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of patients with gastric cancer by a novel 
senescence-related signature
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Abstract 
Background: Cellular senescence is a stable state of cell cycle arrest that plays a crucial role in the tumor microenvironment 
(TME) and cancer progression. Nevertheless, the accurate prognosis of gastric cancer (GC) is complicated to predict due to tumor 
heterogeneity. The work aimed to build a novel prognostic model in GC.

Methods: LASSO and Cox regression analysis were constructed to develop a prognostic senescence-related signature. The 
Gene Expression Omnibus dataset was used for external validation of signature. Afterward, we performed correlation analysis for 
the risk score and the infiltrating abundance of immune cells, TME scores, drug response, tumor mutational burden (TMB), and 
immunotherapy efficacy.

Results: Five senescence-related genes (AKR1B1, CTNNAL1, DUSP16, PLA2R1, and ZFP36) were screened to build a signature. 
The high-risk group had a shorter overall survival, cancer-specific survival, and progression-free survival when compared to the 
low-risk group. We further constructed a nomogram based on risk score and clinical traits, which can predict the prognosis of 
GC patients more accurately. Moreover, the risk score was evidently correlated with infiltration of immune cells, TME score, TMB, 
TIDE score, and chemotherapy sensitivity. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway showed that the 
PI3K-Akt and Wnt signaling pathway were differentially enriched in the high-risk group.

Conclusions: The senescence-related signature was an accurate tool to guide the prognosis and might promote the progress 
of personalized treatment.

Abbreviations: DEGs = differentially expressed genes, GC = gastric cancer, IC50 = half-maximal inhibitory concentration, OS = 
overall survival, PCA = principal component analyses, TIDE = tumor immune dysfunction and exclusion, TIICs = tumor-infiltrating 
immune cells, TMB = tumor mutational burden, TME = tumor microenvironment.

Keywords: gastric cancer, immunotherapy, prognostic model, senescence, tumor microenvironment

1. Introduction

Gastric carcinoma (GC) is the fourth most common cancer, and 
is the third frequent cancer related mortality globally.[1] At pres-
ent, the main treatment methods for GC include a combination 
of surgical resection, chemotherapy and targeted therapy, and 
immunotherapy.[2] Despite considerable progress in treatment 
strategies, the mortality rate of GC is still high.[3] Currently, 
a significant clinical challenge for GC is that the disease is 
often asymptomatic at an early stage and diagnosed at a later 
stage, characterized by a poor prognosis and limited treatment 
options.[1,2] Treatment strategies varied widely, due to the lack of 
a specific biomarker to assess GC progression. Thus, a reliable 

biomarker for better understanding of GC and can be utilized 
for personalized treatment is pressingly needed.

Cellular senescence is a stable state of cell cycle arrest that is 
penalized in response to various insults, such as deoxyribonu-
cleic acid damage, telomere dysfunction, telomere shortening, 
and oncogenic stress, resulting in inhibition of potentially dys-
functional, transformed, or aged cells.[4] It is characterized by 
distinct morphological hallmarks, alterations in gene expres-
sion and chromatin structure, expression of senescence-associ-
ated β-galactosidase, and acquisition of a senescence-associated 
secretory phenotype.[4] Cellular senescence is a double-edged 
sword that plays an important role in different stages of 
tumorigenesis, such as tumor initiation, establishment, and 
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escape.[5] Oncogene activation can promote cell proliferation 
and induce senescence.[6] Therefore, cellular senescence is the 
mechanism by which cells are permanently withdrawn from 
the cell cycle to prevent the progression of benign neoplastic 
lesions to malignant tumors. However, work in recent decades 
has demonstrated that senescent cells often also have onco-
genic properties. It is mainly because senescent cells remain 
viable and biologically active over a long period and eventually 
resume proliferation while signaling their microenvironment 
with heterotypic.[7–9] Taken together, the senescence status of 
tumors is heterogeneous. Hence, individualized treatment of 
GC is an urgent task at present.

In this study, we constructed a senescence-associated signa-
ture as a prognostic biomarker. To develop new therapeutic 
methods for the treatment of GC, we evaluated the impact on 
immune cell infiltration, clinical outcomes, TMB, immunother-
apy, and chemotherapy sensitivity of the signature in GC.

