirdine (DLV), nevirapine

(NFV), and efavirenz (EFV), which exhibited correlations slightly

Figure 2. Association between predicted RC and cumulative resistance score. The underlying clinical dataset and the computation of
resistance scores are described in the Methods section. For each discrete value of the score, the distribution of viral RC as predicted from the
corresponding genotypes by a model based on Monogram data (top box plot) and Erlangen data (bottom box plot) is shown. The overall Spearman
correlation of RC and resistance was 20.534 for Monogram and 20.233 for Erlangen RC predictions.
doi:10.1371/journal.pone.0009044.g002
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above zero if RC was predicted with the Erlangen model. Besides,

there existed a difference with respect to the RC prediction model

and the drug classes. For protease inhibitors, correlation

coefficients of resistance and RC were consistently lower for the

Erlangen model than for the Monogram model, and the inverse

was true for reverse transcriptase inhibitors.

Figure 4 displays the distribution of pRC and CRS for different

numbers of previous treatments. Patients with 20 or more

treatments formed a single group. The largest group of patients

were the therapy-naı̈ve patients. CRS showed a strong positive

correlation with the number of previous therapies (r = 0.560) and,

as expected, the pRC was negatively correlated with the extent of

treatment exposure (r = 20.336 for the Monogram model and

r = 20.231 for the Erlangen model). Although the correlations

were not as pronounced as the one observed between CRS and

treatment experience, the distribution of pRC in the naı̈ve patients

and the patients with e.g. 9 previous treatments was significantly

different according to a t-test (p-value of ,2.2 N 10216 and 1.699 N

1029 for the Monogram and Erlangen model, respectively).

For HIV genotypes obtained during treatment interruptions,

the models clearly tended to predict RC values that increased over

time (i.e. difference between first and second measure compared to

difference between first and last measure increased), as shown in

Figure 5. According to a paired t-test, the distribution of the

baseline measurement and first (n = 56) [last (n = 30)] measurement

during the therapy break were significantly different for the

Monogram and Erlangen model with p-values of 0.02919

[0.01402] and 0.00962 [0.02000], receptively.

Clinical Relevance of Predicted RC
Figure 6 summarizes the correlation between pRC or TAS and

VL (CD4+ T-cell count) at different time points. In general,

correlation coefficients were low. A positive (negative) correlation

between pRC and VL (CD4+ T-cell count) was observed only for

the baseline measurements. At 90 days after therapy start, the

direction of the correlation between pRC and VL was inversed.

The strongest negative correlation was observed at about one year

of treatment. From then on the strength of the correlation steadily

decreased. However, at all time points the VL showed equal or

stronger correlation to TAS than to pRC. For 90 days and later

correlation of pRC with CD4+ T-cell count was close to zero and

correlation of TAS and CD4+ T-cell count was slightly positive.

Figure 7 summarizes the results of a one-sided t-test testing

whether pRC was lower in patients succeeding a treatment than in

patients failing a treatment. Patients were grouped with respect to

the activity of the treatment and the time of the follow-up

measurement. Treatment success was defined by a decline of VL

below the limit of detection (i.e. 50 copies per ml) or increase of

CD4+ T-cells by 50% or more compared to the baseline

measurement. No group exceeded the 5% significance threshold.

The upper panel of Figure 8 shows the results of predicting the

change in VL between baseline and different time points during

treatment. The models using pRC values as additional features

performed better in general. However, the magnitude of

improvement was dependent on the base model. The most

pronounced improvements were observed for the base models

using predicted (raw) resistances and binary indicators for the drug

combination, respectively. For models that included TAS as a

predictor, improvements were only moderate. The model that

used binary drug indicators and pRC as predictors performed as

well as the one using TAS and pRC in the first year of treatment,

and afterwards even outperformed the TAS and pRC-based

model. In general, the best performance was achieved when

predicting the change in VL at 180 days, afterwards predictive

performance decreased for all models. Including pRC as an

additional feature improved the models for predicting VL change

at 180 days based on raw fold-resistance values, indicators for the

drug combination, or the TAS significantly (t-test; p-values

ranging from 0.0247 to 4 N 1026).

Prediction of change in CD4+ T-cell count achieved worse

performance than prediction of change in VL (lower panel in

Figure 8). The peak of predictive performance was reached at one

year of treatment. For later time points the predictive performance

ceased. Again, models using pRC as an additional predictor

achieved comparable or better performance at all time points. As

in the case of VL change prediction, the major improvement was

observed for the model that used only binary drug indicators.

However, none of the improvements of the 360 days models

reached statistical significance.

Discussion

Based on experimental data, viral RC could be predicted from

HIV genotypes with moderate accuracy. The prediction accuracy

of the SVM models compare well to previously published results.

