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Abstract: We described the novel nanocomposite of silver doped ZrO2 combined graphene-based
mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized
ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy
(SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-
resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-
desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy
(DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate
electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes,
such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose
detecting may well be finished with effective electrocatalytic performance toward organically im-
portant concentrations with the current reaction of 9.0 × 10−3 mAcm−2 and 0.05 mmol/L at the
lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within
the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the
interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH
conditions. Our results highlight the potential usages for qualitative and quantitative electrochem-
ical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the
urine concentration.

Keywords: glucose sensor; electrocatalytic performance; functional stability; interfering agents; urine

1. Introduction

Biosensors are developed for giving symptomatic data for the patient’s prosperity
status. Electrochemistry, fluorescence, colorimetry, photoelectrochemistry, and chemical lu-
minescence, have been received for glucose sensing [1,2]. Among them, the electrochemical
detecting method has gotten high attention due to its high affectability, promising reaction
time [3–5]. Glucose oxidation on the sensor is dependable for the chemisorption of the
hydroxyl group onto the metal oxide and shaping the bond among the d-electron of metal
and glucose atoms. The oxidation state of glucose particles is affected by the metal surface
as well as metal-glucose interaction, glucose-metal bond quality, and desorption of glucose
particles. By considering an imitating method of the enzyme-like component, a few metals
and metal oxides like Au, Pt, Cu, Ni, Mn, Co, and Fe [6–21] have been studied. Limitation
of detection (LOD) for the analyte, the typical nanomaterials considered [22]. Graphene
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has gotten around the world consideration for the improvement of biosensors because
graphene-based biosensors have high electron transfer rates, high charge-carrier mobility,
and are extremely significant for biomarkers owing to their extraordinary electrochemi-
cal (amperometric, voltammetry, impedimetric) response [23,24]. In addition, graphene
shows a thickness of the edge-plane-like structure, giving numerous dynamic destina-
tions for electron transfer to chemical and biological species [23]. Graphene containing
zirconium oxide (ZrO2) offers a way to upgrade their application by allowing flexible and
ideal electrochemical properties, extraordinary potential applications within the broad
fields of sensing [25–30]. The affectability and conductivity of graphene may be advance
upgraded by enhancing Ag NPs owing to their high electron transfer for modifiers in biosen-
sors [31,32]. Biocompatibility, nontoxicity, high conductivity, chemical and steadiness of
SiO2 make to idealize for utilization for adsorption, biosensors [33,34]. With these points,
we developed the ZrO2-Ag-G-SiO2 which was effectively synthesized by the self-assembly
method. ZrO2, G, and SiO2 have octahedral coordination, Ag occupies on the ZrO2-G-SiO2
displays giving dynamic response for possible charge transfer to electrolyte [35–37].

In this consideration, ZrO2-Ag-G-SiO2 nanocomposite was developed main active
material for glucose sensing. ZrO2-Ag-G-SiO2 was effectively synthesized by utilizing
a basic, low-cost, self-assembly method, and was inspected for nonenzymatic glucose
oxidation for the quick response. It shows especially high effectiveness for glucose ox-
idation counting a greatly low working potential of as it were 0.2 V vs Ag/AgCl. In
general, ZrO2-Ag-G-SiO2 affirmed a significant response without any electron facilitator,
provoking a novel way for glucose sensing within the urine. The electrochemical sensing
behavior of the ZrO2-Ag-G-SiO2 sensor towards glucose sensing was examined utilizing
amperometric techniques.

2. Experimental
2.1. Materials

All chemicals used analytical grade without further modification. Graphite powder
(99%), zirconium (IV) isopropoxide (70 wt% in 1-Propanol), Pluronic F127 were purchased
from Sigma Aldrich (Seoul, Korea). Ethylene Glycol, AgNO3, HCl, Phosphate Buffer, NaOH,
KOH, Ethylene Glycol were purchased from Dae-Jung Chemical Korea (Busan, Korea).
Deionized water (18.2 MΩcm−1) was a self-made product.