2. Materials and methods

2.1. Data preparation

In this study, a total of 414 GC patients, including complete 
ribonucleic acid-seq Fragments Per Kilobase Million data 
and clinical characteristics, were obtained from the Cancer 
Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov). The microarray data set (GSE84437) was obtained from 
the Gene Expression Omnibus database. TCGA-stomach ade-
nocarcinomas was used for building the prognosis model, and 
431 samples from GSE84437 were used to validate the risk 
model. The samples with missing clinical information and 
prognosis < 30 days were excluded. This study did not require 
ethics approval as all data were obtained public databases. 
Moreover, 279 senescence-related genes were obtained from 
the CellAge database (https://genomics.senescence.info/cells/
signatures.php?).

2.2. Generation and validation of senescence signature

Univariate Cox regression analysis helped screen the potential 
senescence-related prognostic genes in the TCGA. Following 
that, LASSO Cox regression analysis was employed to select the 
most optimal candidates. Subsequently, the multivariable Cox 
regression analysis was employed to establish prognostic signa-
ture. The risk score was estimated using:

Risk score =
∑

expi∗coefi.

In this formula, coef and exp represent correlation coefficient 
and gene expression levels, respectively. The respective median 
value was set as the cutoff value and GC patients were classified 
into low- and high-risk groups. Kaplan–Meier survival curves 
and time-dependent receiver operating characteristic (ROC) 
were used to evaluate the prognostic predictive performance 
of the signature. Principal component analyses (PCA) were 
performed with “scatterplot3d” R package. The nomogram 
is drawn based on clinical data and risk scores, and its accu-
racy is demonstrated by a calibration curve. In addition, in the 
GSE84437 set, the same methods were employed to examine the 
accuracy of the signature.

2.3. Assessment of immune landscape in tumor 
microenvironment (TME)

To assess the link between the signature and tumor-infiltrat-
ing immune cells (TIICs) in GC, the CIBERSORT algorithm 
was employed to quantify 22 TIICs. Based on the ESTIMATE 
algorithm, we calculated the stromal score, immune score, 
ESTIMATE score for each sample to quantify TME.

2.4. Predicting chemotherapy drug and immunotherapy 
response

To access the significance of the signature in predicting the sen-
sitivity to chemotherapy in GC, the “pRRophetic” package was 
conducted to calculate the half-maximal inhibitory concentra-
tion (IC50) of the main chemotherapeutic medications used 
in the treatment of GC patients. In addition, Tumour Immune 
Dysfunction and Exclusion (TIDE) algorithm was used to assess 
the response of immunotherapy.[10]

2.5. Analysis of somatic mutations and TMB among 
different risk groups

The number of gene mutations and the type of gene mutation 
were derived from the somatic mutation data of the TCGA 
database. We also visualized the top 15 genes with the highest 
mutation frequency in the low- and high-risk subgroups using 
the “Maftool” R package.

2.6. Functional analysis

Use the “limma” R package to determine the differentially 
expressed genes (DEGs) in different risk subgroups. The filter 
standard is: |LogFC| > 1, and the corrected P-value is < .05. The 
“clusterProfiler” package was adopted to make gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses on the DEGs.

3. Results

3.1. Establishment of senescence-related signature

In the TCGA set, univariate Cox proportional hazards regression 
analysis showed that 16 genes were associated with prognosis of GC 
samples (Fig. 1A). Then, we performed LASSO Cox analysis based 
on the 16 genes, following 5 senescence-related genes were screened 
and a risk formula was built using the coefficient from multivariable 
Cox regression analysis (Fig. 1B–D). Risk score = 0.010 × (AKR1B1 
expression value) + 0.018 × (CTNNAL1 expression value) − 
0.024 × (DUSP16 expression value) + 0.100 × (PLA2R1 expres-
sion value) + 0.001 × (ZFP36 expression value). The risk score 
of all samples could be calculated according to the risk formula 
and samples could be classified into low- and high-risk subgroups 
based upon whether their median risk scores were above or below 
the median value. In the TCGA set, the survival status and risk 
sore distribution showed that death risk increased gradually 
with the increment of risk scores (Fig. 1E). PCA was performed 
to compare the difference between two risk subgroups based on 
expression profiles of whole-genome, 279 senescence-related genes, 
and 5 senescence-related genes of the signature (Fig. 1F–H). The 
result showed good discriminative performance of the signature 
(Fig. 1H). Kaplan–Meier analysis demonstrated that the higher risk 
score was often associated with worse overall survival (OS), can-
cer-specific survival, and progression-free survival (Fig. 1I–K). The 
result of ROC curves demonstrated that this signature was accurate 
and stable to predict the prognosis in GC (Fig. 1L). Meanwhile, 
after adjusting other clinicopathological variables, the signature 
remained a powerful and independent factor (Fig. 2A and B).

