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Abstract: The surface modification of titanium (Ti) can enhance the osseointegration and antibac-
terial properties of implants. In this study, we modified porous Ti discs with calcium phosphate
(CaP) and different concentrations of Lactoferrin (LF) by biomimetic mineralization and examined
their antibacterial effects and osteogenic bioactivity. Firstly, scanning electron microscopy (SEM),
the fluorescent tracing method, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared
spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and the
releasing kinetics of LF were utilized to characterize the modified Ti surface. Then, the antibacterial
properties against S. sanguis and S. aureus were investigated. Finally, in vitro cytological examina-
tion was performed, including evaluations of cell adhesion, cell differentiation, extracellular matrix
mineralization, and cytotoxicity. The results showed that the porous Ti discs were successfully
modified with CaP and LF, and that the LF-M group (200 µg/mL LF in simulated body fluid) could
mildly release LF under control. Further, the LF-M group could effectively inhibit the adhesion
and proliferation of S. sanguis and S. aureus and enhance the osteogenic differentiation in vitro with
a good biocompatibility. Consequently, LF-M-modified Ti may have potential applications in the
field of dental implants to promote osseointegration and prevent the occurrence of peri-implantitis.

Keywords: lactoferrin; calcium phosphate; biomimetic mineralization; titanium implants; sur-
face modification

1. Introduction

As prosthodontics and oral implantology have developed rapidly in the last few
decades, indications for implant surgery have grown and dental implants have become
the preferred treatment for the replacement of lost teeth. Good osteointegration [1] is
a guarantee of the satisfactory prognosis of implant surgery, which is a complicated pro-
cess and is easily affected by osteoblast adhesion, osteogenic differentiation, and local
bacterial infection [2]. With excellent biocompatibility, mechanical properties, and cor-
rosion resistance, titanium (Ti) has been commonly used for dental implants and bone
surgery [3–5]. However, because of its insufficient osteoinduction and antibacterial prop-
erties [6], there is a risk of substandard osteointegration leading to dental implant failures
when the condition of operative regions is poor [7]. In order to enhance the biological
activities of implants to promote antimicrobial properties, pre-osteoblast adhesion, and
differentiation, various surface modifications of implants have been attempted [8,9]. For
instance, Wang et al. fabricated composite HA/Ag/CS nanocoatings, and three active
ingredients successfully inhibited bacterial growth and promoted bone regeneration and
revascularization [10].

Multiple ingredients may provide multiple effects, but they often lead to increased
toxicity [11]. For instance, Xie et al. fabricated a graphene oxide/Ag/collagen composite
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coating and found strong cytotoxicity in a short time [12]. Moreover, when we investigated
a coating fabricated from multiple components, it was usually difficult to assess and
control its toxicity due to the complicated interactions of bioactive components. In order to
overcome this problem, multifunctional biochemicals could be a promising solution in the
field of bioengineering. Lactoferrin (LF) is a kind of glycoprotein that is widely distributed
in mammals; there is about 1.13 g/L of it in human tears [13] and more than 5 g/L in
human colostrums [14]. Since its discovery in the 20th century, LF and its derivatives
have shown excellent antibacterial ability, so it has been widely used as an antibacterial
molecule to improve the antibacterial properties of bioengineering materials. In Singh’s
study, LF could prevent bacterial biofilm development by sequestering free iron [15].
In recent years, LF was reported for its potential to promote ion absorption, induce bone
formation, inhibit carcinoma [16], and regulate the immune system. Therefore, as a kind
of excellent multifunctional biomolecule, LF shows enormous potential for the surface
modification of implants.

Although LF could influence the behaviors of osteoblasts and microbes, its stable
structure is a prerequisite to fully function in implants. LF is liable to denature due to
some environment factors, such as temperature, pH, and the presence of other proteins
and polysaccharides [17–19]. Furthermore, high concentrations of LF have been reported
to be cytotoxic [20]. There is a need for solutions to preserve the bioactivity of LF after
binding it to a Ti surface and help it release slowly to maintain an appropriate concentration.
Calcium phosphate (CaP) provides a potential means to solve these problems. Because
of its chemical and biological similarities [21] with the mineral components in human
hard tissues, several kinds of CaPs, such as hydroxyapatite (HA), β-tricalcium phosphate
(β-TCP), and amorphous calcium phosphate (ACP), have been widely used in bone tissue
engineering as an envelope biomaterial with an excellent biocompatibility [22–25]. For
example, Narbat et al. successfully controlled the release of antimicrobial peptides and
effectively protected their antibacterial properties [26]. Meanwhile, CaP could be fabricated
at mild pH and temperature by biomimetic mineralization [27]. With the above advantages,
CaP could be a useful material to protect and release LF in a controlled way.