2.2. Synthesis of ZrO2

6.5 g of Pluronic F127 was mixed up in 50 mL of ethanol and zirconium (IV) isopropox-
ide solution was included in 50 mL of ethanol and ethylene glycol separately with vigorous
mixing and added together at 314 K with 50 mL of H2O. Hydrochloric acid was included
to alter the pH 2.4 and kept at 314 K for 1 h and 354 K in a closed container for 24 h after
that dried at 374 K and calcined at 674 K for 5 h.

2.3. Synthesis of Silver Doped ZrO2 (ZrO2-Ag)

3.5 g of AgNO3 was in 50 mL of deionized water. Then ZrO2 was poured dropwise to
solution blended till the gel came out. The gel was dried at 374 K for 3·1⁄2 h, calcined at
674 K, and after that ground to get the ZrO2-Ag nanoparticles.

2.4. Synthesis of ZrO2-Ag-G

0.33 g of graphite oxide (GO) was scattered into 300 mL of water and ultra-sonicated
for 40 min. Sonicated graphene oxide exchanged poured into ZrO2-Ag solution and 50 mL
of 1 M sodium hydroxide included into the sonicated mixture dropwise for expected pH
and blended for 3 h at 374 K. The color turned into coffee color, demonstrates the effective
combination of G with Ag combined ZrO2 arrangement E.
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2.5. Synthesis of ZrO2-Ag-G-SiO2

For the synthesis of final nanocomposites, 1.1 g of triblock copolymer Pluronic F-127
was included to 100 mL of deionized water and 61 mL of 2 M HCl at 313 K. 4 mL of
tetraethyl orthosilicate (TEOS) was included and blended at 314 K for 12·1⁄2 h and heated
to 374 K for 20 h after that washed with water and ethanol and dried at 338 K overnight
and the copolymer was calcination at 824 K for 3·1⁄2 h. The solution ZrO2-Ag-G was
drop-by-drop included on 0.3 g of the silica powder and this mixture was blended with
374 K for 24 h and ultrasonicated for 11⁄2 h and get the powder, washed with 1.5 mL of
methanol, and dried at 338 K overnight. Calcined at 974 K at 283 K/min and held at 974 K
for 5 h. Dark color items were found.

2.6. Preparation of ZrO2-Ag-G-SiO2 Electrode

The zrO2-Ag-G-SiO2 coated film was prepared using a routine doctor-blade method [38].
For the altered doctor-blade method, we controlled the thickness of ZrO2-Ag, ZrO2-Ag-GO,
ZrO2-Ag-GO-SiO2. To begin with, synthesized fabric powder (1.1 g) was mixed with
Ethylcellulose and acetone (1.5 mL) in a mortar for 15 min. After that, the prepared glues
were coated on FTO glass to create a film, after being dried within the open state for 35 min.
One drop greasing up oil was put onto the film surface and stabilized beneath 374 K in the
dry oven for 25 min to decrease breaks.

2.7. Characterization of the Materials

The phase structure and purity of as-synthesized products were examined by X-ray
diffraction (XRD, Rigaku, Chiba, Japan) with Cu-Kα radiation (λ = 1.5406 Å) at 40 kV,
30 mA over 2θ range of 20–70. Morphologies were studied utilizing scanning electron
microscopy (SEM) and EDS analysis by utilizing an SEM (JSM-76710F, JEOL, Tokyo, Japan),
a transmission electron microscopy (TEM) (JEM-4010, JEOL, Tokyo, Japan), and a high-
resolution TEM (HRTEM) (JSM-76710F, JEOL, Tokyo, Japan) operated at 300 kV accelerating
voltage. X-ray photoelectron spectroscopy (XPS), Diffuse Reflectance Spectroscopy (DRS,
SolidSpec-3700, Tokyo, Japan), and Raman spectroscopy (RAMAN, LabRAM HR-800,
Chiba, Japan) analyses were performed by utilizing WI Tec. alpha 300 series. Porous
characterization of ZrO2-Ag-G and ZrO2-Ag-G-SiO2 structures was performed by a full
analysis of N2 adsorption/desorption tests (BELSORP-max, BEL Japan Inc., Tokyo, Japan).
(PG201, Potentiostat, Galvanostat, Volta lab TM, Radiometer, Aalborg, Denmark).

