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Abstract

At present, a large number of people worldwide have been infected by coronavirus 2019

(COVID-19). When the outbreak of the COVID-19 pandemic begins in a country, its impact

is disastrous to both the country and its neighbors. In early 2020, the spread of COVID-19

was associated with global aviation. More recently, COVID-19 infections due to illegal or

undocumented immigration have played a significant role in spreading the disease in South-

east Asia countries. Therefore, the spread of COVID-19 of all countries’ border should be

curbed. Many countries closed their borders to all nations, causing an unprecedented

decline in global travel, especially cross-border travel. This restriction affects social and eco-

nomic trade-offs. Therefore, immigration policies are essential to control the COVID-19 pan-

demic. To understand and simulate the spread of the disease under different immigration

conditions, we developed a novel mathematical model called the Legal immigration and

Undocumented immigration from natural borders for Susceptible-Infected-Hospitalized and

Recovered people (LUSIHR). The purpose of the model was to simulate the number of

infected people under various policies, including uncontrolled, fully controlled, and partially

controlled countries. The infection rate was parameterized using the collected data from the

Department of Disease Control, Ministry of Public Health, Thailand. We demonstrated that

the model possesses nonnegative solutions for favorable initial conditions. The analysis of

numerical experiments showed that we could control the virus spread and maintain the num-

ber of infected people by increasing the control rate of undocumented immigration across

the unprotected natural borders. Next, the obtained parameters were used to visualize the

effect of the control rate on immigration at the natural border. Overall, the model was well-

suited to explaining and building the simulation. The parameters were used to simulate the

trends in the number of people infected from COVID-19.
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1. Introduction

In December 2019, there were many reports of a novel coronavirus renamed by the World

Health Organization (WHO) as COVID-19 on February 11, 2020 [1]. This disease spread

quickly, and the number of infected individuals increased rapidly. According to the WHO

reports, there were 6,530,992 confirmed cases and 406,665 deaths globally as of June 5, 2020

[2]. One month later, the numbers had doubled to a confirmed 11,172,123 cases and 557,558

deaths globally, as reported on July 5, 2020 [2]. The COVID-19 disease is highly infectious

with an average incubation period of 5 to 7 days [3]. Moreover, the virus could quickly spread

from asymptomatic patients by direct contact, coughing, sneezing, and talking. The virus

could survive in aerosol form or the surfaces or breath droplets for up to 72 hours [4].

Without prompt diagnosis and treatment, COVID-19 could cause severe symptoms and even

death [5].

Initially, the first case of COVID-19 was reported in Wuhan, China [6]. Later, due to the

global aviation industry and the limited COVID-19 diagnostic tools, the disease spread to sev-

eral countries. Beginning in January of 2020, tourists from China with COVID-19 were first

reported in Thailand [7]. To contain the disease, the Thailand government restricted interna-

tional air travel, resulting in the containment of the disease and reducing the number of new

cases to almost zero. However, since March of 2021, the Thai government reported that the

virus was diagnosed on people who had immigrated illegally. Due to inadequate disease pre-

vention measures and poor access to medical diagnostic and treatment, the spread of COVID-

19 increased [8]. Recent studies reported that the high prevalence of COVID-19 and deaths

occurred in unauthorized immigrants globally [9, 10]. As a result, it is necessary to under-

stand and simulate the spread of the disease under different immigration scenarios. The analy-

sis of control rates of illegal immigration should be addressed. Long-term behavior of the

situation under a control policy should be studied and revealed to simulate the number of peo-

ple in different classes of the populations in the country.

To understand the spread of infectious diseases, mathematical models of epidemics were

evaluated to simulate the dynamic transmission and plan effective strategies to control the

spread. One of the model most often used is the Susceptible-Infected-Recovered (SIR) model,

which describes the flow of individuals through three subpopulations: susceptible (S), infected

(I), and recovered (R) [11–14]. This simple model has been the standard for explaining the

spread of disease. Over many years, many subsequent models were developed based on this

standard [12, 15, 16]. Recently, a model was developed to study the COVID-19 infection in

Italy [17]. The model’s name reflects eight subpopulations: susceptible (S) (uninfected),

infected (I) (asymptomatic infected, undetected), diagnosed (D) (asymptomatic infected,

detected), ailing (A) (symptomatic infected, undetected), recognized (R) (symptomatic

infected, detected), threatened (T) (infected with life-threatening symptoms, detected), healed

(H) (recovered), and extinct (E) (dead) - SIDARTHE. The aim of this work is to find the cause

of the COVID-19 epidemic and help plan an effective control strategy. The model results also

confirm the benefits of mass testing, whenever facilities are available.

In 2020, Din et al. developed a new infectious disease model based on the SIR model and

some other models [18] and used for explaining the spread of COVID-19 in Thailand. The

model’s name reflects six subpopulations: susceptible (S), latent (L) or a group of infected pop-

ulations that do not show symptoms, infected populations showing symptoms (I), quarantine

(Q), hospitalized (H), and recovered (R) - SLIQHR. Then, the disease transmission was

described by six differential equations. This model worked well with the theoretical data under

fixed-parameter constants. Although the model simulated the spread of COVID-19, there

were still many factors in the second wave related to people who enter the country without
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tests or quarantine. The inclusion of Thai people in one population (S susceptible) was insuffi-

cient to explain and simulate that condition.