In this study, we fabricated LF/CaP coatings on porous Ti modified with different con-
centrations of LF by biomimetic mineralization with the goal of finding the best solution for
both antibacterial and osteoinductive properties. We characterized the LF/CaP-modified
Ti discs and investigated the release kinetics of LF. Then, S. sanguis and S. aureus were incu-
bated to assess the antibacterial ability. Meanwhile, rat bone marrow stromal cells (BMSCs)
were cultured on Ti surfaces for cytological examination to investigate their effectiveness
and safety for potential applications in the field of dental implants.

2. Materials and Methods
2.1. Material Preparation and Characterization
2.1.1. Preparation of Alkali- and Heat-Treated Porous Ti

Commercially available pure Ti discs (10 × 10 × 1 mm2, >99.9%) were sequentially
polished with #400, #1200, and #2000 silicon carbide papers and ultrasonically cleaned with
ethylalcohol and deionized (DI) water three times. Then, the discs were etched in 4 wt.%
hydrofluoric acid for 2 min and cleaned with DI water to completely remove impurities.
After cleaning, the discs were subjected to alkali treatment at 60 ◦C for 24 h, as was reported
by Wang et al. [28]. After the Ti discs cooled naturally to room temperature (about 25 ◦C),
they were rinsed with DI water three times and dried in a vacuum drying oven at 37 ◦C for
another 24 h. Finally, the as-prepared discs were heated in a furnace at 600 ◦C for 1 h.

2.1.2. Pre-Calcification and LF/CaP Fabrication

A total of 0.1 mol/L CaCl2 solution (11.1 g anhydrous calcium chloride and 1000 mL DI
water), 0.1 mol/L K2HP04 solution (17.4 g dipotassium phosphate and 1000 mL DI water),
and simulated body fluid (SBF, 8.04 g sodium chloride, 0.442 g dipotassium trihydrate
phosphate, 0.438 g anhydrous calcium chloride, 1000 mL DI water, a small amount of
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hydrochloric acid and Tris base used to adjust pH to 7.4) were prepared in advance.
Different concentrations of LF/SBFs (20, 200, and 2000 µg/mL LF) were freshly prepared.
Alkali- and heat-treated porous Ti discs were firstly put into CaCl2 solution and then equal
volumes of K2HP04 solution were slowly dropped into it while stirring. Next, the mixed
solution was stirred gently for another 15 min and then left to stand for 1 h. Subsequently,
the Ti discs were rinsed with DI water 3 times to remove suspended particles. Finally, the Ti
discs were placed in SBF and LF/SBFs at 37 ◦C for 7 days, and every 2 days the SBFs were
changed. The obtained samples were lyophilized and denoted as CaP, LF-L(20 µg/mL),
LF-M(200 µg/mL), and LF-H(2000 µg/mL).

2.1.3. Characterization of Samples

The surface morphology of each sample (CaP, LF-L, LF-M, and LF-H) was character-
ized by scanning electron microscopy (SEM, KYKY Technology Development LTD, Beijing,
China). Fluorescein isothiocyanate-labeled lactoferrin (FITC-LF, Ruixibio, Xi’an, China)
was utilized to explore the distribution of LF on the surface of the LF/CaP coatings. The
element composition and phase composition of each sample was determined by X-ray
photoelectron spectroscopy (XPS, Kratos, Manchester, UK), energy dispersive X-ray spec-
troscopy (EDX, KYKY Technology Development LTD, Beijing, China), Fourier transform
infrared spectroscopy (FTIR, Thermo Fisher Scientific, Waltham, MA, USA) and X-ray
diffraction (XRD, Kratos, Manchester, UK). Additionally, we observed the surface of LF-M
dried by vacuum oven at 37 ◦C by SEM in order to ensure that the process of lyophilization
would not influence the surface morphology of the LF/CaP coatings.

2.1.4. In Vitro Release Kinetics of LF

The in vitro release kinetics of LF from the LF/CaP samples were determined by the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). The samples
were immersed in 1 mL of phosphate buffered saline (PBS) for 6 h, 12 h, 1 day, 2 days,
and 4 days at 37 ◦C without agitation. A total of 60 µL lixiviums was collected to examine
the concentration of released LF and another 60 µL of fresh PBS was added at each time
point. Finally, the lixivium at 1 month was collected and detected as the cumulative
concentration of LF in each group. Additionally, we detected the concentration of each
group by inductively coupled plasma-mass spectrometry (ICP-MS) at the 24th hour and
96th hour.

2.2. Antibacterial Evaluation
2.2.1. Bacterial Strains and Culture Conditions

The antibacterial bioactivity of coatings was evaluated by streptococcus sanguis
(S. sanguis, State Key Laboratory of Oral Diseases, Sichuan University, Sichuan, China)
and Staphylococcus aureus (S. aureus, State Key Laboratory of Oral Diseases, Sichuan
University, Chengdu, China). S. sanguis was cultured with brain heart infusion (BHI)
culture medium (BD, New Jersey, USA) at 37 ◦C under anaerobic conditions, and S. aureus
was cultured with Luria–Bertani (LB) broth medium at 37 ◦C under aerobic conditions.