To better represent the clinical utility of the signature, we 
built a nomogram combining risk scores with clinicopath-
ological traits, such as age and TNM stage (Fig.  2C). In this 
nomogram, different clinical information and risk groups cor-
responded to specific scores, and we could predict 3 and 5-year 
OS for a patient according to the sum of the scores. The area 
under the curve values of the ROC curve at 3 and 5 year-OS for 
the nomogram were 0.700 and 0.729 (Fig. 2D). The calibration 
curve of the nomogram showed that the constructed nomogram 
was more consistent with the actual situation (Fig. 2E).

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://genomics.senescence.info/cells/signatures.php?
https://genomics.senescence.info/cells/signatures.php?
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3.2. External validation of the signature

The risk score of samples in GSE84437 validation set was cal-
culated using the formula from the training cohort to verify the 
robustness of the signature. The distribution of the risk score of 
each individual revealed that the high-risk had shorter OS, the 

similar results were received from Kaplan–Meier curves analy-
sis (Fig. 3A and B). PCA was employed to verify the accuracy 
of categorization. As shown in Figure 3C, there seems signifi-
cant distinction between the two subgroups. The area under the 
curve values for the 3-year (0.680) and 5-year (0.702) OS in the 
validation set showed good sensitivity and specificity (Fig. 3D).

Figure 1. Generation of the prognostic signature in the TCGA set. (A) Univariate Cox regression analysis identified 16 senescence-related prognostic genes. 
(B and C) Lasso regression analysis. (D) The presentation of 5 independent prognosis genes in multivariate Cox regression analysis. (E) The distribution of risk 
scores and the coherence of survival time and survival status among the two risk subgroups. (F–H) PCA is based on the expression profiles of whole-genome 
(F), 279 senescence-related genes (G), and 5 senescence-related genes of the signature (H). (I–K) Kaplan–Meier curve of OS (I), CSS (J), and PFS (K) in different 
risk patients. (L) ROC curve to assess the prognostic value of risk score. CSS = cancer-specific survival, OS = overall survival, PCA = principal component 
analyses, PFS = progression-free survival, ROC = receiver operating characteristic, TCGA = the Cancer Genome Atlas.
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3.3. Correlation between risk score and TME
To better evaluate the correlation between risk scores and TIICs, 
we employed CIBERSORT algorithm to evaluate the infiltrating 
level of immune cells and made comprehensive comparisons of 
two risk groups. According to the Figure  4A and B cells, the 
high-risk score was negatively linked to infiltration of CD8 + T 

cells, plasma cells, activated memory CD4 + T cells, and nat-
ural killer cells resting, and positively linked to infiltration of 
B cells naïve, monocytes, macrophages M2, and T cells regula-
tory (Tregs). Furthermore, the stromal score, immune score, and 
ESTIMATE score of the low-risk group were overtly higher than 
those of the high-risk group (Fig. 4B).

Figure 2. Establishment and validation of the nomogram. (A and B) Univariate (A) and multivariate analyses (B) indicated the prognostic value of the risk score. 
(C) Nomogram for predicting 3- and 5-year OS. (D) ROC curve analysis of the nomogram. (E) The calibrate curves are used to verify the nomogram the at 3 and 
5 years. ROC = receiver operating characteristic, OS = overall survival.
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3.4. Immunotherapy response and chemotherapy drug 
selection

We used the TIDE to assess the likelihood of GC benefiting from 
immune checkpoint inhibitors therapy. The result indicated 
that patients in low-risk group led to a statistically significant 
decrease in TIDE score (P < .05), indicating a better response to 
immunotherapy (Fig. 4C). In addition, we compared responses 
to chemotherapeutic drug in two risk groups. We observed that 
the IC50 of dasatinib, foretinib, lapatinib, and pazopanib was 
relatively low in the high-risk group, while the IC50 of gefi-
tinib and veliparib were relatively high in the high-risk group 
(Fig. 4D–I).

