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Abstract
Purpose: The purpose of this work is to develop and evaluate a novel cycle-
contrastive unpaired translation network (cycleCUT) for synthetic computed
tomography (sCT) generation from T1-weighted magnetic resonance images
(MRI).
Methods: The cycleCUT proposed in this work integrated the contrastive
learning module from contrastive unpaired translation network (CUT) into the
cycle-consistent generative adversarial network (cycleGAN) framework to effec-
tively achieve unsupervised CT synthesis from MRI. The diagnostic MRI and
radiotherapy planning CT images of 24 brain cancer patients were obtained
and reshuffled to train the network. For comparison, the traditional cycleGAN
and CUT were also implemented. The sCT images were then imported into a
treatment planning system to verify their feasibility for radiotherapy planning.
The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and struc-
tural similarity index (SSIM) between the sCT and the corresponding real CT
images were calculated. Gamma analysis between sCT- and CT-based dose
distributions was also conducted.
Results: Quantitative evaluation of an independent test set of six patients
showed that the average MAE was 69.62 ± 5.68 Hounsfield Units (HU) for
the proposed cycleCUT, significantly (p-value < 0.05) lower than that for cycle-
GAN (77.02 ± 6.00 HU) and CUT (78.05 ± 8.29). The average PSNR was
28.73 ± 0.46 decibels (dB) for cycleCUT, significantly larger than that for cycle-
GAN (27.96 ± 0.49 dB) and CUT (27.95 ± 0.69 dB). The average SSIM for
cycleCUT (0.918 ± 0.012) was also significantly higher than that for cycleGAN
(0.906 ± 0.012) and CUT (0.903 ± 0.015). Regarding gamma analysis, cycle-
CUT achieved the highest passing rate (97.95 ± 1.24% at the 2%/2 mm criteria
and 10% dose threshold) but was not significantly different from the others.
Conclusion: The proposed cycleCUT could be effectively trained using
unaligned image data, and could generate better sCT images than cycleGAN
and CUT in terms of HU number accuracy and fine structural details.
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1 INTRODUCTION

Malignant tumors have become a serious threat to
human health.1,2 Radiotherapy is one of the major
treatment methods. Many patients can be cured by
radiotherapy, and a considerable portion of patients can
relieve symptoms and prolong survival by radiotherapy.
Computed tomography (CT) is indispensable in current
radiotherapy practice and is routinely used for radia-
tion dose calculation and patient positioning correction.
Poor soft tissue contrast is a major disadvantage of CT,
leading to the imprecise delineation of treatment targets
and organs at risk. Magnetic resonance imaging (MRI)
has better soft tissue contrast and has been increas-
ingly involved in the radiotherapy workflow. Recently
on-board MRI-guided radiotherapy (MRgRT) has been
implemented in the clinic. However, MRI lacks electron
density information that is critical for accurate radiation
dose calculation. One strategy to improve the MRgRT
workflow is to generate synthetic CT (sCT) from which
electron density information can be derived. Then, sim-
ulation CT may no longer be needed, and consequently,
the image registration uncertainty between MRI and CT
can also be eliminated. Currently, there is a geometrical
uncertainty of approximately 2 mm in cranial CT/MRI
image registration.3

The current methods for generating sCT from MRI
can be divided into three categories: segmentation-
based methods,4–6 atlas-based methods,7–9 and deep
learning-based methods.10–12 Although they differ
greatly in algorithm, the general idea is to use the mod-
els developed based on preacquired MRI-CT pairs to
generate new sCT from incoming MRI. Segmentation-
based methods segment the MRI according to the
preclassified tissue types and fill in the correspond-
ing density value in each segmented tissue. These
approaches are limited by the accuracy of the segmen-
tation and the requirement to predetermine tissue types.
Atlas-based methods rely on elastic image registration.
First, an MRI in the coregistered MRI-CT atlas database
is deformably registered to the new MRI, and then
the same transformation is applied to the CT in the
MRI-CT pair to generate the sCT. These methods are
limited by the accuracy of the elastic registration and
lack robustness when large anatomical variations exist
between the target and atlas MRI. Deep learning-based
methods are currently the method under intensive
investigations. They can learn the complex and nonlin-
ear mapping between MRI and CT images from a great
number of MRI-CT pairs. Due to this automatic learning
feature, deep learning-based methods are becoming
increasingly popular in image synthesis tasks.13 In deep
learning-based methods,an sCT can be obtained within
seconds using a well-trained network.