2.8. Electrochemical Measurements

Cyclic voltammetry (CV) and estimations were performed a three-electrode electro-
chemical set up to check the current and voltage profiles, where ZrO2-Ag, ZrO2-Ag-G,
ZrO2-Ag-G-SiO2 was utilized as working electrode whereas platinum and Ag/AgCl elec-
trode as counter and reference anodes, individually. Electrochemical properties in commer-
cial urine were utilized with the measured pH 6.0, 6.7, and 6.5, individually. As electrolytes,
0.1 M NaOH, 0.1 M KOH, and Buffer were utilized. The following equation is used to
determine the LOD [39–41]

LOD = 3 SD/N (1)

where SD is the standard deviation of the analyte concentration calculated from the current
reaction of progressive including of glucose into the electrolyte; N is the slope of the
calibration curve which demonstrates the affectability of the anode with a signal-to-noise
ratio 3. Moreover, CV tests were performed from −0.3 to +0.2 V versus Ag/AgCl at a filter
rate of 10 mV s−1. All estimations were carried out by voltammetry (PG201, Potentiostat,
Galvanostat, Volta lab TM, Radiometer, Aalborg, Denmark).
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3. Results
3.1. Characterization of the ZrO2-Ag-G-SiO2 Sample

The mesoporous semiconductors were anchored on graphene nanosheets since this
mesoporous conductive arrangement facilitates electron transport among nanostructure
and electrolytes, hence making this a desirable stage for the design of biosensors. Figure 1
illustrates the crystalline characteristic properties of ZrO2-Ag, ZrO2-Ag-G, and ZrO2-Ag-G-
SiO2 samples affirmed by the X-ray diffraction (XRD) technique.
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Figure 1. XRD patterns of ZrO2-Ag, ZrO2-Ag-G and ZrO2-Ag-G-SiO2.

The XRD patterns of the nanoparticles give the major 2y peak values at 25.6, 30.2, 32.9,
38.5, 44.6, 46.2, 50.2, 54.5, 55.2, 63.8, 76.4, and 84.5 in accordance with monoclinic zirconia.
All diffraction peak values matched with the international standard file (JCPDS 37-1484).
After modification, Ag nanoparticles could be indexed based on pure silver oxide having
the symmetry of face center cubic. The peaks designated to the planes with the hkl values
of 38.5 (111), 63.8 (131), 74.39 (220), and 80.58 (311), respectively, are the same with the
XRD pattern of the (JCPDS 65-2871). After modification with SiO2 the ZrO2-Ag-G-SiO2 all
diffraction peaks along the (JCPDS 39-1425), affirming the crystalline nature of the samples.

The particle composition was also studied by TEM and SEM and the images are shown
in Figure 2a–d.