At the end of 2020, the second wave of COVID-19 shocked the Thai people again because

the number of infected people in the country increased dramatically, especially in Samut

Sakhon province, Thailand. There, many illegal immigrants worked at the seafood market

[19]. The type COVID-19 carried from Myanmar was identified as the delta strain (or

B.1617.2), which is transmitted more quickly and more contagious than the other strains; how-

ever, the symptoms were less severe than the original type spreading from Wuhan, China. Cur-

rently, the Thailand government controls these conditions by locking down some regions

infected with the virus [19]. The control scenarios and the data were recorded as the reference

data to model the spread of this disease, expand our knowledge, and understand the situation

mathematically. Additionally, the model can help reveal the rate of infections, control the

spread from the unprotected natural border, and develop policies and a strategy to protect peo-

ple from the virus.

Based on the basic concepts of the SIR and SLIQHR models, we developed a novel compart-

ment diagram to model the spread of COVID-19 under the conditions that some infected peo-

ple will enter the country through the uncontrolled natural border. The model’s name reflects

six subpopulations: Legal immigrants (L), Undocumented immigrants from natural border

(U), Susceptible people (S), Infected people (I), Hospitalized people (H) and Recovered people

(R) - LUSIHR. We also developed another model, LSIHR, by setting the value of the control

rate of undocumented immigration (ω) as 1, removing the natural border population from the

LUSIHR model. The assessment of the model focused on its positivity, the equilibrium point,

and the basic reproduction number (R0) or the average number of cases generated per infected

individual [20] for the LSIHR model. The simulation was conducted using various scenarios

and control rates. Finally, the simulated results were compared with real collected data in Thai-

land. More details on the LUSIHR and LSIHR models are presented in Section 2. Data manipu-

lation and numerical parameters are explained in Section 3. Section 4 describes the results of

the well-posedness and mathematical analysis for the equilibrium points, as well as the model

simulation results, comparing them to the actual collected data. Section 5 describes the conclu-

sions of this work. Finally, the benefit and limitation of this work are discussed in Section 6.

2. The spread of disease model and LUSIHR model

2.1 Background

The mathematical models of disease spread have been studied for some time. The most basic

and simple model is the SIR model that describes the virus spread using only three variables.

In contrast, currently, much of the derivative family of this base model can be found for a spe-

cific condition or disease [12, 15, 16, 21]. Under the conditions in which Thailand faces the

COVID-19 disease, the first proposed model SLIQHR was reported recently in 2020 [18].

Notice that both models start with a single susceptible group set as the single source of the pop-

ulation in the model. However, based on the conditions of illegal immigration in Thailand, we

can add a group of immigrants into the susceptible group. The susceptible group represents all

the people who can be expected to be infected in the future. This scenario was proposed in this

study as the LUSIHR model, described in the following section.

2.2 The LUSIHR model

The LUSIHR model is an epidemic model based on the SIR and SLIQHR models. In principle,

the whole population was divided into six subgroups: Legal immigrants (L) are people who

travel into the country legally, Undocumented or illegal immigrants are people (U) who travel
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across unprotected natural border, Susceptible population (S) are those who have not been

infected with the disease, Infected populations (I) are those who are already infected and not

tested for the disease, Hospitalized populations (H) are those who are already infected, have

tested positive, and are being treated in a hospital, finally, Recovered populations (R) refer to

those who have recovered from the disease and cannot be infected again. Notice that people

who travel into Thailand legally must be tested for the disease and be quarantined until they can

travel to all regions of Thailand. Following quarantine, people in this group can move into either

susceptible or hospitalized groups. In contrast, people who enter through the natural border

enter the country without any test or quarantine. As a result, people in this group can move into

either susceptible or infected groups. The diagram of the LUSIHR model is shown in Fig 1.

The diagram of the LUSIHR model (in Fig 1) represents the states of the people in Thailand.

At a specific time t, the number of populations in each group could be changed over time. Let

T(t) be the total population at time t. For any t�0, we then have T(t) = L(t)+U(t)+S(t)+I(t)+H
(t)+R(t) where L(t), U(t), S(t), I(t), H(t), and R(t) are the number of legal immigrants, undocu-

mented immigrants from the natural border, susceptible people, infected people, hospitalized

people, and recovered people over time t. Based on the diagram, the system of ordinary differ-

ential equations for the LUSIHR model can be written as follows:

L0ðtÞ ¼ L1 � a1LðtÞ � a2LðtÞ ð1Þ

U 0ðtÞ ¼ L2ð1 � oÞ � a3UðtÞ � a4UðtÞ ð2Þ

S0ðtÞ ¼ a1LðtÞ þ a3UðtÞ � bSðtÞIðtÞ � mSðtÞ ð3Þ

I0ðtÞ ¼ a4UðtÞ þ bSðtÞIðtÞ � dIðtÞ � ε1IðtÞ � g1IðtÞ � mIðtÞ ð4Þ

H0ðtÞ ¼ a2LðtÞ þ dIðtÞ � ε2HðtÞ � g2HðtÞ ð5Þ

R0ðtÞ ¼ g1IðtÞ þ g2HðtÞ � mRðtÞ ð6Þ

The model parameters are as follows:

Λ1 is the number of recruitments per day into legal immigration group (L).