The deep-learning networks used in sCT genera-
tion can be mainly categorized into convolutional neural
networks (CNNs),14–16 generative adversarial networks

(GANs),17–19 and cycle-consistent adversarial networks
(cycleGANs).20–22 The complexity of these networks
increases sequentially,and the former is the cornerstone
of the latter. CNN evolved from multilayer perceptron
(MLP). Due to its structural characteristics of local area
connection, weight sharing, and downsampling, CNN
performs well in the field of image processing. A major
limitation of the CNN-based methods is that they require
strictly registered MRI-CT pairs for the training task.
GAN introduces an additional discriminator to distin-
guish the generated sCT from the real CT and adds
an adversarial loss term in the loss function to gen-
erate more realistic sCT images. Unfortunately, GAN
still requires decently aligned MRI-CT pairs which are
usually difficult to obtain. CycleGAN addresses this
problem by introducing inverse mapping and cycle-
consistency loss. CycleGAN has attracted great interest
because they enable unpaired MRI-to-CT transforma-
tion. In cycleGAN, the target appearance is enforced
using an adversarial loss, while the image content is
preserved using a cycle-consistency loss. However, the
cycle-consistency loss assumes that the relationship
between the two domains is a bijection, which is often
too restrictive.23

To overcome the above limitations, Park et al.23 pro-
posed a contrastive unpaired translation network (CUT)
using an alternative but rather straightforward way of
maintaining correspondence in the image content but
not appearance by maximizing the mutual information
between the corresponding input and output patches. It
was successfully applied to horse-to-zebra, cat-to-dog,
and cityscape related training tasks. In this work, we
developed a novel cycle-contrastive unpaired transla-
tion network (cycleCUT) by combining cycleGAN and
CUT to improve the training performance using unpaired
MRI and CT images.A compound loss function was also
introduced in the cycleCUT to robustly predict more real-
istic sCT images. The proposed network should learn
the voxel-to-voxel correspondence between MRI and CT
images and meanwhile preserve the shape of anatomi-
cal structures. It is also expected that the generated sCT
should have similar image contrast as the real CT.

2 MATERIALS AND METHODS

2.1 Image acquisition and
preprocessing

Thirty brain cancer patients who received radiotherapy
at the First Affiliated Hospital of USTC were included
in this study. The data of each patient included routine
planning CT and diagnostic MRI. The CT images were
acquired on a GE scanner (Discovery CT590 RT, GE
Healthcare Technologies, Milwaukee, Wisconsin, USA)
with the following scanning parameters: 120 kV tube
voltage, 416 mA tube current, 0.98 × 0.98 × 2.5 mm3
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resolution, and 512 × 512 matrix size. The post-
gadolinium T1-weighted MRI images were acquired with
a brain volume imaging (BRAVO) sequence on a 1.5 T
MRI scanner (Signa HDxt,GE Healthcare Technologies,
Milwaukee, Wisconsin, USA). The scanning parameters
were as follows: 7.4–8.4 ms repetition time, 2.4–3.1 ms
echo time, 15◦ flip angle, and 0.47 × 0.47 × 0.47 mm3

resolution.The time interval between MRI and CT acqui-
sition was less than 2 days. Image preprocessing was
conducted with the following steps:

1. All MRI images were corrected by the N4ITK bias
correction algorithm24 in MIM software to reduce the
intensity inhomogeneity caused by biased magnetic
fields.A histogram matching method25 was then used
to standardize the scale of the MRI signal intensity.