2.2.2. Bacterial Adhesion

For the adhesion experiment, S. sanguis and S. aureus were diluted with culture
medium until the concentrations reached 1 × 107 and 1 × 106 CFU/mL [29,30], respectively,
and 1 mL of bacterial culture suspension for each bacterial strain was added to the Ti
specimens (CaP, LF-L, LF-M, and LF-H) in a 24-pore plate. After incubation for 4 h, the Ti
discs were gently washed with PBS to remove non-adherent bacteria, and the attached
bacteria were then harvested in 1 mL of medium by sonication for 5 min. A total of 10 µL
of the harvested bacterial suspension from each pore were dropped onto a solid agar plate
(BHI for S. sanguis and LB for S. aureus) in an orderly manner and incubated for another 24 h.
The bacterial colonies were imaged by ChemiDoc MP Imaging System (Bio-Rad, Irvine,
CA, USA) and counted (n = 3) in the images. To further investigate the morphology of the
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attached bacteria, the fixed bacteria on the Ti specimens were fixed by 2.5% glutaraldehyde,
dehydrated in a graded ethanol solution (30, 50, 70, 80, 90, and 100%) for 15 min, and then
observed by SEM. The experiments were conducted in triplicate.

2.2.3. Bacterial Proliferation

The optimal density (OD) method [31] and spread plate method were applied to
evaluate the ability to inhibit bacteria growth of Ti specimens. Specifically, 1 mL of bacteria
suspension of S. sanguis (1 × 107 CFU/mL) and S. aureus (1 × 106 CFU/mL) was co-
incubated with the specimens. After incubation for 1, 4, and 24 h, the bacteria suspension
of each well was shaken for 10 min and collected. Then, the absorbance of the bacteria
suspension in each pore was examined on a microplate reader (Thermo Fisher Scientific,
Waltham, MA, USA) at a wavelength of 600 nm. Meanwhile, the bacteria suspensions of
4 and 24 h were diluted 104 times with PBS and 100 µL of the dilution was spread onto
an agar plate. After incubation for 24 h, the bacterial colonies on plates were imaged by
the ChemiDoc MP Imaging System (Thermo Fisher Scientific, Waltham, MA, USA). The
experiments were conducted in triplicate.

2.3. In Vitro Cellular Assessment
2.3.1. Cell Culture

Bone marrow stromal cells (BMSCs) obtained from the femurs of 2-week-old male
Sprague-Dawley (SD) rats (Animal Research Center, Sichuan University, Sichuan, China)
were cultured in alpha-modified Eagle’s medium (a-MEM, Gibco, Gaithersburg, MD)
containing 10% fetal bovine serum (FBS, Gibco) and 1% penicillin/streptomycin (PS, Hy-
Clone, Logan, UT, USA) at 37 ◦C in a 5% CO2 atmosphere. All the animal procedures
were approved by the Animal Ethics Committee of State Key Laboratory of Oral Diseases
(SCHSIRB-D-2021-004). The culture media were changed every two days and the cells
were subcultured when they reached a confluence of 80–90%.

2.3.2. Cell Adhesion

The BMSCs were seeded on the Ti discs to observe the cell adhesion via SEM and
inverted fluorescence microscope (IFM, Leica, Weztlar, Germany). With a cell density
of 8 × 104 cells/mL, BMSCs were cultured on different samples (CaP, LF-L, LF-M, and
LF-H) in α-MEM for 1 and 4 h. Then, the specimens were rinsed mildly with PBS for
two times to remove unattached cells and separately fixed in 4% paraformaldehyde (PFA,
HyClone, Logan, UT, USA) and 2.5% glutaraldehyde at RT overnight. After that, the Ti
discs soaked in paraformaldehyde were permeabilized with 0.5% Trion X-100 for another
5 min at RT and then washed with PBS twice. Subsequently, the BMSCs on the Ti surface
were stained with fluorescein isothiocyanate-phalloidin (rhodamine-phalloidin, Yeasen,
Shanghai, China) and 4’,6-diamidino-2-phenylindole (DAPI, Beyotime, Shanghai, China)
in the dark following the manufacturer’s instructions. The stained F-actin and cell nuclei
were observed and imaged by IFM. On the other hand, the samples fixed in glutaraldehyde
were dehydrated in graded ethanol solutions (30, 50, 70, 80, 90, and 100%) for 15 min
each. After sputtering with palladium-gold, the fixed cells were observed by SEM. In order
to quantitatively assess the adhesive cell number on the samples, a cell counting kit-8
(CCK-8, Solarbio, Beijing, China) assay was applied. Briefly, after totally removing the
non-adhered cells with PBS, 300 mL of new culture medium with 30 mL of CCK-8 solution
was added to immerse the Ti samples. After incubating at 37 ◦C for 2 h, the absorbance
was examined on a microplate reader at a wavelength of 450 nm. The experiments were
conducted in triplicate.