Fig 1. Diagram of the LUSIHR model. Nodes represent population classes and edges represent transmissions and

their rates.

https://doi.org/10.1371/journal.pone.0273558.g001
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Λ2 is the number of recruitments per day into undocumented immigration from the natural

border (U).

ω is the control rate of undocumented immigration from the natural border.

α1 is the proportion of people transfers from legal immigration group (L) to susceptible

group (S).

α2 is the proportion of people transfers from legal immigration group (L) to hospitalized

group (H).

α3 is the proportion of people transfers from the undocumented immigrant group (U) to

the susceptible group (S).

α4 is the proportion of people transfers from the undocumented immigrant group (U) to

the infected group (I).
γ1 is the recovery rate per unit of time of the infected people.

γ2 is the recovery rate per unit of time of the hospitalized people.

β is the transmission rate per unit of time of the susceptible people who interact with

infected people.

δ is the proportion of infected group (I) aware that they are infected and tested at hospital.

ε1 is the death rate per unit of time of the infected people.

ε2 is the death rate per unit of time of the hospitalized people.

μ is the rate per unit of time of the people traveling out of the country.

Notice that the control rate of undocumented immigration at natural border (ω) was intro-

duced to measure the success of efforts to slow the rate of immigration at Thailand’s borders. This

rate was assigned a value from 0 to 1. In those cases where there is no control at the border, ω was

set to zero. On the other hand, if ω = 1, no one could enter the country via the natural border. As

a result, the natural border subpopulation was removed from the LUSIHR model and placed in

the LSIHR model. Therefore, the control rate was divided into two parts, 0�ω<1 for the LUSIHR
model, and ω = 1 for the LSIHR model. The diagram of the LSIHR model is shown in Fig 2.

The system of ordinary differential equations for the LSIHR model is different from the

LUSIHR model by removing the undocumented immigrants from the natural border and

introducing new equations for the susceptible people and infected people. Therefore, the sys-

tem of the differential equations for the LSIHR model derived from the LUSIHR by replacing

Eqs (3) and (4) with the following Eqs (7) and (8):

S0ðtÞ ¼ a1LðtÞ � bSðtÞIðtÞ � mSðtÞ ð7Þ

and I0ðtÞ ¼ bSðtÞIðtÞ � dIðtÞ � ε1IðtÞ � g1IðtÞ � mIðtÞ: ð8Þ

3. Data manipulation and numerical parameters

3.1 Data sources

The Department of Disease Control, Ministry of Public Health, Thailand, provided the data

used in this study [19]. The data includes the number of people in quarantine, infected people,

recovered people, hospitalized people, infected migrant workers, and deaths. We focused on

the data for hospitalized people from December 1, 2020 (Day 1) to February 23, 2021 (Day 85)

(see S1 Table). The data for the number of people who immigrated via the natural border

route and via legal immigration was obtained from the Immigration Bureau [22].

3.2 Numerical solution

To parameterize the LUSIHR model, it is necessary to identify the optimal parameters to

use in the model equations. Some parameters, including Λ1,Λ2,ω,α1,α2,α3,α4,γ1,γ2,ε1,ε2, and μ,
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can be estimated using the actual data. The estimated value of each parameter is shown in

Table 1.

The number of people who illegally immigrated daily (Λ1) and the rate of the people travel-

ing out of the country (μ) were calculated based on the average number of tourists recorded in

an Immigration Bureau report of December 2020 [22]. We assumed that the control rate of

undocumented immigration over the natural border (ω) was approximately 0.4. Actually, it is

impossible to approximate the actual value of ω because only the number of arrested immi-

grants can be recorded. Obviously, the total number of undocumented or illegal immigrants

should be considered but it is hard to know this number. Therefore, let’s assume that about

Fig 2. Diagram of the LSIHR (Legal immigration–Susceptible–Infected–Hospitalized—Recovered) model. Nodes represent population classes and edges

represent transmissions and their rates.

https://doi.org/10.1371/journal.pone.0273558.g002

Table 1. The value of each parameter in the model.

Parameters Value

Λ1 5219.77 persons/days

Λ2 297.5 persons/days

ω 0.4

α1 0.9971

α2 0.0029

α3 0.7484

α4 0.2516

δ 0.3

μ 0.00230154

https://doi.org/10.1371/journal.pone.0273558.t001
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half or lower a half would be an approximated rate that cause an effect to the situation. It

means that the number of illegal immigrants arrested at the natural border was 40% of the

expected total illegal immigrants. From this, we calculated the number of people who immi-

grated via natural border daily (Λ2). The value of α2 was calculated using the ratio of the total

imported cases to the total number of people entering the country in December 2020. Simi-

larly, α4 was calculated using the ratio of the total infected migrant workers to the expected

total people entering the country illegally in December 2020. The values of α1 and α3 were 1

−α2 and 1−α4, respectively. The value δ was assumed to be 0.3.