2. The MRI images were rigidly registered to the cor-
responding CT images using MIM software. The
aligned MRI and CT images were then resampled to
a resolution of 1 × 1 × 1 mm3 and cropped to a size
of 240 × 240.

3. A binary body mask excluding the couch, head
mask, and other patient immobilization devices was
obtained based on the CT images and propagated to
the MRI images. The values outside the body mask
were set to −1024 HU for CT images and 0 for MRI
images.

4. Considering that the activation function used in the
output layer of the generator in our model was “tanh,”
all MRI and CT images were normalized to [−1, 1]
according to their minimum and maximum intensity
values, respectively.

2.2 Network model

2.2.1 CycleGAN

CycleGAN is a typical unsupervised learning network
that can be trained using unpaired image data. This is
due to the incorporation of an inverse transformation
and the addition of a cycle-consistency loss. Figure 1
shows the schematic flowchart of the cycleGAN network
for MRI-based sCT generation.It consists of two genera-
tors (i.e., GMRI−CT and GCT−MRI) and two discriminators
(i.e.,DCT and DMRI) and forms two cycles.GMRI−CT aims
to generate sCT images that can fool the discriminator
DCT into believing they are real CT images, while DCT
aims to identify whether the images are real CT or sCT.
The goals of GCT−MRI and DMRI are for the CT-to-MRI
conversion and are the counterparts of GMRI−CT and
DCT .The concept of cycle consistency assumes that the
sCT image generated by a forward generator (GMRI−CT )
going through the opposite generator (GCT−MRI) should
result in a cycle MRI image that is equal to the real MRI
image (and vice versa). For more details, please refer to
the original cycleGAN26 paper.

The loss function of cycleGAN includes the follow-
ing terms: adversarial loss, cycle-consistency loss, and
identity mapping loss.27 Adversarial loss maps the dis-
tribution of the synthetic image to the distribution of
the target image and is reflected in both generator and
discriminator. GMRI−CT tries to minimize LG_A,

LG_A =
1
m

m∑
i = 1

(1 − DCT (GMRI−CT (MRIi)))
2, (1)

while DCT tries to minimize LD_A,

LD_A =
1
m
m∑

i=1

(1 − DCT (CTi))
2
+ (DCT (GMRI−CT (MRIi)))

2

2
.

(2)

Similarly, GCT−MRI tries to minimize LG_B, while DMRI
tries to minimize LD_B:

LG_B =
1
m

m∑
i = 1

(1 − DMRI (GCT−MRI (CTi)))
2, (3)

LD_B =
1
m
m∑

i=1

(1 − DMRI (MRIi))
2
+ (DMRI (GCT−MRI (CTi)))

2

2
.

(4)

To enforce a one-to-one mapping, the cycle-
consistency losses for two cycles are incorporated
in cycleGAN:

Lcycle_MRI =
1
m

m∑
i = 1

|GCT−MRI (GMRI−CT (MRIi)) − MRIi| ,

(5)

Lcycle_CT =
1
m

m∑
i = 1

|GMRI−CT (GCT−MRI (CTi)) − CTi| .
(6)

If CT images are fed into GMRI−CT , the results should
also be CT, and vice versa. Thus, the identity mapping
losses for MRI and CT are:

Lidentity_CT =
1
m

m∑
i = 1

|(GMRI−CT (CTi)) − CTi| , (7)

Lidentity_MRI =
1
m

m∑
i = 1

|(GCT−MRI (MRIi)) − MRIi| . (8)
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F IGURE 1 Schematic flowchart of cycleGAN. Two cycles are formed in cycleGAN. Two generators (i.e., GMRI−CT and GCT−MRI) and two
discriminators (i.e., DCT and DMRI) are included. GMRI−CT is used to generate synthetic CT (sCT) from MRI and GCT−MRI is used to generate
synthetic MRI (sMRI) from CT. DCT is used to distinguish CT from sCT and DMRI is used to distinguish MRI from sMRI. The cycle-consistency
concept assumes that the sCT image generated by a forward generator (GMRI−CT ) going through the opposite generator (GCT−MRI) should
result in a cycle MRI image that is equal to the real MRI image (and vice versa).