2.3.3. Alkaline Phosphatase Activity

The alkaline phosphatase (ALP) activity was examined to evaluate the differentiation
of BMSCs. An osteogenic medium was applied, consisting of α-MEN with 10% FBS, 1% PS,
100 nM dexamethasone, 50 mg/L ascorbic acid, and 10 mM Na-b-glycerophosphate. The
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medium was used after the BMSCs were incubated on the samples for 24 h and exchanged
every two days. BSMCs were seeded on the Ti discs (CaP, LF-L, LF-M, and LF-H) at a cell
density of 2 × 104 cells/mL and cultured for 5 and 7 days. Then, the ALP activity of the
BMSCs was measured qualitatively and quantitatively. For qualitative investigation, the
samples were fixed with 4% PFA and stained with an alkaline phosphatase color devel-
opment kit (Beyotime, Shanghai, China). The cells were observed by a stereomicroscope
(OLYMPUS, Shinjuku, Japan). For quantitative evaluation, the BMSCs were rinsed by PBS
twice and 1% Triton X-100 was added to obtain the cell lysates. Subsequently, an alkaline
phosphatase assay kit (Jiancheng, Nanjing, China) was added and the results were mea-
sured with a spectrophotometer at 520 nm. Finally, the results were normalized to the total
protein content measured by a BCA protein assay kit (Beyotime, Shanghai, China). The
experiments were conducted in triplicate.

2.3.4. Extracellular Matrix Mineralization

Extracellular matrix (ECM) mineralization was investigated by alizarin red stain-
ing. BMSCs were seeded on Ti discs (CaP, LF-L, LF-M, and LF-H) at a cell density of
1 × 104 cells/mL with osteogenic medium and cultured for 7 and 14 days. Then, the sam-
ples were thoroughly rinsed with PBS twice, followed by fixing with 4% PFA at 4 ◦C for 1 h.
After that, the cells were stained with 40 mM of alizarin red in Tris-HCl solution (pH 4.2)
for 10 min at room temperature. Next, the BMSCs were thoroughly washed with DI water
three times to remove excess dye and then imaged with a stereomicroscope (OLYMPUS,
Shinjuku, Japan). With regard to the quantitative assessment, the stain of ECM mineral-
ization was dissolved by 10% cetylpyridinium chloride in PBS for 15 min at RT and the
absorbance at 542 nm was measured using a microplate reader. The experiments were
conducted in triplicate.

2.3.5. Cell Toxicity

To quantitatively evaluate the cytotoxicity of the samples, BMSCs were quantified by
the CCK-8 assay and the fluorescent staining method. Cells were seeded on the samples
(CaP, LF-L, LF-M, and LF-H) with a cell density of 2 × 104 cells/mL; the samples were
investigated by CCK-8 assay after being cultured for 1, 3, 5, and 7 days. Briefly, BMSCs
were rinsed by PBS twice and 300 mL of new culture medium with 30 mL of CCK-8
solution was added to each sample. After incubating at 37 ◦C for 2 h, the absorbance
was examined on a microplate reader at a wavelength of 450 nm. Cellular toxicity was
also evaluated by a Calcein-AM/PI double-staining kit (Solarbio, Beijing, China). After
incubation for 1 or 3 days, the BMSCs on the Ti plates were stained by calcein-AM and
propidium iodide following the manufacturer’s instructions and observed by IFM. Live
and dead cells appeared as green and red, respectively. For the quantitative analysis, the
live/dead cells of each group were counted in random fields (n = 5) with equal areas in the
fluorescent images and the cell viability was calculated accordingly. The experiments were
conducted in triplicate.

2.4. Statistical Analysis

Statistical analysis was conducted using IBM SPSS version 19.0. One-way analy-
sis of variance (ANOVA) and the Student–Newman–Keuls test were used for multiple
comparisons. Differences were considered statistically significant at p < 0.05.

3. Results
3.1. Surface Characterization and LF Release Profile
3.1.1. Surface Characterization

The surface morphologies of the as-prepared Ti discs (CaP, LF-L, LF-M, and LF-H)
were observed by SEM. All of the specimens exhibited a porous surface morphology. As
shown in Figure 1A, uniform meshy coatings and microporous structures could be observed
on the surface of the alkali- and heat-treated porous Ti discs. On the SEM images of LF-
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modified groups (LF-L, LF-M, and LF-H), some crystal clusters could be observed, which
was different from the CaP group. With a higher concentration of LF in the SBFs, more
floral crystals and denser reticular structures could be found. On the high-magnification
SEM images, a similar tendency could be observed. From the fluorescence microscopy
images of the Ti surface (Figure 1B), a uniform distribution of FITC-LF could be observed
and more protein aggregations could be found with the increase in FTIC-LF concentration.
Additionally, the SEM images (Figure S1) of LF-M dried by a vacuum oven were similar to
the lyophilized LF/CaP coatings, which were microporous with some crystal clusters.
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Figure 1. (A) SEM images of the calcium phosphate (CaP, a,b), lactoferrin-low(LF-L, c,d), lactoferrin- middle (LF-M, e,f),
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CaP (i), LF-L (j), LF-M (k), and LF-H (l) surfaces.