Because the values of γ2 and ε2 were for hospitalized people, they were calculated using the

data from each region. The remaining parameters were difficult to obtain because they are rel-

evant to the infectious disease represented by infected people; however, no tests or data from

the hospitals were available. Therefore, the optimal parameters were obtained by minimizing

the error between the actual data and simulated data. The loss function that we used for the

error was the root mean square error (RMSE). The value of RMSE was always non-negative,

and closer to zero is better. The formula for the RMSE is:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðxi � x̂iÞ
2

N

v
u
u
u
t

where

RMSE is the value of the root mean square error,

N is the number of non-missing data points, in this model, the total number of days,

xi is actual data at day i, and

x̂i is simulated data at day i.

4. Results

4.1 The nature of model parameters

For the LUSIHR and LSIHR models, since the number of each subpopulation could not be nega-

tive, it was essential to prove that the solutions were non-negative (all populations more than or

equal to zero) if the initial conditions were positive. The model positivity for these two model

can be derived from the proof of the model positivity for the feedback vaccination law for SIR
model [21]. The population functions L(t), U(t), S(t), I(t), H(t), and R(t) are continuous and dif-

ferentiable as shown in Eqs (1)—(8). Then, if the population decreased to zero, the derivative

was positive to increase the population to be positive again. With this concept, the proof of

these two models was shown in S1 Appendix (Appendix A2: the proof of model positivity).

Therefore, all the solutions are non-negative for all times and these two proposed models can be

applied to analyze its equilibrium points further and simulate the growth of the populations.

4.2 The equilibrium points

A system has an equilibrium point if there is no change in the system at all times. Commonly,

there are two types of equilibrium points: an endemic equilibrium point (EE) and a disease-

free equilibrium point (DFE). The EE point is the state that the spread of disease still exists all

the time. On the other hand, the DFE point is the state at which the infection disappears from

the system at all times.

For the LUSIHR model, the equilibrium point was calculated by setting Eqs (1)—(6) equal

to zero as a non-linear system. The way to find the solution is represented in S1 Appendix
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(Appendix A3: The analysis of an equilibrium points). We obtained only one EE point in

which the infection was not removed from the system as

ðL;U; S; I;H;RÞ ¼ ðL�;U�; S�; I�;H�;R�Þ

where L� ¼ L1

a1þa2
, U� ¼ L2ð1� oÞ

a3þa4
, S� ¼ C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 4mbAB
p

2mb
, I� ¼ a4U�

A� bS�, H
� ¼

a2L�þdI�

ε2þg2
, and R� ¼ g1I�þg2H�

m
,

with A = δ+ε1+γ1+μ, B = α1L�+α3U� and C = μA+βB+α4βU�.
For the LSIHR model, we obtained two equilibrium points (see S1 Appendix (Appendix A3:

The analysis of an equilibrium points)), one of which was the EE point and the other was the

DFE point. The DFE point of the LSIHR model is

ðL; S; I;H;RÞ ¼ ðL�
1
; S�

1
; I�

1
;H�

1
;R�

1
Þ

where L�
1
¼

L1

a1þa2
, S�

1
¼

a1L�

m
, I�

1
¼ 0, H�

1
¼

a2L�þdI�

ε2þg2
, and R�

1
¼

g1I�þg2H�

m
. Note that the DFE point of

the LSIHR should have I� = 0 in all components of the DFE.

The EE point of the LSIHR model is

ðL; S; I;H;RÞ ¼ ðL�
2
; S�

2
; I�

2
;H�

2
;R�

2
Þ

where L�
2
¼

L1

a1þa2
, S�

2
¼ A

b
, I�

2
¼

a1L�

A �
m

b
, H�

2
¼

a2L�þdI�

ε2þg2
, and R�

2
¼

g1I�þg2H�

m
, with A = δ+ε1+γ1+μ.

Because the LUSIHR model has only one EE point, the infected group did not disappear from

the system. The best option was to reduce the number of infected people as much as possible. One

way to reduce the number was by increasing the value of the control rate of undocumented immi-

gration over the natural border (ω). On the other hand, the LSIHR model was formed by setting ω
= 1, the maximum value of the control rate. This model had two equilibrium points, the DFE

point, and the EE points. Under actual conditions, we sought to reduce the infection and converge

to the DFE point so that the infection disappeared from the system. The condition that the popu-

lation trajectory would converge to DFE or EE depended on the basic reproduction number (R0).

4.3 The local stability of the equilibrium points and the basic reproduction

number (R0)

The stability of the DFE and the EE points was determined by the condition of eigenvalues [23,

24]. To obtain the eigenvalue, the Jacobian was built and considered at each equilibrium point

(see S1 Appendix (Appendix A4)). The results in Appendix A4 in S1 Appendix show us that

both systems eventually converge to the equilibrium points. To classify the type of the equilib-

rium points, the basic reproduction number (R0) helps us to better understand the stability of

the system. R0 is the basic reproduction number, meaning the average number of cases gener-

ated per infected individual [20]. When R0>1, infections will spread in a trajectory that con-

verges at the EE point. However, when R0<1, infections will decrease over time and the

number of infected people will reach the DFE point. For the LUSIHR, the system is always sta-

ble and towards to the EE point while the LSIHR model provides two phase transitions: the EE

point and DFE point as shown in S1 Appendix (Appendix A4).