Figure 2a showed the morphology of profoundly amplified TEM image of ZrO2 which
distributed as clustered in a flower shape. Morphology of ZrO2 was also confirmed by
SEM image (Inset). Figure 2b showed the TEM image of ZrO2-Ag where Ag nanoparticles
interconnected with ZrO2. Figure 2c revealed the good distribution of ZrO2-Ag on the
Graphene surface. Figure 2d showed that the ZrO2-Ag G combined with mesoporous
SiO2. These figures showed that ZrO2-Ag-G-SiO2 were uniformly distributed. Every
single TEM image is carried with a corresponding SEM image (Inset). Such flake-like
nanostructured geometry leads to a rough surface of the electrode which can expectedly
lead to an upgrade of the electrode performance on account of its high surface area, high
surface-to-volume ratio, and exposure of more active sites on ZrO2-Ag-G-SiO2. Figure 2e,f
showed the HRTEM image, the lattice space of 0.28 nm was given out to the interplanar of
the (111) plane of the ZrO2-Ag-G-SiO2 sample and another lattice space of 0.26 nm was
arranged to the interplanar of the (022) plane of the ZrO2-Ag-G-SiO2 sample.
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Figure 2. (a) ZrO2 TEM Images and SEM Image (Inset), (b) ZrO2-Ag TEM Images and SEM Image
(Inset), (c) ZrO2-Ag-G TEM Images and SEM Image (Inset), (d) ZrO2-Ag G-SiO2 TEM Images and
SEM Image (Inset), and (e,f) HRTEM Images of ZrO2 Ag-G-SiO2.

The elemental state of the ZrO2-Ag-G-SiO2 nanoparticles was furthermore analyzed
through EDS mapping.

As shown in Figure 3, the composition of ZrO2-Ag-G-SiO2 was presented to confirm
the coexistence of Zr, C, Ag, and Si with the evaluated composition within the gravimetric
rate of 29% Zr, 35% C, 12% Ag, and 5% Si.

Raman spectroscopy was also performed to characterize the G band showing in
the composite.

As shown in Figure 4a, the G band of the as-synthesized sample appeared two peaks
located at 1331 and 1573 cm−1 corresponding to the (D band) and the C-C bond stretching
frequency (G band), individually. For the most part, the intensity ratio of the D- and G
bands (ID/IG) is utilized to evaluate the degree of disorder and the average size of sp2

spaces. In this fact, the value of ID/IG was calculated to be 0.94.
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The resultant absorbance of UV-DRS is depicted in Figure 4b. The optical bandgap of
the ZrO2-Ag, ZrO2-Ag-G, ZrO2-Ag-G-SiO2, can be determined by the (Equation (2)): [42]

(αhv)
1/2 = A(hv− Eg) (2)

where ‘α’ was the molar assimilation coefficient calculated as α = (1 − R)2/2R, hv is the
incident light frequency, ‘A’ is the proportionality constant, and ‘Eg’ is the bandgap energy
of the material. Table 1 outlines the information form (αhv)1⁄2 as a function of photon
energy. Band gaps showed 3.11 eV for Ag-doped ZrO2-Ag and decrease after combining
with graphene turned to 2.61 for the ZrO2-Ag-G eV. Surprisingly, the band gaps change
remarkably decreased to 2.00 eV within the ZrO2-Ag-G-SiO2 after combining through
mesoporous SiO2. Valence band (VB) and conduction band (CB) potentials of all the
samples were calculated based on the following equations [43]

ECB = X− Ee− 1
2

Eg (3)

EVB = ECB + Eg (4)
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Figure 4. (a) Raman spectra of ZS, ZrO2-Ag, ZrO2-Ag-G, and ZrO2-Ag-G-SiO2 sample, (b) Nitrogen
adsorption-desorption isotherms of ZrO2-Ag-G, ZrO2-Ag-G-SiO2; and the corresponding pore size
distributions (inset), (c) DRS data of ZrO2-Ag, ZrO2-Ag-G, ZrO2-Ag-G-SiO2 and (d) Magnetic field
area of ZrO2-Ag-G-SiO2.

Here, EVB and ECB are valence and conduction band edge potentials, individually.
c is the electronegativity of the semiconductor, Ee is the energy of free electrons on the
hydrogen scale and Eg is the bandgap energy of the semiconductor.
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Table 1. Surface properties obtained from nitrogen adsorption-desorption isotherms of ZAGS.