To verify the successful deposition of the LF/CaP coatings and further compare the
difference between samples, FTIR, XPS, XRD, and EDX were applied. In the FTIR spectra
(Figure 2A), the characteristic split peaks of PO43− were observed at 1037 cm−1 in CaP
and all LF/CaP. Meanwhile, the characteristic split peaks of 1654 and 1541 cm−1 were
assigned to the C=O stretching vibration of –NHCO– and the N–H bending of –NH2 of
LF in LF/CaP coatings. Additionally, only LF-H exhibited a significant peak at around
3300 cm−1. As the XRD spectra (Figure 2C) show, characteristic peaks of Ti and HA could
be observed in all groups, but the peak of HA in LF-H was significantly weaker than in the
other groups. In Figure 2B, the XPS survey scan proved the existence of Ti, O, Ca, P, C, and
N peaks. With the increase in LF concentration, a stronger N peak was observed but the Ti
peak values decreased. Similarly, in the EDX spectra (Figure 2D) the peaks of Ti in LF-H
were not as strong as those of CaP, LF-L, and LF-M. The Ca/P ratios which were calculated
according to the EDX analysis were 1.56, 1.52, 1.57, and 1.49, respectively.
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3.1.2. In Vitro Release Kinetics of LF

The release kinetics of LF are shown in Figure 3. The accumulative concentrations
of released LF at the 4th day were 18.39, 118.64, and 516.84 µg/mL (LF-L, LF-M, and
LF-H). On the first day, the accumulative concentration of LF in the LF-H group exceeded
300 µg/mL with an initial burst release, and slowly reached up to 516.84 µg/mL in the
next 3 days. With regard to the LF-L group, the released LF was not effectively detected
until the 2nd day and reached 18.39 µg/mL at the 4th day. In the LF-M group, 76.46 µg/L
of LF was released on the first day, which rose to 118.64 µg/mL in the following 3 days
without a burst release effect. Meanwhile, as shown in Table S1 and Figure S1, the release
kinetics of LF-M in percentage were also more flat than those of LF-H.

As shown in Table S2, at the 24th hour 26.2, 27.3, 25.7, and 33.3 mg/L of Ca ions were
detected separately from CaP, LF-L, LF-M, and LF-H, and the concentrations of Ca ions
were 39.1, 37.2, 36.9, and 39.5 mg/L after 96 hours. Additionally, the concentration ratios
were 67.0%, 73.4%, 69.6%, and 84.1%, respectively.

3.2. Antibacterial Abilities

The adhesion and proliferation of S. sanguis and S. aureus in the control group (CaP)
and experimental groups (LF-L, LF-M, and LF-H) were assessed. To investigate the early
adhesion of S. sanguis and S. aureus, the morphology of bacteria on the specimens was
observed by SEM. As shown in Figure 4, numerous S. sanguis and S. aureus could be found
on the control group; meanwhile, in the experimental groups significantly less S. sanguis
and S. aureus adhered to the coatings.



Materials 2021, 14, 992 8 of 16
Materials 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Release kinetics of lactoferrin (LF) on Ti specimens (LF-L, LF-M, and LF-H) in phosphate 
buffer saline (PBS). 

3.2. Antibacterial Abilities 
The adhesion and proliferation of S. sanguis and S. aureus in the control group (CaP) 

and experimental groups (LF-L, LF-M, and LF-H) were assessed. To investigate the early 
adhesion of S. sanguis and S. aureus, the morphology of bacteria on the specimens was 
observed by SEM. As shown in Figure 4, numerous S. sanguis and S. aureus could be 
found on the control group; meanwhile, in the experimental groups significantly less S. 
sanguis and S. aureus adhered to the coatings. 

 
Figure 4. SEM images of adhesive S. sanguis and S. aureus on CaP, LF-L, LF-M, and LF-H samples. 

The results of the spot assay and bacterial counting are shown in Figure 5. The S. 
sanguis colonies of the experimental groups were remarkably smaller than those of the 
CaP group. Compared with CaP, approximately 1Log decrease was recorded for LF-L, 

Figure 3. Release kinetics of lactoferrin (LF) on Ti specimens (LF-L, LF-M, and LF-H) in phosphate
buffer saline (PBS).