Therefore, the full loss function for the two generators
is,

LG_cycleGAN = LG_A + LG_B + 𝛼 ×
(
LcycleMRI

+ LcycleCT

)
+𝛽 ×

(
Lidentity_CT + Lidentity_MRI

)
, (9)

where 𝛼 is 10 and 𝛽 is 5, which are the common values
set for cycleGAN.

The full loss function for the two discriminators is

LD_cycleGAN = LD_A + LD_B. (10)

2.2.2 CUT

CUT can also be trained using unpaired image data.
Unlike cycleGAN,CUT only needs to learn a mapping in
one direction and consists of a generator and a discrim-
inator. Adversarial loss is still used in CUT to encourage
the generator to produce sCT images that are indis-
tinguishable from real CT images. CycleGAN ensures
the structural consistency of MRI and sCT through
cycle consistency,while CUT uses a contrastive learning
framework to maximize the mutual information between
the two. The goal of contrastive learning is to associate
two samples, a “query” and its “positive” patch, in con-
trast to other patches referred to as “negatives” within
the image.

The schematic flowchart and patchwise contrastive
learning framework of CUT are shown in Figure 2.
The generator is divided into two components: an
encoder Genc and a decoder Gdec, which are applied

sequentially to generate sCT (i.e., sCT = G(MRI) =

Gdec (Genc(MRI))). The encoder Genc can be used not
only to generate sCT by combining with Gdec but
also for available feature extraction. The L-layer fea-
ture maps of interest are selected and then passed
through a small two-layer MLP network Hl, provid-
ing a stack of features: {zl}L = {Hl(G

l
enc(MRI))}L for

MRI and {ẑl}L = {Hl(G
l
enc(G(MRI)))}L for sCT, where

Gl
enc is the output of the l-th chosen layer. Patch-

NCE loss LPatchNCE(G, H, MRI, sCT) is utilized to match
corresponding MRI-sCT patches at a specific location.

LPatchNCE (G, H, MRI, sCT) = EMRI∼Pdata(MRI)

L∑
l =1

Sl∑
s =1

f (ẑs
l , zs

l , zS∖s
l ), (11)

where Sl denotes the number of spatial locations in
each layer, zs

l represents the corresponding feature,

zS∖s
l is the other features, and f (ẑs

l , zs
l , zS∖s

l ) is the
cross-entropy loss.

f (ẑs
l , zs

l , zS∖s
l )

= −log

⎡⎢⎢⎢⎢⎣
exp

(
ẑs

l ⋅ zs
l ∕𝜏

)
exp

(
ẑs

l ⋅ zs
l ∕𝜏

)
+
∑Sl−1

n = 1 exp
(

ẑs
l ⋅

(
zS∖s

l

)
n
∕𝜏

)
⎤⎥⎥⎥⎥⎦

(12)

where 𝜏 is a scaling factor with a value of 0.07.
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F IGURE 2 Schematic flowchart and patchwise contrastive learning frame of CUT. CUT only requires learning the mapping in one direction
and consists of a generator and a discriminator. Patchwise contrastive learning encourages two corresponding patches to map to a similar point
in the feature space, relative to other patches referred as negatives in the image.

The identity loss LPatchNCE(G, H, CT, sCT) in the CT
domain is used to prevent the generator from making
unnecessary changes and to increase the training sta-
bility.Therefore, the full loss function for the generator of
the CUT is

LG_CUT = LG_A + 𝜆1LPatchNCE (G, H, MRI, sCT)

+𝜆2LPatchNCE (G, H, CT, sCT) , (13)

where 𝜆1 and 𝜆2 are equal to 1. The full loss function for
the discriminator is

LD_CUT = LD_A . (14)

2.2.3 CycleCUT

In this work,we developed a hybrid deep-learning model
combining CUT and cycleGAN networks. Specifically,

we introduced the contrastive learning module of CUT
into the cycleGAN framework and created a new net-
work named the “cycle-contrastive unpaired translation
network” (cycleCUT). Figure 3 shows the schematic
flowchart of the cycleCUT. Similar to cycleGAN, the
cycleCUT consists of two generators and two discrim-
inators. There are two contrastive learning frameworks
to maximize the mutual information between the input
and output of the two generators. The generator con-
taining an encoder and a decoder and the discriminator
consisting of three downsampling convolutional layers
followed by a sigmoid layer in CUT were used for both
cycleCUT and cycleGAN.