Moreover, results on the clinical data showed that this accuracy

was sufficient to confirm some pre-existing notions about RC

Figure 3. Correlation coefficients of predicted RC and predict-
ed resistance against different antiretroviral drugs. (PIs: NFV -
nelfinavir, ATV - atazanavir, LPV - lopinavir, RTV - ritonavir, IDV -
indinavir, APV - amprenavir, SQV - saquinavir; NRTIs: 3TC - lamivudine,
ddI - didanosine, ABC - abacavir, ddC - zalcitabine, ZDV - zidovudine,
TDF - tenofovir, d4T - stavudine; NNRTIs: DLV - delavirdine, NVP -
nevirapine, EFV - efavirenz). For the HIV genotypes in the main clinical
dataset, drug resistances with geno2pheno, as well as RC values based
on the Monogram dataset and Erlangen dataset, respectively, were
predicted. In each case, two RC predictions were made: one using only
the protease sequence of the sample, and one using only the reverse
transcriptase sequence. (The remaining sequence positions were
padded according to the wild-type strain HXB2, in order to comply
with our prediction models that were derived from experimental data
incorporating both PR and RT.) Spearman correlations between the
protease-based RC predictions and the predicted resistances against
the different protease inhibitors, as well as between RT-based RC
predictions and resistance against the RT inhibitors were computed.
The results are shown in the plot, with drugs ordered by increasing
correlation according to RC predictions based on Erlangen data.
doi:10.1371/journal.pone.0009044.g003
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derived from actual data. Thus, in general it is possible to draw

meaningful conclusions about the clinical significance of RC based

on RC predictions made by the models discussed here. The

prediction step added a source of uncertainty to the approach,

which was certainly a drawback. However, it also allowed for

leveraging the wealth of treatment data for which genotypes, but

no RC measurements, are available.

The validation on clinical data showed an inverse relationship of

pRC to drug resistance against single drugs and to the CRS. Since

most mutations that confer resistance are linked to an impairment

of viral RC, this type of association was expected. The clear

separation of drug classes in Figure 3 for the Erlangen model could

be related to increased number of viruses with highly mutated PR

in the Erlangen data compared to the Monogram data, e.g. using

the mutation list from [31] 61% (25%) of the sequences in the

Erlangen dataset had at least one (five) protease mutations

compared to 28% (3%) in the Monogram dataset. Correlation

between overall treatment experience and RC was clearly

negative, i.e. RC decreased when the number of previous

treatments increased. In general, a change of therapy accompa-

nied by a viral genotype marks a failure of the previous treatment,

which in turn was caused by resistance against the applied drugs.

These results confirmed the assumption that drug resistance has a

negative impact on RC. Moreover, the observed increase of

predicted RC during treatment interruptions complied with the

established understanding of the implications of ‘‘drug holidays’’.

Figure 4. Relationship between drug resistance, predicted RC and treatment experience. Based on 5475 genotypes from the EuResist
database, the distribution of resistance scores and predicted viral RC for different numbers of previous therapies (completed before the date of
genotyping) is shown. In the middle box plot, RC was predicted from a model trained on Monogram data; below, RC predictions are based on
Erlangen data. The overall Spearman correlation between the number of previous therapies and the resistance score is 0.560; for the number of
therapies and predicted RC, we obtain correlation coefficients of 20.336 (Monogram predictions) and 20.231 (Erlangen predictions).
doi:10.1371/journal.pone.0009044.g004
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Without the selective pressure exerted by antiretroviral medica-

tion, the HIV population will be overgrown by strains that are less

resistant but exhibit higher RC, because those strains have a fitness

advantage in the drug-free environment. Evolution during the

treatment interruption of a subset of viruses was previously

analyzed in detail, and re-emergence of wild-type variants (defined

as loss of all drug resistance mutations) was observed only in about

18% of the cases [17]. Hence, re-emergence of complete wild-type

variants is an unlikely explanation for the observed increase in

pRC. Altogether, these observations support the validity of our

RC prediction method.

When studying the relationship between pRC and markers of

treatment response, only the measurements at baseline confirmed

assumptions about the direction of the relation. Later measure-

ments showed a relation that was inverse to the initially expected

one. However, this makes sense considering that, as an

antiretroviral therapy begins to take effect, the activity of the

treatment becomes the main influence on the replication of the

virus population. In other words, under the impact of the

medication, viral fitness is determined mainly by resistance against

the applied drugs, rather than by the replication capacity. Since

drug resistance mutations were usually associated with a negative

influence on RC, as previous results showed, the initial

correlations between RC and the clinical markers could not be

observed at the follow-up points. Moreover, in patient groups

receiving equally active regimens, pRC was not lower in patients

with virologic or immunologic success than in patients experienc-

ing a treatment failure across all follow-up times and activity

classes. In addition, this result contradicts the general belief that

low viral fitness may occasionally help to maintain high levels of

CD4+ T-cells in the absence of an effective treatment.