3.5. Correlation of risk score with somatic mutation 
landscapes

We predicted the gene mutation frequency of the high- and 
low-risk groups. Compared with the low-risk group (92.44%), 
the mutation rate of the high-risk group (86.47%) was lower 
(Fig.  5A and B). The top five mutated genes in the two risk 
groups were TTN, TP53, MUC16, LRP1B, and ARID1A. In 
addition, we found that the TMB of the high-risk group were 

evidently lower than those of the low-risk group (Fig. 5C). The 
Kaplan–Meier survival curves revealed that the OS of the low-
TMB group was significantly lower than that in high-TMB 
group (Fig. 5D). The GC patients with high TMB in low-risk 
group had significantly longer OS relative to high-risk patients. 
And the patients with low TMB showed consistent results 
(Fig. 5E), indicating the prognostic value of the risk score was 
not affected by TMB.

3.6. Functional analysis

To explore potential biological functions of the signature, we per-
formed GO and KEGG functional enrichment analysis on 651 
DEGs and presented significantly enriched biological processes. 
The GO enrichment results showed that DEGs were significantly 
enriched in muscle contraction and muscle system process (bio-
logical process), collagen-containing extracellular matrix and 
contractile fiber (cellular component), as well as actin binding 
and glycosaminoglycan binding (molecular function) (Fig. 6A). 
The KEGG enrichment results revealed that DEGs prominently 
enriched in PI3K-Akt signaling pathway, focal adhesion, and 
Wnt signaling pathway (Fig. 6B). This suggests that the potential 
biological functions of DEGs are related to the tumor.

Figure 3. Verification of the prognostic model in the GSE84437 set. (A) The distribution of risk score and the coherence of survival time and survival status 
among two risk subgroups. (B) Kaplan–Meier curve of OS in low-risk and high-risk patients. (C) PCA demonstrated overt separation of both subgroups. (D) 
ROC curve for assessing the predictive accuracy of the signature. OS = overall survival, PCA = principal component analyses, ROC = receiver operating 
characteristic.
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4. Discussion

To date, Japan has approved two ant-PD-1 inhibitors for GC: 
nivolumab as a third- or later-line treatment for GC, and pem-
brolizumab for previously treated patients with microsatel-
lite instability-high tumors.[11] Although immunotherapy has 
achieved unprecedented success, the OS time of individuals varies 
greatly due to the existence of heterogeneity.[11] Senescence is a 
complex biological process with cell-autonomous and paracrine 
effects that has a major impact on the TME.[12–14] Senescent tumor 
cells can culture and shape the tumor microenvironment through 
senescence-associated secretory phenotype. In the TME, senes-
cent tumor cells are surrounded by tumor cells, stromal cells, and 
infiltrating immune cells. These immune cells include cells that 
promote tumor growth and inhibit tumor growth.[15] Senescence-
associated secretory phenotype exerts anti-tumor and pro-tumor 
effects by recruiting and activating immune cells and neighboring 
cells.[16] Hence, modeling GC has important implications for deci-
phering whether molecular determinants of senescence remodel 
the TME and whether this model has an impact on clinical out-
comes and immunotherapy response in GC patients.

In this work, univariate Cox analysis was performed to 
screen senescence-related genes that were associated with OS. 
Subsequently, we performed LASSO and multivariate Cox 
regression analysis in the training set to construct a prognostic 
model. Based on the result of multivariable Cox regression anal-
ysis, a 5-gene (AKR1B1, CTNNAL1, DUSP16, PLA2R1, and 
ZFP36) signature was built. The signature consists of four risk 
prognostic genes (AKR1B1, CTNNAL1, PLA2R1, and ZFP36) 
and one protective prognostic gene (DUSP16). AKR1B1, a 
member of AKR1 subfamily B, plays a vital role in glucose 
metabolism and osmoregulation.[17] The role of AKR1B1 in 
cancer is not fully understood, but growing evidence suggests 
that it has a large impact on cancer progression.[18–21] AKR1B1 
can be involved in complex signaling pathways, proteins, and 
miRNA networks, such as mir-21-mediated mechanisms such 
as cell cycle, apoptosis, epithelial-mesenchymal transition.[18] 
Wu et al[21] revealed that AKR1B1 promoted basal-like breast 
cancer progression by activating the epithelial-mesenchymal 
transition program. PLA2R1, a member of the C-type lectin 
superfamily, has been reported to be a prognostic or diagnostic 
biomarker for breast cancer.[22]