In the cycleCUT,the cycle-consistency loss and patch-
wise contrastive learning are used simultaneously to
ensure the structural consistency between MRI and the
corresponding sCT. Thus, it can effectively distinguish
the structure boundaries with significant HU variations
and maintain the sharpness of the sCT.
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F IGURE 3 Schematic flowchart of cycleCUT. The cycleCUT consists of two generators, two discriminators, and two contrastive learning
frameworks used to maximize the mutual information between the input and output of the two generators. The structural consistency between
MRI and the corresponding sCT is guaranteed by the cycle-consistency loss and patchwise contrastive learning simultaneously.

The final loss function for the two generators of the
cycleCUT is

LGcycleCUT
= LGA

+ LGB
+ 𝛼 ×

(
LcycleMRI

+ LcycleCT

)
+𝛽 ×

(
LidentityCT

+ LidentityMRI

)
+𝜂1LPatchNCE (GMRI−CT , HMRI−CT , MRI, sCT)

+𝜂2LPatchNCE (GMRI−CT , HMRI−CT , sMRI, cycle_CT)

+𝜂3LPatchNCE (GCT−MRI, HCT−MRI, CT, sMRI)

+𝜂4LPatchNCE (GCT−MRI, HCT−MRI, sCT, cycle_MRI)

,

(15)

where 𝛼 is 10, 𝛽 is 5, and 𝜂1 − 𝜂4 are equal to 1. The
𝜂1 − 𝜂4 values were empirically set so that all the losses
were roughly in the same order.

The loss function for the two discriminators of the
cycleCUT is

LD_cycleCUT = LD_A + LD_B. (16)

2.3 Implementation details

We divided the 30 patients included in this work into two
groups: 24 for training and 6 for testing. To increase the
number of training samples, each image was padded to
286 × 286 pixels and then randomly cropped to subim-
ages of 256 × 256 pixels during training. Five percent
rotation and random horizontal flip were also used for

F IGURE 4 Unpaired training data. (a1–a3) are randomly
selected MRI images in the training set, and (b1–b3) are the
corresponding CT images. We trained all models in this work using
MRI and CT images of different patients at different anatomical
locations.

data augmentation. We trained all models with unpaired
data for fair comparison among the three networks,
that is, MRI and CT images of different patients at dif-
ferent anatomical locations were fed into the network
simultaneously (Figure 4).

All models mentioned in this work were implemented
in PyTorch with the Adam optimizer using the same
training hyperparameters and strategies, and they were
trained and tested on an NVIDIA GeForce RTX 3090
GPU (24G) with a batch size of 1. All models were
trained for 200 epochs, with a fixed learning rate of
0.0002 for the first 100 epochs and a varied one linearly
decaying to zero for the last 100 epochs.



WANG ET AL. 7 of 12

F IGURE 5 The sCT images in the axial plane. The first row shows the real CT (a1) and the sCT images generated by the cycleGAN
method (a2), the CUT method (a3), and the proposed cycleCUT method (a4). Panels (b1–b4) highlight ROI outlined by the rectangle shown in
(a1). The corresponding MRI is shown in (c1). (c2–c4) show the error images for each sCT, with the planning CT taken as the ground truth.
Yellow arrows indicate the site of misclassification. The display window is [−160 240] for all CT images.