Materials 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Release kinetics of lactoferrin (LF) on Ti specimens (LF-L, LF-M, and LF-H) in phosphate 
buffer saline (PBS). 

3.2. Antibacterial Abilities 
The adhesion and proliferation of S. sanguis and S. aureus in the control group (CaP) 

and experimental groups (LF-L, LF-M, and LF-H) were assessed. To investigate the early 
adhesion of S. sanguis and S. aureus, the morphology of bacteria on the specimens was 
observed by SEM. As shown in Figure 4, numerous S. sanguis and S. aureus could be 
found on the control group; meanwhile, in the experimental groups significantly less S. 
sanguis and S. aureus adhered to the coatings. 

 
Figure 4. SEM images of adhesive S. sanguis and S. aureus on CaP, LF-L, LF-M, and LF-H samples. 

The results of the spot assay and bacterial counting are shown in Figure 5. The S. 
sanguis colonies of the experimental groups were remarkably smaller than those of the 
CaP group. Compared with CaP, approximately 1Log decrease was recorded for LF-L, 

Figure 4. SEM images of adhesive S. sanguis and S. aureus on CaP, LF-L, LF-M, and LF-H samples.

The results of the spot assay and bacterial counting are shown in Figure 5. The
S. sanguis colonies of the experimental groups were remarkably smaller than those of the
CaP group. Compared with CaP, approximately 1Log decrease was recorded for LF-L,
and a 2Log decrease to 3Log decrease was record for LF-M and LF-H. The results for
S. aureus exhibited a similar tendency.
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Figure 5. Spot assay (A) and colony-forming units (CFUs, B) of adhesive S. sanguis and S. aureus on
CaP, LF-L, LF-M, and LF-H specimens cultured for 24 h. **** p < 0.0001.

The results for the antibacterial proliferation are shown in Figure 6. The absorbance of
each sample was at a low level in the 1st hour (Figure 6A). After culturing for 4 and 24 h,
both the results of S. sanguis and S. aureus showed that the absorbance of the CaP group was
significantly higher than that of the other groups (LF-L, LF-M, and LF-H). Figure 6B shows
the results of the spread plate method. The bacterial colonies (S. sanguis and S. aureus) of
the experimental groups (LF-L, LF-M, and LF-H) were smaller than those of the control
group (CaP), and even fewer bacterial colonies could be observed on LF-M and LF-H, no
matter whether the bacteria was incubated with Ti samples for 4 or 24 h.
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on the agar plates, which were incubated with CaP, LF-L, LF-M, and LF-H samples for 4 and 24 h.
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3.3. In Vitro Cell Behavior
3.3.1. Cell Adhesion

The morphology of the BMSCs seeded on Ti discs was observed by SEM and IFM. As
Figure 7A shows, spindle-like BMSCs could be seen on the CaP group, while cells on the
LF-L, LF-M, and LF-H groups exhibited a more stretched morphology with pseudopodia
of filament or sheet shapes. Fluorescence microscopy images of the initial cell adhesion
on the Ti specimens (CaP, LF-L, LF-M, and LF-H) are shown in Figure 7B. The BMSCs on
the CaP, LF-L, and LF-H groups presented a sphere-like and polygon shape morphology
with few filopodia extensions in the 1st hour; with regard to the LF-M group, polygonal
cells with obvious filopodia extensions could be observed. After incubation for 4 h, stellate
cells of the LF-L, LF-M, and LF-H groups were observed and the CaP group still exhibited
a polygon shape. In the quantitative analysis of early adhesion, significantly more BMSCs
attached to the LF-M and LF-H groups after culturing for 4 h, and the cell number of the
LF-M group was even higher than that of the LF-H group (Figure 7C).
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Figure 7. (A) SEM images of bone marrow stromal cells (BMSCs) cultured on CaP, LF-L, LF-M, and
LF-H samples; (B) fluorescence microscopy images of BMSCs cultured on CaP, LF-L, LF-M, and LF-H
samples for 1 and 4 h; F-actin was stained with rhodamine (red) and the nucleus with DAPI (blue);
(C) quantitative cell early adhesion of BMSCs on CaP, LF-L, LF-M, and LF-H samples. **** p < 0.0001.