The decrease of performance for models that predict change in

VL (CD4+ T-cell count) for time points after 180 (360) days might

be explained by the emergence of new mutations during the course

of therapy. Hence, the baseline HIV genotype (from which most

predictors are derived) ceased to determine the clinical response at

later points in time. This notion seems to be substantiated by the

fact that the decrease in predictive power was less (in the case of

VL) or none (in the case of CD4+ T-cell count) for predictions

based on the combination of applied drugs, which were

independent of the genotype. Moreover, it was surprising that

predicted resistances against the applied drugs were less indicative

of clinical outcomes than TAS, which was in fact a summary of the

resistances. However, the drug-specific cut-offs that were applied

for computing TAS were based on clinical knowledge not present

in the raw resistance values. Remarkably, the model based on TAS

(TAS and pRC) performed worse than (similar to) the model based

simply on drug indicators and pRC. Here pRC seems to

summarize the resistance information without the need of

providing clinically optimized cut-offs. Perhaps most important

for the core question of this work is the fact that the inclusion of

pRC features could indeed improve the prediction of clinical

response. The amount of improvement differed between model

formulations, but was quite consistent for different time steps.

However, for linear models that incorporated TAS as a predictor

the performance gain conferred by additional RC features was

negligible.

Conclusion
Previous results suggested that RC is significantly associated

with treatment outcome under certain conditions, even though it

is not predictive on its own [32]. The findings in this study

support these conclusions to some extent, but also clearly show

Figure 5. Changes in viral fitness during treatment interrup-
tion. Models derived from the Monogram dataset (left side of the plot)
and Erlangen dataset (right side) were used to predict the viral RC
corresponding to the genotypes in the treatment interruptions dataset
described in Materials and Methods. Shown in the plot are the
differences between baseline RC and the first follow-up RC (n = 56) -
corresponding to a genotype from about two months into the therapy
break -, as well as the differences between baseline RC and the last
follow-up RC (n = 30; only if there was more than one follow-up
measurement; typically from five to six months into the break).
doi:10.1371/journal.pone.0009044.g005

Figure 6. Spearman correlations between clinical markers (top:
viral load, bottom: CD4+ T-cell count) and potential predictors
of clinical response (predicted RC and TAS) at different points
in time during therapy. Correlation coefficients were computed from
the TCE dataset.
doi:10.1371/journal.pone.0009044.g006
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that pRC was rather uninformative if available information on

drug resistance and medication was fully utilized. Examples are

the linear models for predicting change in VL after 180 days of

treatment. The two pRC features in the model were statistically

highly significant (t-test yielding p-values of 1.81 N 1025 and

0.0011 for Monogram and Erlangen predictions, respectively),

but the resulting improvement in predictive performance,

compared to the model without pRC, was marginal. More

generally, the significance level of a predictor in the models

compared did not necessarily attest to the amount of gain in

prediction quality that might arise through the inclusion of this

predictor.

There is clearly some room for improvement of RC prediction

models, and the lack of large high-quality genotype-RC datasets

for training purposes was certainly a limiting factor of this study.

Existing prediction methods, like the one proposed here, could

benefit from datasets as large as those currently used for the related

problem of predicting HIV drug resistance from genotype, where

1,000 samples per drug are not uncommon [13,14]. However, it

remains doubtful if increased quality of RC predictions would

have led to different conclusions from these analyses about the

clinical significance of RC. After all, robust associations of pRC

with drug resistance, overall treatment experience, and treatment

interruptions were observed. Since RC and drug resistance are

highly correlated, and since the minor effect of RC on clinical

response pales in comparison to the dominant role of resistance,

there seems to be little benefit in considering RC as an additional

therapeutic indicator. Thus, the use of RC for treatment selection

in clinical practice may play only a minor role.
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Figure 7. The figure depicts the p-values obtained from a one-sided t-test testing whether predicted RC is lower in patients
succeeding a treatment than in patients failing a treatment. Patients are grouped according to the predicted activity (TAS) of the regimen.
Virologic success (left) was defined as reaching the limit of detection, i.e. 50 copies of HIV RNA per one ml blood. Immunologic success (right) was
defined as an increase of CD4+ T-cells per one ml blood by 50% or more. Different symbols and colors are used to indicate different time-points of
the follow-up measurement and different RC prediction models, respectively. The red horizontal dashed bar represents the 5% significance
threshold.
doi:10.1371/journal.pone.0009044.g007

Figure 8. Performance of linear models for the prediction of
changes in viral load (top) and CD4+ T-cell count (bottom).
Based on the main clinical dataset, linear models were trained using
different sets of input features: 1. predicted resistances against applied
drugs, 2. applied drug combination, 3. TAS, 4. drug combination and
TAS. Also, for each of these variants, a model that includes two
predicted RC values (based on the Monogram and Erlangen datasets) as
additional features was considered. This setup allowed us to compare
different properties with respect to predictivity of clinical response and
to assess the significance of RC in this context.
doi:10.1371/journal.pone.0009044.g008
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