2.4 Evaluation strategy

To evaluate the accuracy of sCT, three commonly
used metrics were employed: mean absolute error
(MAE),peak signal-to-noise ratio (PSNR),and structural
similarity index (SSIM). They are calculated as follows:

MAE =
1
N

N∑
i = 1

|CTi − sCTi| , (17)

PSNR = 10log10(
Q2

CT − sCT2
2∕N

(18)

SSIM =
(2𝜇CT𝜇sCT + C1) (2𝛿CT ⋅sCT + C2)(

𝜇2
CT + 𝜇2

sCT + C1

)(
𝛿2

CT + 𝛿2
sCT + C2

) ,

(19)

where N represents the number of voxels in the region
of interest (ROI);Q is the maximum HU value of the two
images; C1 = (0.01Q)2 and C2 = (0.03Q)2 ; 𝜇CT and
𝜇sCT are the average values of CT and sCT,respectively;
𝛿CT and 𝛿sCT are the standard deviations of CT and
sCT, respectively; and 𝛿CT ⋅sCT is the covariance matrix
between CT and sCT.

In addition, the global 3-dimensional gamma passing
rates with different criteria (2%/2 mm and 3%/3 mm)
and different dose thresholds (10%,30%,50%,70%,and
90% of the prescription dose) were also used to conduct

dosimetry comparison. For each patient in the test set,
an intensity-modulated radiotherapy plan with 7 beams
(30◦, 90◦, 140◦, 180◦, 220◦, 275◦, and 330◦) of 6 MV
photons was designed based on the real CT images
using the Pinnacle treatment planning system (TPS).
The corresponding sCT images were then imported into
the TPS to recalculate the dose distribution by keep-
ing all planning parameters unchanged.The prescription
dose was 50 Gy, and all doses were calculated with a
resolution of 1 × 1 × 1 mm3.

3 RESULTS

3.1 Image comparison

To qualitatively evaluate the three different sCT gener-
ation methods, the axial, sagittal, and coronal views of
an exemplary patient are shown in Figure 5–7. These
slices represent some of the most challenging parts of
the brain in sCT generation. Although they were trained
using unpaired data, as shown in Figure 4, the networks
were still able to convert MRI images to CT images while
maintaining anatomical accuracy. Furthermore, the gen-
erated sCT images show image contrast similar to the
real CT among various tissue types.

Figure 5 shows the axial views and the correspond-
ing error images in sCT generation. Panel (a1) shows a
real CT in the axial view, (c1) is the corresponding MRI,
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F IGURE 6 The sCT images in the sagittal plane. The first row shows the real CT (a1) and the sCT images produced by the cycleGAN
method (a2), the CUT method (a3), and the proposed cycleCUT method (a4). Panels (b1–b4) highlight ROI outlined by the rectangle shown in
(a1). The corresponding MRI and enlarged ROI are shown in (c1) and (d1), respectively. (c2–c4) show the error images for each sCT, with the
planning CT taken as the ground truth. The enlarged ROI images are shown in (d2–d4). The profiles along the red line shown in (b1) are shown
in (e). The display window is [−160 240] for all CT images.

and (a2–a4) show sCT images generated by cycleGAN,
CUT, and the proposed cycleCUT, respectively. Panels
(b1–b4) are the enlarged images corresponding to (a1–
a4) within the ROI outlined by the rectangle shown in
(a1).Panels (c2–c4) are the corresponding error images
of (a2–a4), with the planning CT taken as the ground
truth. The ROI in (a1) is selected at a location with
large anatomical variations and probably represents the
most challenging region in sCT generation. As marked
by the yellow arrows, there are some misclassified vox-
els in the sCT images generated by cycleGAN (b2) and
CUT (b3). In contrast, the sCT (b4) produced by the pro-
posed method has superior CT HU accuracy and better
preservation of structural details.