№. BET Plot Bandgap Energy (eV)

ZrO2-Ag-G-SiO2 ZrO2-Ag-G

1 Total pore volume (cm3/g) 2.1069 [cm3(STP) g−1] 1.9895 [cm3(STP) g−1] ZrO2-Ag-G 2.61

2 Surface area (m2/g) 9.1703 [m2 g−1] 8.6593 [m2 g−1] ZrO2-Ag-G-SiO2 2.00

3 Total pore volume (p/p0 = 0.990) 0.020549 [cm3 g−1] 0.012273 [cm3 g−1]

4 Mean pore diameter 8.9632 nm 5.6691 nm

BJH Plot

ZrO2-Ag-G-SiO2 ZrO2-Ag-G

1 Mesopore surface area (m2/g) 8.064 [m2 g−1] 5.8875 [m2 g−1]

2 Mesopore volume (cm3/g) 0.01969 [cm3 g−1] 0.011075 [cm3 g−1]

3 Average mesopore diameter 3.77 nm 3.77 nm

Figure 4c presents the N2 adsorption-desorption isotherms of ZrO2-Ag-G and ZrO2-
Ag-G-SiO2 samples. ZrO2-Ag-G and ZrO2-Ag-G-SiO2 samples display typical type IV
isotherm, illustrating those materials had mesopores. Isotherms of samples display an H2
type hysteresis loop at a relative pressure (P/P0) between 0.6 and 0.9, showing that these
materials possess large and uniformly distributed mesopores. In addition, the hysteresis
loops gradually shift to higher relative pressure (P/P0) from ZrO2-Ag-G to ZrO2-Ag-G-SiO2,
proposing that these mesopores were extending with the counting mesoporous SiO2. A
mesopore diameter as large as 5.67 nm finds out the ZrO2-Ag-G sample. When combining
through mesoporous SiO2 it proceeds to extend up to 8.96 nm as well as BET surface
area also expanded from 8.66 to 9.17 m2 g−1, individually (Table 1). The electrochemical
properties of nanocomposites were correlated with the BJH and BET analysis results. From
BET analysis, the total pore volume and mean pore diameter of sensor active material are
reduced due to the oxidizing agent treatment. According to the summary results of BET
and BJH, the surface area and total pore mass of the graphene increased with SiO2. The
mesopore state and high surface area are the main parameters that are valuable for framing
ion-transport tunnels in electrochemical reactions.

In magnetic field determination, one-level effective mass approximation (EMA) is
utilized for a basic non-degenerate energy band. Bloch electrons in an energy band are
treated as free electrons with the free electron mass m0 replaced by the effective mass
m*. The Schrodinger equation for the function of the conduction electron in electric and
magnetic fields can be shown with the following equation [43].

B =
µ0I
2πr

(5)

Figure 4d confirms the magnetic field curve of the ZrO2-Ag-G-SiO2 samples measured
at ambient temperature. The saturation magnetization (MS), which is determined by the
plot of M versus 1/H using data at low magnetic fields, is observed to be 0.0036.5 emu g−1

to 0.0046.5 emu g−1.
For characterizing detailed surface chemical compositions of ZrO2-Ag-G-SiO2, XPS

analysis was performed.
The results are revealed in Figure 5. The complete spectrum of ZrO2-Ag-G-SiO2 shows

the presence of Si, Zr, C, Ag, and O atoms attributed to the effective modification. The corre-
sponding high-resolution spectra with respect to C1s signal 284.5 eV as a reference binding
energy in Figure S1b attributed to C-C, bonds of graphene. As existing in Figure S1c, Si2P
peaks were found at 102.8 eV. These peaks located at 184.08 eV correspond to Zr3d in Figure
S1d. Besides, the interaction of the carbonyl group and hydroxyl group were also confirmed
in O1s existing in Figure S1e with the binding energy at 531.6 eV corresponding to C-O
bonds. Finally, the peaks at 367.0 eV and 373.1 eV revealed in Figure S1f correspond to Ag
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3d. The overall results of the XPS study confirmed that all surface chemical compositions
of ZrO2-Ag-G-SiO2 were found in the as-prepared nanocomposite.
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3.2. Electrocatalytic Activity of the ZrO2-Ag-G-SiO2 Electrode towards Glucose Sensing

The electrochemical tests for working electrodes, ZrO2-Ag, ZrO2-Ag-G, ZrO2-Ag-G-
SiO2 were performed in a three-electrode cell system with Pt wire as counter electrode and
Ag/AgCl as a reference electrode within the potential range of −0.3 to +0.3 V. Figure 6a
presents the CV profile of electrochemical responses in 10.5 mL of commercial urine and
different electrolytes without glucose.