4.4 Simulation results

This part presents an example based on specific parameters to simulate the population growth

with the LUSIHR and LSIHR models. The results are compared to the values for the simulation

trajectory trend to the EE point for the LUSIHR model calculated previously. For the LSIHR
model, we gave examples for the DFE and EE depending on the value of the basic reproduction

number (R0). These simulations were conducted using the MATLAB computing platform.
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Assume that the initial values of all variables for LUSIHR model are as follows:

Lð0Þ ¼ 0; Uð0Þ ¼ 0; Sð0Þ ¼ 15000; Ið0Þ ¼ 20; Hð0Þ ¼ 0; and Rð0Þ ¼ 0:

The values of all parameters are set as Λ1 = 30, Λ2 = 15, ω = 0, α1 = 0.7, α2 = 0.02, α3 = 0.3,

α4 = 0.2, b ¼ 0:2

15000
; δ = 0.1, γ1 = 0.002, γ2 = 0.005, ε1 = 0.01, ε2 = 0.008 and μ = 0.001.

The simulation began with only the susceptible and infected populations. Initially, the num-

ber of susceptible persons was set at 15,000 people, and the number of infected persons was 20.

Approximately 30 people per day were assumed to enter the country legally, and 15 people per

day entered the country illegally without testing or quarantine. The control rate of undocu-

mented immigration across the natural border was set at zero, meaning there were no controls

at the border. About 70% of legal immigrants were assumed to be susceptible to the virus (α1 =

0.7) and 2% were hospitalized (α2 = 0.02). The percentage of people crossing the natural border

who were susceptible and infected was 30% and 20% (α3 = 0.3, α4 = 0.2), respectively. The

transmission rate of the infection was 0.2/15000 people daily who were susceptible after inter-

acting with infected people. Approximately 10% of infected people were assumed to be hospi-

talized. The daily recovery rate for infected and hospitalized people was 0.002 and 0.005,

respectively. The daily death rate for infected and hospitalized people was 0.01 and 0.008,

respectively. Finally, the daily rate for susceptible, infected, and recovered populations emi-

grating from the country was 0.001.

In the long run, the simulation resulted in the same equilibrium points calculated in the

analysis, with the same parameters and initial values. The plot of the simulation results is

shown in Fig 3. The EE point (L�, U�, S�, I�, H�, R�) = (41.667, 30, 7103, 327.9967, 2523.9,

12849) meant that in the long run, stability was achieved at 41.667 for the legal border, 30 for

the natural border, 7,103 for susceptible persons, 327.9967 for infected persons, 2,523.9 for

hospitalized persons, and 12,849 for recovered populations.

As shown in Fig 3, the solution trajectory trends to the EE point calculated previously. The

simulation results confirmed that the analyzed equilibrium point was accurate in explaining

the conditions. We could use this equilibrium point to calculate the state of the population in

the long run if we have a non-negative initial condition of the population and specific values

for the parameters. For the simulations using the LSIHR model, the initial values were

Lð0Þ ¼ 0; Sð0Þ ¼ 15000; Ið0Þ ¼ 20; Hð0Þ ¼ 0; and Rð0Þ ¼ 0:

The parametric values for the DFE were Λ1 =30, α1 = 0.4, α2 = 0.6, b ¼ 0:2

15000
; δ = 0.6, γ1 =

0.01, γ2 = 0.3, ε1 = 0.03, ε2 = 0.001 and μ = 0.001, which R0 = 0.2576<1. The simulation results

are shown in Fig 4. The DFE point was ðL�
1
; S�

1
; I�

1
;H�

1
;R�

1
Þ = (30, 12000, 0, 59.801, 17940).

The parametric values for the EE were Λ1 = 30, α1 = 0.8, α2 = 0.2, b ¼ 0:2

15000
; δ = 0.1, γ1 =

0.005, γ2 = 0.2, ε1 = 0.01, ε2 = 0.001 and μ = 0.001, which R0 = 2.7586>1 The simulation results

are shown in Fig 5. The EE point was ðL�
2
; S�

2
; I�

2
;H�

2
;R�

2
Þ = (30, 8700, 131.9, 95.471, 19754).

The LSIHR model, which represents the LUSIHR model with ω = 1, is a model for no

undocumented immigrants entering into the country. Notice that when all parameters are

constants but only the proportion of people transfers from legal immigration (α1) and the

transmission rate per unit of time of susceptible people interacting with infected people (β)

vary. The spread of the COVID-19 still occurs in the case that α1 is large enough to make

R0>1. It means that the system contains more susceptible cases which lead to more contact

and interactions with the infected people and cause the pandemic. In the same manner, if β is

large meaning that it is a fast and high transmission rate when people contact to an infected

people, the pandemic will occur. Obviously, R0>1 as shown in Fig 5. On the other hand, if

these two parameters are smaller enough, then R0<1 (in Fig 4) which causes a disease-free
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Fig 3. The simulation results of the LUSIHR model. Each plot represents each subpopulation on the y axis and time in days on the x axis.

https://doi.org/10.1371/journal.pone.0273558.g003

Fig 4. The DFE simulation results of the LSIHR model. Each plot represents each subpopulation on the y axis and time in days on the x axis.

https://doi.org/10.1371/journal.pone.0273558.g004

PLOS ONE LUSIHR - Modeling the spread of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0273558 August 25, 2022 10 / 20

https://doi.org/10.1371/journal.pone.0273558.g003
https://doi.org/10.1371/journal.pone.0273558.g004
https://doi.org/10.1371/journal.pone.0273558


equilibrium (DFE) eventually and the spread of the COVID-19 can be controlled. On the

other hand, in LUSIHR model, the analysis shows that only endemic equilibrium (EE) occurs

over time. However, there are many factors to curb the spread of COVID-19. Each parameter

in the model can help to see the control of the spread of the disease if, in practice, a policy mea-

sure would be released to yield the parameter values fitting to the disease-free equilibrium.