3.3.2. Osteogenic-Related Assay

To investigate the early differentiation of BMSCs on the coatings, qualitative ALP
staining and quantitative ALP analysis was applied. The concentration of ALP (Figure 8B)
in the LF-M and LF-H groups was significantly higher compared with the CaP and LF-L
groups at the 5th and 7th days. Meanwhile, the ALP secretion of BMSCs from the LF-M
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and LF-H groups presented no significant differences. The results of the ALP staining
revealed a similar tendency (Figure 8A). As for the ECM mineralization of BMSCs, there
seemed to be no difference among the coatings at day 7. However, after incubation for
14 days the LF-M and LF-H groups exhibited significantly more stained calcifying nodules
(Figure 8C,D).
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Figure 8. (A) Alkaline phosphatase (ALP) staining of BMSCs of CaP, LF-L, LF-M, and LF-H groups
for 5 and 7 days; (B) quantitative ALP activity of the BMSCs of the CaP, LF-L, LF-M, and LF-H
groups for 5 and 7 days; (C) matrix mineralization of BMSCs of the CaP, LF-L, LF-M, and LF-H
groups for 7 and 14 days; (D) colorimetric quantitative results of extracellular matrix mineralization.
*** p < 0.001, **** p < 0.0001.
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3.3.3. Cell Toxicity

The viability and proliferation of the BMSCs cultured on the samples (CaP, LF-L, LF-M,
and LF-H) were evaluated by live/dead assay kit and cell counting kit-8 (CCK-8) analysis.
The live/dead cell result in Figure 9A shows that the BMSCs were viable on all samples
from the fluorescence microscopy images after 3 days of culture. The statistical analysis of
the cell viability on the Ti specimens in Figure 9B indicates that all the samples exhibited
a similar cell viability, except for LF-H, which was about 8% lower than CaP. Additionally,
the proliferation of BMSCs on the Ti discs evaluated by a CCK-8 assay kit (Figure 9C)
shows a similar trend in the results of the live/dead assay. On the first day, the cells grew
well on all samples; after incubation for 3 and 5 days, the proliferation of cells of LF-H was
significantly less than that of CaP and LF-M; at the 7th day, the proliferation rate of LF-H
was still lower than that of LF-L and LF-M.
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4. Discussion

In this study, we successfully modified porous Ti discs with CaP and different con-
centrations of LF by biomimetic mineralization and compared the LF release kinetics and
antibacterial and osteoinductive ability. LF is apt to lose its vitality under the condition of
strong acid/base or high temperature [32], and a high concentration of LF has a certain cy-
totoxicity [20]. Biomimetic mineralization may provide a simple and effective way to solve
the above problems [27]. Before being modified with LF/CaP, Ti discs were subjected to
standard acid-etched/alkali heat treatment to obtain a porous Ti surface and titanate layer,
which was beneficial for the deposition of calcium ions by providing sufficient mechanical
and chemical bonding [33]. Additionally, the pre-calcification treatment could accelerate
the process of CaP mineralization and contribute to the faster formation of uniform LF/CaP
coatings [34].

In the SEM images of the Ti surface (Figure 1A), different surface morphologies
could be observed, which might have been caused by different LF concentrations in SBFs.
Pan et al. found that some functional groups, such as–OH, –NH2, and–COO−, could
interact with CaP crystallite during the process of biomimetic mineralization [35], and
protein might provide extra crystal nuclei and form a CaP-packaged protein structure.
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In the process of biomimetic mineralization, a crystal nucleus were firstly formed on
the porous Ti and then turned into reticular and porous structures [36,37], as exhibited
in Figure 1A and Figure S1. The structure is exactly what we expected to protect the
bioactivity of LF and control its release kinetics. From the fluorescence microscopy images
of LF/CaP surfaces (Figure 1B), more large FITC-labeled particles could be observed in
LF-H, which might have been caused by LF aggregation. Thus, different concentrations of
LF might influence the crystallization process of CaP. To further determine which kind of
CaP was formed, FTIR, XPS, XRD, and EDX were applied. According to the FTIR and XRD
results (Figure 2A,C), HA coatings were successfully mineralized on porous Ti discs. In the
FTIR spectra of LF-H, a peak around 3300 cm−1 was found, which was different from CaP,
LF-L, and LF-M. In related studies [38], nanocrystalline HA particles exhibited broad bands
around 3200–3500 cm−1, but crystalline HA particles did not. Accordingly, we speculated
that superfluous LF in LF-H provided plentiful crystallization centers of HA and resulted
in a LF/HA coating consisting of LF-HA nano-particles. The other groups were LF/HA
coatings consisting of crystalline HA particles. Likewise, the weaker characteristic peak
of HA in the XRD spectra of XRD indicated that a large amount of LF will lead to the
poor crystallization of HA. In the results of XPS and EDX, with the increase in the LF
concentration, less Ti, titanium oxide, and CaP was exposed and more LF was detected on
the surface of Ti. Interestingly, in the XPS spectra of the control group (CaP), a weak N peak
could be observed, which might presumably have been caused by the retention of a Tris
base for regulating pH in the SBF solution. The standard Ca/P ratio of HA was 1.67 and the
lower surface Ca/P ratios of our coatings may be a result of surface disorder [39]. Figure 3
presents the cumulative concentration of LF and its release kinetics, which confirmed that
different LF concentrations in SBF could lead to different release kinetics of LF from the
experimental groups. Superfluous LF (LF-H) in SBF may result in its explosive release.
Meanwhile, the result for ICP (Table S1) also indicated the fast release of Ca ions in LF-H,
which may be related to the degree of mineralization.