There was a poor oxidation peak observed in Figure 6a in the absence of glucose.
In contrast, ZrO2-Ag, ZrO2-Ag-G, ZrO2-Ag-G-SiO2 electrodes showed a well-defined
oxidation peak at the potential of +0.2 V. By adding 0.05 mmol/L of glucose, a poor
response was noticed with the ZrO2-Ag rather than ZrO2-Ag-G and ZrO2-Ag-G-SiO2
electrode in the presence of glucose, due to the high bandgap energy of ZrO2. After
combining with Ag nanoparticle and graphene, the bandgap energy-reduced and ZrO2-a
supporting material for ZrO2, rapidly transporting electrons during the electrochemical
reaction due to their good conductive property. ZrO2-Ag-G-SiO2 electrode exhibited a
substantial increase in anodic current density 4.0 × 10−3 mAcm−2 as showed in Figure 6b.
For varying electrolytes such as 0.1 M phosphate buffer, NaOH, KOH, significant and fast
current responses 9.0 × 10−3 mAcm−2 were observed for the ZrO2-Ag-G-SiO2 electrode
with the addition of 0.55 mmol/L glucose as presented in Figure 6c. The obtained result
clearly recommends the oxidation peak corresponds to the electro-oxidation of glucose at
the ZrO2-Ag-G-SiO2 electrode [44]. Thus, a mechanism of non-enzymatic glucose sensing
on the ZrO2-Ag-G-SiO2 electrode is clarified in Scheme 1.
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Figure 6. (a) Cyclic voltammogram of ZrO2-Ag, ZrO2-Ag-G, and ZrO2-Ag-G-SiO2 electrode in urine
in the absence of glucose at a scan rate of 10 mV s−1 (pH 7.0); (b) Cyclic voltammogram of ZrO2-
Ag, ZrO2-Ag-G, and ZrO2-Ag-G-SiO2 sample with 0.05 mmol/L glucose in urine at a scan rate of
10 mV s−1 (pH 7.0); (c) Cyclic voltammogram of ZrO2-Ag-G-SiO2 sample with different electrolyte:
0.1 M PO4

3-Buffer (pH 7.4); 0.1 M NaOH (pH 13) and KOH (pH 13.5) at a scan rate of 10 mV s−1 with
the addition of 0.55 mmol/L glucose. (d) (i-t) curve of ZrO2-Ag-G-SiO2 sample with different conc.
of glucose in 0.1 M PBS (pH 7.4). All experiments were run at room temperature (20 ◦C).
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Scheme 1. The glucose-sensing mechanism of the ZAGS sample.

To demonstrate the analytical parameters (for example sensitivity, linear range, detec-
tion limit, and response time), the amperometric response of the ZrO2-Ag-G-SiO2 electrode
was performed at a fixed voltage of +0.2 V (versus Ag/AgCl) in 0.1 M PBS by step-
wise adding of glucose at different concentration. A well-defined and fast response to
the ZrO2-Ag-G-SiO2 electrode was observed. Figure 6d confirms the current response
which was estimated to be as high as 5.0 × 10−3 mA cm−2 at lower glucose concentration
(0.05 mmol/L to 0.35 mmol/L). By adding glucose, the current response quickly reached a
steady-state and attains ~98% of response within 1 s. The response current was linearly
increased with increasing glucose concentration, ZrO2-Ag-G-SiO2 electrode exhibited high
sensitivity in the linear range (0.05 mmol/L to 0.35 mmol/L).