4.5 Subdivided time intervals for calculating parameters relative to specific

conditions

Based on the recorded data, the number of hospitalized people was of interest. The plot of the

growth of these numbers is shown in Fig 6. Of particular interest were the effect of different

conditions, changing behaviors of the people, and the rate of COVID-19 infections in Thailand

since the government had issued various containment measures to control the spread. There-

fore, the growth period could be divided into four subintervals:

i. Day 1–38: the curve continued to increase due to more hospitalized people entering the

country illegally across the natural border.

ii. Day 39–53: the number of hospitalized people decreased due to the entire country being

under a locked-down state.

iii. Day 54–64: the number of hospitalized people increased rapidly due to a domestic super

spreader event in a night club caused by non-compliance with the strict lockdown

measure.

iv. Day 65–85: the final interval shows that the number of hospitalized people decreased after

Samut Sakhon announced the closure of the shrimp market to prevent the spread of

COVID-19.

Fig 5. The EE simulation results of the LSIHR model. Each plot represents each subpopulation on the y axis and time in days on the x axis.

https://doi.org/10.1371/journal.pone.0273558.g005
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Table 2 shows the government policy and containment measures issued during these four sub-

intervals. The epidemic had started when some undocumented immigrants entering Thailand

approximately at the beginning of December 2020. Consequently, some infected immigrants who

worked at a seafood market were the spreaders causing the epidemic heavily in Samut Sakhon

province. The government then raised the level of strict preventive measures by dividing area of

the country for different levels of control during Interval I. Then, Interval II, the number of hospi-

tal people were reduced because of the locked-down state and people were requested to avoid or

refrain from travelling across the provinces. Only the person who passes the screening could be

travelled. Then, during the joint between Interval II and III, the whole country began to relax but

still under the strict control. People were asked to apply the “D-M-H-T-T” measures. However,

some people against the rules and were super spreaders causing the second wave of the epidemic.

Therefore, the early time in Interval IV, the government then started specific strategies with par-

ticipatory approaches (called “Bubble and Seal principle”) to control the center of the infection.

Thus, the number of hospitalized people were decreasing in this interval.

Notice that the recovery rate of hospitalized people per day (γ2) could be calculated from

the ratio of the newly recovered people to the current hospitalized people. In the same manner,

the death rate of hospitalized people per day (ε2) could be calculated from the ratio of new

deaths to currently infected people. The trends of these two rates in each time step (in days)

are shown in Fig 7. To examine the rate for each interval, the average value for a specific time

interval was calculated and applied in the model. Fig 8 shows the box plot of the values for

these two rates for each time interval.

As shown in Fig 8, the median recovery rate and death rate in the first interval were 0.03

and 0, 0.064 and 0 in the second interval, 0.043 and 0.00009 in the third interval, and 0.113

and 0 in the last interval.

Fig 6. Number of hospitalized people per day. The star dots represent the number of hospitalized cases reported daily.

https://doi.org/10.1371/journal.pone.0273558.g006
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Table 2. Containment measures issued by the government during the four subintervals.

Interval Containment measures

Interval I: 1st (Dec. 01, 2020)–

38th day

• The Center for COVID-19 Situation Administration (CCSA) had raised the level

of strict preventive measures against COVID-19 by dividing area of the country

into 4 types: 1) Maximum Control Area, 2) Control Area, 3) High Level

Surveillance Area, and 4) Surveillance Area.

Interval II: 39th– 53rd day • The CCSA requested the collaboration from all people to avoid or refrain from

travelling across the provinces except the person who passes the screening.

Interval III: 54th– 64th day • The establishments and public service centers in Bangkok and other provinces

had begun to relax. Still, the measures of the Ministry of Public Health are strictly

controlled.

• People should apply Department of Health’s measures which is “D-M-H-T-T” as

follows; M: wearing a cloth Mask or face Mask all the time, H: wash your Hands

frequently with water and soap or alcohol gel, T: Testing for COVID-19 and

measuring body Temperature, and the last T: scanning Thai Cha Na application

before entering in–out of public places every time and clean body immediately

when returning home.

Interval IV: 65th– 85th day

(Feb. 23, 2021)

• The Ministry of Public Health had designed a specific strategy; especially, for an

infected province, Samut-Sakhon, by using COVID-19 management in the factory

with participatory approaches (called “Bubble and Seal principle”) to control the

infection not to spread outside.