Figure 6 shows the sagittal views. Panel (a1) shows
a real CT in the sagittal view, (c1) is the corresponding
MRI, and (a2–a4) are sCT images produced by cycle-
GAN, CUT, and the proposed cycleCUT, respectively.
Panels (b1–b4) are the enlarged images correspond-
ing to (a1–a4) within the ROI outlined by the rectangle
shown in (a1). Panels (c2–c4) are the corresponding

error images of (a2–a4), with the planning CT taken as
the ground truth.Panels (d1–d4) show the enlarged ROI.
The profiles on (b1–b4) and (d1) along the red line in
(b1) are shown in (e). As marked by the yellow arrows,
the ventricle in the sCT generated by the cycleCUT (b4)
has the closest appearance to that in the real CT. The
error images (d2–d4) and the line profiles in (e) also
demonstrate that the HU distribution in the sCT gener-
ated by the cycleCUT is the closest to the real CT.These
results indicate that the proposed method outperforms
the cycleGAN and CUT,both in terms of definitive tissue
boundaries and accurate HU values.

Figure 7 shows the coronal views.The first row shows
the real CT (a1) and the sCT images obtained by
cycleGAN (a2), CUT (a3), and the proposed method
(a4). The second row highlights the ROI, and the third
row shows the corresponding MRI and error images.
Figure 7 demonstrates excellent agreement with the
ground truth for the sCT generated by the proposed
method, especially at the location marked by the yel-
low arrow. Furthermore, the profiles along the red line in
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F IGURE 7 The sCT images in the coronal plane. The first row shows the real CT (a1) and the sCT images obtained by the cycleGAN
method (a2), the CUT method (a3), and the proposed cycleCUT method (a4). Panels (b1–b4) highlight the ROI outlined by the rectangle shown
in (a1). The corresponding MRI is shown in (c1). (c2–c4) show the error images for each sCT, with the planning CT taken as the ground truth.
The profiles along the red line shown in (a1) are shown in (d). The display window is [−160 240] for all CT images.

(a1–a4) and (c1) are shown in (d). These results sug-
gest the sCT generated by the cycleCUT has a HU
distribution closest to the real CT.

Figure 8 shows images with a tumor. The first row
shows the real CT (a1) and the sCT images produced
by cycleGAN (a2), CUT (a3), and the proposed method
(a4). The second row shows the highlighted tumor
region, and the third row shows the corresponding MRI
and error images. The fourth row highlights the rectan-
gle ROI corresponding to (c1–c4). The fifth row shows
the profiles along the red line in (b1).The image contrast
between the tumor and the surrounding soft tissues is
obvious in MRI but is reduced in CT. As indicated by the
error images (d2–d4) and the line profiles in (e), the HU
values across the tumor region in the sCT produced by
the proposed cycleCUT method are closest to those in
the real CT.

3.2 Quantitative evaluation

The quantitative analysis results are summarized in
Table 1, where MAE, PSNR, and SSIM between sCT
and real CT are calculated. Among all the methods

mentioned in this work, the proposed cycleCUT gives
the smallest MAE of 69.62 HU, the largest PSNR of
28.73 dB, and the largest SSIM of 0.918, indicating that
the proposed method outperforms the other methods.
A two-tailed paired t-test was also conducted to verify
whether the improvement was significant. The results
in Table 1 show that there is a statistically significant
improvement between cycleCUT and the other methods
(p-value < 0.05), while there is no statistically significant
difference between CUT and cycleGAN (p-value> 0.05)

3.3 Dosimetric evaluation

We also compared the dose calculation accuracy on
sCT images obtained by different methods. The gamma
passing rates for the 2%/2 mm and 3%/3 mm criteria
with 10%, 30%, 50%, 70%, and 90% dose thresholds
are listed in Table 2. For all methods, the gamma pass-
ing rates are greater than 97%. It can be seen that
the dose calculation accuracy on sCT from the cycle-
CUT is slightly better than the others. However, there
is no statistically significant difference between different
methods.
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F IGURE 8 The sCT images with a tumor. The first row shows the real CT (a1) and the sCT images generated by the cycleGAN method
(a2), the CUT method (a3), and the proposed cycleCUT method (a4). Panels (b1–b4) highlight the tumor region in (a1–a4) for the rectangle ROI
shown in (a1). The corresponding MRI and highlighted ROI are shown in (c1) and (d1). Panels (c2–c4) show the error images for each sCT, with
the planning CT taken as the ground truth, and the ROI images are shown in (d2–d4). The profiles along the red line shown in (b1) are shown in
(e). The display window is [−160 240] HU for all CT images.