Figure 4. Immune landscape and chemotherapy drug sensitivity of different risk subgroups. (A) Differences in immune cells infiltration between high-risk and 
low-risk groups. (B) Correlation between the risk score and the TME score. (C) Comparison of TIDE score between two risk groups. (D–I) Comparison of sensi-
tivities to commonly used chemotherapeutics for GC in two risk groups. GC = gastric cancer, TIDE = tumor immune dysfunction and exclusion, TME = tumor 
microenvironment.
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The GC patients were then divided into low- and high-risk sub-
groups. K-M curves revealed that the OS, cancer-specific survival, 
and progression-free survival rate was markedly higher in the 
low-risk subgroup. Internal and external validation confirmed the 
value of the predictive signature. Furthermore, the risk score can 

be adopted as a prognostic predictor independent of clinical char-
acteristics. To better represent the clinical utility of the signature, 
we constructed a prognostic nomogram combining risk scores 
with clinicopathological traits. The KEGG enrichment results 
revealed that DEGs are prominently enriched in tumor-related 

Figure 5. Correlation of risk score with somatic mutation landscapes. (A, B) Waterfall chart showing higher mutation frequency genes in high- (A) and low-risk 
groups (B). (C) Comparison of TMB in the high- and low-risk groups. (D) Survival analysis of high-and-low-TMB group. (E) Survival analysis of GC stratified by 
TMB and risk score. TMB = tumor mutational burden, GC = gastric cancer.

Figure 6. GO and KEGG pathway analysis of the senescence-related signature. (A) The results of GO enrichment analysis. (B) The results of KEGG enrichment 
analysis. GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.
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signaling pathways. These results suggest that this signature may 
be effective in assessing patient outcomes, thereby facilitating the 
implementation of this signature in future clinical practice.

TME is a key mediator of tumor progression and treatment 
outcome. Its status can reflect the response of tumor patients to 
immunotherapy.[23] Thus, exploring the diversity and complexity 
of TME can improve the predictive power and clinical guid-
ance of immunotherapy. We assessed the correlation between 
risk score and TME and showed that the high-risk group pre-
sented a typical tumor immunosuppressive microenvironment. 
This was reflected in that compared with the low-risk group, 
the infiltration proportion of activated memory CD4 + T cells, 
CD8 + T cells, plasma cells, and resting natural killer cells in the 
high-risk group was lower, while the infiltration abundance of 
macrophages M2 and Tregs was increased. T cells are among 
the most common immune cells, and T cells can help prevent 
metastatic progression and are known to be related to patient 
prognosis.[24–26] This is consistent with our results that the low-
risk group had higher levels of CD8 + and CD4 + T cells. M1 
and M2 macrophages are one of the major tumor-infiltrating 
immune cell types, the former typically exerting antitumor 
effects, including direct-mediated cytotoxicity and antibody-de-
pendent cell-mediated cytotoxicity killing tumor cells; while 
M2-polarized macrophages, generally considered tumor-asso-
ciated macrophages, promote tumor cell initiation and metas-
tasis by promoting angiogenesis and lymphangiogenesis and 
suppressing T cell-mediated antitumor immune responses.[27,28] 
Tregs suppress the immune activity mainly by reducing the acti-
vation of CD8 + T cells, moreover, Tregs inhibit the immune 
response through its membrane-bound cytotoxic T-lymphocyte-
associated protein 4 immune checkpoint molecule.[29] In addi-
tion, TME scores in the low-risk group were higher than than 
those in high-risk group.

Research has shown that immunotherapy became one of the 
most promising methods for GC treatment in recent years.[30,31] 
In this work, we revealed that low-risk patients presented with 
lower TIDE scores, indicating better response to immuno-
therapy. TMB has been proven to be a promising indicator to 
forecast the response to immune checkpoint inhibitors, which 
is significantly correlated with immunity.[32] We found that 
the TMB related to immunotherapy sensitivity was obviously 
higher in the low-risk subgroup than in the high-risk subgroup. 
Studies have demonstrated that patients with higher TMB more 
likely to benefit from immunotherapy.[33] These results suggest 
that patients in the low-expression group may benefit more 
from immunotherapy. Stratified analysis showed that the sig-
nature was not associated with TMB in GC. This means that 
the signature and TMB represent different aspects of tumor 
immunobiology and can predict the patient response to immu-
notherapy independent of TMB. Lastly, GC patient sensitivity to 
chemotherapy and targeted drugs was next assessed. High-risk 
patients were more sensitivity to dasatinib, foretinib, lapatinib, 
and pazopanib, while low-risk patients were more sensitivity to 
gefitinib and veliparib. Therefore, suitable chemotherapy and 
targeted drugs can be selected according to different risk groups.

5. Conclusions
In this research, we successfully established a 5-gene senes-
cence-related signature that could be used to classify GC 
patients. This signature can improve the guidance of the patient 
personalized treatment.
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