� Data from the website of Department of Disease Control, Ministry of Public Health, Thailand (https://ddc.moph.

go.th/viralpneumonia/eng/situation_more.php).

https://doi.org/10.1371/journal.pone.0273558.t002

Fig 7. The daily recovery rate and the daily induced death rate for hospitalized people. (A) The daily recovery rate of hospitalized people. (B) The daily

induced death rate of hospitalized people.

https://doi.org/10.1371/journal.pone.0273558.g007
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The values for the infection rate (β), the recovery rate of infected people (γ1) and the death

rate of infected people (ε1) were then obtained by performing a grid search to minimize the

RMSE between the actual data and the model with the median value of the recovery rate of

hospitalized people (γ2) and the induced death rate of hospitalized people (ε2) for each interval

(see Section 3.2 Numerical solution for more detail). The results are shown in Table 3.

For the behavior of the infection, we expected the values of parameter to be the same in its

partition and different for other partitions. Because we divided the time into four intervals

depending on the behavior of the infection, we sought to obtain the optimal representative val-

ues for the parameters of each interval in the model, as shown in Figs 7 and 8. Under real con-

ditions, it was easy to use the most detailed parameters possible to explain the behavior of the

spread. Therefore, the time was divided into four intervals.

In Table 3, for Interval 3, the rate of the COVID-19 transmission (β) was increased since

there were higher interactions to the infected people due to the night club event. When β is

large enough, eventually the model turns to an endemic equilibrium. With all four intervals of

time, the model reflects the cause of the spread based on illegal immigrations. The second

Fig 8. The box plot of the recovery rate and induced death rate for hospitalized people in each interval. (A) The box plot of the recovery rate of hospitalized

people for each interval. (B) The box plot of the induced death rate of hospitalized people for each interval.

https://doi.org/10.1371/journal.pone.0273558.g008

Table 3. The values of the parameters fitted to the model.

Time

Parameter

Interval 1 Interval 2 Interval 3 Interval 4

Infection rate (β), 2.21×10−6 9×10−9 2.59×10−6 3.73×10−8

Recovery rate of infected people (γ1) 4.16×10−5 9.34×10−3 2.18×10−4 3.8×10−2

Death rate of infected people (ε1) 2.33×10−5 4.59×10−3 1.05×10−4 1.91×10−2

https://doi.org/10.1371/journal.pone.0273558.t003
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wave in Interval 3 occurred because of not only the illegal immigrations but also the domestic

event that some people were non-compliance with the rules. These two coincident events

(domestic event and illegal immigration) cause the spread of the COVID-19 in Interval 3. In

fact, the cause of the nation people was infected with COVID-19 at that time originally from

the undocumented immigrants entering from natural borders. However, it would be a valuable

study if these two causes were then separately modelled. The cause of a night club might be

modelled by the LSIHR model with more reference data supported.

4.6 The LUSIHR model compared to the actual data

The growth of the number of infected people explained by the LUSIHR model was calculated

based on the obtained parameters discussed above. The results are shown in Fig 9. The figure

shows the comparison of the simulated results to the actual number of hospitalized people.

Fig 9 shows that, in the first interval, the number of infected people increased following an

exponential curve with a low power. In the third interval, the number of infected people

increased exponentially with a higher power. The second interval showed a decay curve, while

the actual data showed some fluctuations due to the control policy and incomplete data.

Finally, the last interval exhibits the exponential decay rapidly with the lockdown policy. The

simulated results of the model illustrated that the proposed model and the obtained parameters

explained the spread of the COVID-19 infections in Thailand exceptionally well. Later, the

model could be used to simulate future conditions and analyze different scenarios to control

the virus spread resulting from undocumented immigration across the natural border.

4.7 Different control rates for undocumented immigration

The spread of COVID-19 was analyzed with different control rates of undocumented immi-

gration across the natural border to determine the effects of the epidemic. The control rate was

Fig 9. The comparison of the simulated results and the actual number of hospitalized people. The star dots represent the report daily hospitalized; blue line

corresponds to the best fit of the LUSIHR model to the data.

https://doi.org/10.1371/journal.pone.0273558.g009
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specified by the parameter ω. The higher the value of ω, the greater the rate of arrests of undoc-

umented immigrants crossing the natural border. For current measures, we set ω = 0.4, which

corresponded to the actual data for the control rate of the illegal immigration in Thailand (see

Fig 10). If the control rate of undocumented immigration across the natural border was less

than 0.4, the virus spread increased. Fig 10 shows the results of different values for ω ranging

from 0 to 1. The analysis of the control rates with the number of hospitalized people from the

simulation results provides us a guide for decreasing the number of patients with different

control rates (S1 Appendix: Appendix A5 and Table A5).

According to the resulting curves in Fig 10, fully controlled undocumented immigration (ω
= 1) reduced the number of infected people, yielding a basic reproduction number of R0 =

0.2349 at the last interval. If we can maintain this policy over time, infected people would dis-

appear from the system because the DFE and the epidemic could not spread. However, some

levels of control could maintain conditions in a safe zone. The study indicated that when the

control rate of the undocumented immigrants reached below or equal to 50% (ω� 0.5), the

number of cases in a new peak is expected to rise by at least 60% or 0.6-fold increase in the

number of the patient (see the control rate analysis in S1 Appendix: Appendix A5 and

Table A5). Although the control rate of 100% (ω = 1) would be the only method to reduce the

number of patients in the second wave, the control rate of 90% (ω = 0.9) could also greatly alle-

viate the impact of the undocumented immigration. The maximum number of people hospi-

talized in a day would then decrease from about 4,406 to 1,108 cases in the first wave (Day 38)

and from 7,208 to 1,431 cases in the second wave (Day 63). The analysis of the control rate (in

Appendix A5 in S1 Appendix) also suggests that the undocumented immigrants were con-

trolled by 80% (ω = 0.8), the impact of COVID-19 would be reduced and the number of new

cases in the second wave would rise lower than 50% compared to that of the first wave.