On one hand, we expected that LF could release slowly to avoid potential complica-
tions, such as cytotoxicity caused by local high concentrations of LF. On the other hand,
sufficient LF was necessary for antibacterial and osteoinductive effects. Accordingly, we
tried to find a balance point between bioactivities and biosafety by in vitro antibacterial
and cellular tests.

On the basis of Figures 4–6, all the experimental groups (LF-L, LF-M, and LF-H)
exhibited an excellent ability to inhibit the adhesion of S. sanguis and S. aureus, and the
LF-M and LF-H groups performed even better. Meanwhile, the growth of S. sanguis and
S. aureus was also significantly inhibited with the rise in the LF concentration in Ti samples.
Based on the above results, we could determine that LF on the Ti discs still remained
bioactive as expected, in which the LF-M and LF-H groups performed better than LF-L. The
formation of dental plaque is the primary step in periodontitis and peri-implantitis, and
the first colonizers on implant surfaces are streptococci [40]. In another study of Persson
and Renvert [41], a cluster of bacteria from implant surfaces was found to be associated
with peri-implantitis, especially S. sanguis and S. aureus. Therefore, the inhibitory effects
on S. sanguis and S. aureus played an important role in inhibiting the colonization of oral
bacteria and decreasing the risk of peri-implantitis.

As a kind of initial cell behavior on the implant–bone interface, early adhesion plays an
important role in BMSCs’ proliferation and differentiation [42]. Thus, researchers have tried
to improve cell adhesion in various ways, such as through topological structure design and
surface chemistry design [43]. According to Figure 7, the early adhesion of BMSCs could
be influenced by LF on Ti samples. Proper LF concentration (LF-M) promoted this process
qualitatively and quantitatively, but superfluous LF (LF-H) performed even worse than
LF-M, which might have been caused by its biotoxicity at high concentrations. Therefore,
LF on Ti was beneficial to the early proliferation and differentiation of pre-osteoblasts. As
the ALP activity showed, the BMSCs of LF-M and LF-H groups secreted a significantly
higher level of ALP at day 5 and day 7. Interestingly, both the qualitative and quantitative
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results indicated that the ALP activity of the control group (CaP) obviously increased
from day 5 to day 7. However, LF-M and LF-H did not exhibit a similar trend, and their
ALP activity already reached a relatively high level at the 5th day. The abundant early
secretion of ALP could be considered as the symbol that LF effectively promoted BMSCs’
early osteogenic differentiation. Additionally, the investigation of extracellular matrix
mineralization also reminded us that using a proper concentration of LF could influence
the later stage of osteogenic differentiation. In a word, the cell differentiation and cell
mineralization of LF-M and LF-H groups were significantly enhanced compared with CaP
and LF-L groups.

Although the LF-M and LF-H groups could both effectively inhibit bacterial infection
and promote osteogenic differentiation, the results of the CCK-8 assay still reminded us of
the potential cytotoxicity of LF. In the research of Xu et al. [20], 25 µM (around 2.2 mg/mL)
of LF could significantly lead to the apoptosis of SGC-7901 human stomach cancer cells. As
Figure 9 shown, the viability and proliferation of BMSCs of the LF-H group were slightly
inhibited, which indicated its certain cytotoxicity. From the results of the LF release kinetics,
we found that LF was rapidly released from the LF-H coating at the early stage, which
might lead to the growth inhibition effect of BMSCs. The concentration of LF gradually
decreased with the lapse of time, and its cytotoxicity concomitantly declined. In conclusion,
the LF-M group presented excellent antibacterial and osteoinductive abilities and could
maintain balance between bioactivity and safety.

5. Conclusions

In summary, we successfully modified porous Ti discs with CaP and different concen-
trations of LF by biomimetic mineralization and compared their LF release kinetics and
antibacterial and osteoinductive ability. Compared with the CaP, LF-L, and LF-H groups,
the LF-M group not only effectively inhibited the early adhesion and proliferation of S. san-
guis and S. aureus but also presented a better ability to improve the early adhesion and
differentiation of BMSCs in vitro with a relatively slow LF release. These results suggested
that biomimetic mineralization could provide a simple and effective way to modify Ti
implants with LF and protect the protein activity; a proper concentration of LF (LF-M)-
modified Ti may be applied in the field of dental implants to promote osseointegration and
prevent the occurrence of peri-implantitis.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996
-1944/14/4/992/s1: Figure S1: SEM images of LF-M dried by vacuum oven at 37 ◦C; Table S1:
Cumulative concentration of lactoferrin at 1 month; Figure S2: Release kinetics of LF on Ti specimens
(LF-L, LF-M and LF-H) in PBS in percentage; Table S2: Ca ions released from the coatings detected
by ICP-MS.
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