Figure S4 displays the ZrO2-Ag-G-SiO2 glucose sensor calibration curve and cyclic
voltammogram. With a linear range of 150–350 L and a correlation coefficient (R) of
0.996, the calibration curve indicated excellent linearity. Table S1 compares the detecting
characteristics of several electrochemical glucose sensors, differentiating LOD and linear
range. For glucose oxidation, the ZrO2-Ag-G-SiO2 sensor has a better linear response range
and detection limit. The nanostructure of ZrO2-Ag-G-SiO2 offered greater surface area
and exposed active sites, which facilitated electrolyte transport from solution to all active
sites [45–49].

Overall, the enhanced sensing performance of the non-enzymatic glucose sensor is
ascribed to the direct growth of mesoporous ZrO2-Ag-G-SiO2 thin film on FTO electrodes
which offers a high surface area for ZrO2 modification, resulting in fast electron transfer
during the electrochemical process of glucose oxidation occurring between electrolyte
and electrode. Importantly, we have used the self-assembly method to fabricate non-
enzymatic ZrO2-Ag-G-SiO2 glucose-sensing electrodes which account for controllable
nanostructures with great reproducibility and a cost-effective fabrication process for stable
glucose sensing devices.

3.3. Selection of Electrolytes towards ZrO2-Ag-G-SiO2 Electrode

Sensing of glucose by ZrO2-Ag-G-SiO2 sample with different electrolytes (PBS, NaOH;
KOH) and different concentrations was investigated under ambient conditions. Glucose
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oxidation with these electrolytes was measured in 0.1 M NaOH, phosphate buffer, and
KOH by subsequent addition of 0.55 mmol/L of glucose at regular intervals and observed
the current responses after every injection.

Figure 7a shows that when 0.55 mmol/L of glucose adding to different concentrations
of electrolytes resulted in almost the best current density towards the phosphate buffer
electrolytes. The current state of the ZrO2-Ag-G-SiO2 electrode greatly depends on glucose
concentration and electrolyte pH (i.e., the amount of OH−), since OH– are required to
neutralize the protons generated during the dehydrogenation stage of the reaction. Hence,
a better outcome is confirmed towards phosphate buffer for the ZrO2-Ag-G-SiO2 electrode.
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Figure 7. (a) Sensing of glucose by ZrO2-Ag-G-SiO2sample with different electrolytes: 0.1 M PO4
3−

Buffer (pH 7.4); 0.1 M NaOH (pH 13) and KOH (pH 13.5) with the addition of 0.55 mmol/L glucose.
(b) Selectivity test of glucose by the ZrO2-Ag-G-SiO2 sample with 0.91 mmol/L (Vitamin C, Starch,
Lactose, Fructose, NaCl, KCl, Urea, and Glucose) in 0.1 M PBS (pH 7.4). All experiments were run at
room temperature (20 ◦C).
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As described above, the sensitivity and linear range of glucose sensing can be found by plotting
peak current density against glucose concentrations as shown in Figure 7d. In 0.05 mmol/L glucose
concentration, the sensor response had a sensitivity of 4.0× 10−3 mA cm−2 and 0.35 mmol/L
glucose concentration, the sensor response had a sensitivity of 5.0× 10−3 mA cm−2. Here we can
see that the response range is proportional to the concentration range. So, after observing this ratio
we can easily reach this decision that we can measure a diabetic urine sample with this sensor for
qualitative and quantitative analysis.