Fig 10. The comparison of actual data and simulation results with the different values for the control rate of undocumented immigration across the

natural border (ω). The star dots represent the report daily hospitalized; The colored lines correspond to the different values of the control rate of

undocumented immigration across the natural border (ω).

https://doi.org/10.1371/journal.pone.0273558.g010
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5. Conclusion

In this study, we proposed a model for the COVID-19 epidemic in Thailand and the effects of

legal and illegal immigration. This model consisted of six subpopulations: legal immigration,

undocumented immigration across natural border, susceptible people, infected people, hospi-

talized people, and recovered people. The control rates of unlawful immigration across the nat-

ural border were evaluated under two scenarios: 0�ω<1 for the LUSIHR model, and ω = 1 for

the LSIHR model. The model parameters were adjusted to identify the best values consistent

with the actual data by minimizing the RMSE. We analyzed the positivity of the model, the

equilibrium points, and the basic reproduction number (R0). The analysis of equilibrium

points was performed for both models. One EE point was obtained in the LUSIHR model in

which the infection still appears. Two equilibrium points were obtained in the LSIHR model,

the DFE and the EE. The simulations showed that the trajectory of the solutions was in the

direction of the analyzed equilibrium points. For the actual data analysis, the obtained values

for the parameters were used in the LUSIHR model, and the resulting simulation fit the real

data. Finally, the effect of the different rates for controlling illegal or undocumented immigra-

tion at the natural border was compared to the actual data. This study provides a guide to the

control strategies for the immigration in term of the effective control rate which can be varied.

If we could not completely control the undocumented immigrants, nearly full controls more

than 80%-90% could help to reduce the number of overall tendencies of the disease spread.

6. Discussion

The effective control rate of the undocumented immigrants was still arbitrary. However, the

model could suggest that if we could control more than 80%-90%, we could reduce the number of

hospitalized people and the spread could be under control. As shown in the result, an effective

control rate of 90% can reduce the maximum number of hospitalized cases down for both first

and second waves of the virus spread. Notably, the actual data was then used as a reference data to

compare the fitting and simulation results via the proposed models. Therefore, the 90% control of

the illegal immigrants here is a relative claim that can be optimized when the reference data is

changed. However, the simulation results reveal that if there is a better control of the illegal immi-

grants to maintain the number of hospitalized people lower the reference data, it will decelerate

the number of cases and only the domestic events will cause the spread of the disease.

The LUSIHR model provides us both theoretical analysis and real-data analysis to investi-

gate the spread of the COVID-19 within Thailand. This proposed model is well-suited to

explain the spread of COVID-19 in Thailand related to immigration across the natural border

under uncontrolled, partially controlled, or fully controlled conditions (based on the control

rate ω). In addition, the model can be applied to other communities to better understanding

the spread of the virus with the time evolution considering the immigration from other coun-

tries. This model might be applied to mitigate the COVID-19 spread associated with uncon-

trolled international immigration as it is now rising globally [25]. Indeed, our study pointed

out the significant impacts of the undocumented worker who could be COVID-19 carriers

and this could bring a new wave of COVID-19 to a country in which the immigration control

measures are compromised. Basically, the study suggests that when the control of undocu-

mented immigrants reached less than 80%, the rise of COVID-19 cases related to the immi-

grant works would be expected. It would be necessary for the government to establish a policy

in order to quickly register and enroll undocumented workers for COVID-19 screening. Obvi-

ously, the model successfully simulated peaks and the sizes of the infected population based on

the given reliable data. Our results show that the LUSIHR and the LSIHR models are suitable

to explain the epidemic trend due to the spread of the disease.
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The LUSIHR model is suitable for simulating the population growth with the case of the

illegal immigration in Thailand but the control rate of undocumented is hard to obtain. We

obtained only the report that how many people were arrested for crossing the natural border

not for the number of people who can enter the country. The hardest step for both models is to

obtain the values related to the infected individuals which there is no any report. In this study,

the analyzed data are taken in between December 2020 and February 2021 that are the datasets

from the early detection of the first case infected immigrant into Thailand to the time of the

implementation of strict control via the lockdown policy. After that, the strict lockdown poli-

cies were relieved and caused a new wave of the COVID-19 spread. Different strains of the

COVID-19 are found in different area, and it causes a new wave of infection. Therefore, our

model can be applied to the lockdown situation as well; especially, in the case of a widespread

of the COVID-19 from the immigrants via uncontrolled natural borders. Since the different

COVID-19 strains cause different infection rates [26], a family of the model can be created to

foretell the situation. Thus, the modification of the models can be applied to fit with such a

change of the situation. The LUSIHR model used here can be a base starting model to over-

come the control strategies of the immigration into the country. Finally, the model can be a

good hint to test various strategies to control the spread of COVID-19 not only in Thailand

but also all around the world.
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