3.4. Anti-Interference Ability of the ZrO2-Ag-G-SiO2 Sensor

The anti-interference ability of non-enzymatic-based glucose sensing devices is a
major challenge, which could affect the electrode’s sensing performance. To check the
selectivity of ZrO2-Ag-G-SiO2 electrode in the presence of interfering species (such as
Vitamin C, Starch, Lactose, Fructose, NaCl, KCl, and Urea), the amperometric response
of the sensing electrode was checked by adding 0.91 mmol/L glucose and each above
mentioned interfering species was in same concentration in the 0.1 M PBS solution at
+0.2 V (versus Ag/AgCl), shown in Figure 7b. The addition of 0.91 mmol/L glucose leads
to a rapid current response, although interfering species addition exhibited negligible
current responses. As shown in the histogram of each interfering species addition and
current response is shown here, which confirms the negligible current responses compared
to 0.91 mmol/L glucose. These results suggest the suitability of the ZrO2-Ag-G-SiO2
electrode for the selective sensing of glucose in real samples. This confirmed that the ZrO2-
Ag-G-SiO2 electrode was selective towards glucose without being affected by interferences.
This enhanced sensing performance is basically attributed to a great interaction among
the nanostructure and electrode with the high surface area for catalytic sites, facilitating a
suitable path for electron transport during electrochemical activity. The results obtained
with the proposed method were compared with other methods for the detection of glucose
(Table S1). Overall, the ZrO2-Ag-G-SiO2 electrodes can be envisioned as a promising
design for non-enzymatic glucose measurement in real clinical samples which may gain
considerable benefits for different biomolecules sensing.

4. Discussion

The electrocatalytic properties of ZrO2-Ag-G-SiO2 were examined toward applications
involving physiological pH, such as the detection of Glucose. Considering that glucose can
be oxidized to gluconolactone (Scheme 1) at a neutral pH via a two-electron electrochemical
reaction [50–52]. However, an excellent response was observed with the ZrO2-Ag-G-SiO2
sensor in the presence of glucose. This can be attributed to the excellent electrocatalytic
nature of ZrO2, which mediates the heterogeneous chemical oxidation or reduction of
the glucose, while the converted ZrO2 can be continuously and simultaneously recovered
by electrochemical oxidation or reduction due to their high surface to volume ratio [51].
Additionally, in our sensor, the Ag-G-SiO2 works as a supporting material for ZrO2, rapidly
transporting electrons during the electrochemical reaction due to their good conductive
property. Also, the less dense morphology of the Ag-G-SiO2 provides better permeability
of the sensing matrix to the solution. The possible electrochemical reactions involved in
glucose oxidation through the Zr4+/Zr3+ centers of ZrO2 are given below [51]:

Zr4+ + Glucose (C6H12O6)→ Zr3+ + Gluconolactone (C6H10O6) + H2O (6)

Gluconolactone (C6H10O6) + H2O→ 2H+ + Gluconate (C6H12O7) (7)

2Zr3+ → 2Zr4+ + 2e− (8)

Therefore, electrooxidation of glucose on ZrO2-Ag-G-SiO2 for the nonenzymatic de-
tection of glucose at physiological pH was investigated.
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5. Conclusions

We developed a simple approach for producing ZrO2-Ag-G-SiO2 using the facile
self-assembly method, producing a catalyst-coated and binder-free composite electrode.
The ZrO2-Ag-G-SiO2 exhibited a uniform and highly mesoporous network of the catalytic
film. Also, multiple active sites in ZrO2-Ag-G-SiO2 along with enhanced conductivity of
graphene oxide improved the electrocatalytic performance of this electrode toward glucose
oxidation. The ultra-high sensitivity (9.0 × 10−3 mA cm−2) at a low applied potential of
only 0.2 V versus Ag/AgCl, wide linear range (0.05 mmol/L–0.35 mmol/L), low sensing
limit (0.05 mmol/L), with impressive qualitative and quantitative analysis, selectivity and
stability make this ZrO2-Ag-G-SiO2 a promising electrode to serve as a non-enzymatic
glucose sensor. Based on the results, ZrO2-Ag-G-SiO2 provided an excellent sensitivity in
commercial urine specimens, so this biosensor is believed to have a high possibility for
practical use.
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