TABLE 1 Comparison of different methods on sCT images

MAE (HU) PSNR (dB) SSIM

cycleGAN 77.02 ± 6.00 27.96 ± 0.49 0.906 ± 0.012

CUT 78.05 ± 8.29 27.95 ± 0.69 0.903 ± 0.015

cycleCUT 69.62 ± 5.68 28.73 ± 0.46 0.918 ± 0.012

p-Value of
cycleGAN vs. CUT

0.486 0.938 0.424

p-Value of
cycleCUT vs. CUT

0.004 0.004 0.009

p-Value of
cycleCUT vs.

cycleGAN

<0.001 <0.001 <0.001

4 DISCUSSION

Synthetic CT generation, from which electron density
information can be derived, is critical in MRI-only radio-
therapy workflow. Most of the existing methods used
to generate sCT from MRI require a training set of
paired MRI and CT images. Given the scarcity of paired
MRI and CT data, we developed a novel cycleCUT
network by combining two typical unsupervised deep
learning networks,cycleGAN and CUT.Correspondingly,
a hybrid loss function was also introduced in the cycle-
CUT to robustly predict more realistic sCT images.Since
the activation function used in the output layer of the
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TABLE 2 Comparison of gamma passing rates between different methods

2%/2 mm 3%/3 mm
Dose threshold CUT (%) cycleGAN (%) cycleCUT (%) CUT (%) cycleGAN (%) cycleCUT (%)

10% 97.59 ± 2.56 97.22 ± 2.74 97.95 ± 1.24 99.04 ± 1.02 98.68 ± 1.05 99.02 ± 0.60

30% 97.93 ± 2.07 97.86 ± 2.63 98.08 ± 1.55 99.14 ± 1.27 98.88 ± 1.47 99.22 ± 1.01

50% 97.25 ± 2.91 97.11 ± 3.79 97.34 ± 2.32 98.73 ± 2.22 98.28 ± 2.36 98.89 ± 1.49

70% 97.87 ± 2.66 97.34 ± 3.54 98.00 ± 2.10 99.07 ± 2.00 98.61 ± 1.92 99.35 ± 1.01

90% 99.62 ± 0.86 99.15 ± 1.18 99.80 ± 0.43 99.98 ± 0.04 99.99 ± 0.01 100.00 ± 0.00

generator in our model is “tanh” and the output range of
the tanh function is [−1 1], both CT and MRI images are
normalized to [−1 1] according to their respective maxi-
mum and minimum intensity values. For CT images, the
intensity values have HU units, so all CT images have
similar intensity ranges. For MRI images, a histogram
matching method is used to standardize the scale of the
MRI signal intensity before normalizing to [−1 1]. After
standardization, the intensity values of all MRI images
are in similar ranges. Therefore, normalizing to [−1, 1]
does not cause any obvious shifting of data from one
scan to another.

The results showed that the cycleCUT could be effec-
tively trained using unpaired data, which would relax
many restrictions on the data for current deep learning-
based sCT generation methods.The images for different
medical purposes could all be collected in a large
dataset and utilized to train the cycleCUT. The qualita-
tive analysis demonstrated that CT images produced by
the proposed cycleCUT method appeared more realis-
tic and contained fewer artifacts than those produced
by the cycleGAN and CUT methods. The quantitative
evaluation showed that cycleCUT achieved higher accu-
racy in predicting the HU values than cycleGAN and
CUT. However, the dosimetric improvement was min-
imal. This is probably due to the insensitivity of the
MV photon dose calculation to small CT value vari-
ation. It is worth mentioning that proton radiotherapy
may benefit more from the improved sCT image qual-
ity because the proton stopping power is more sensitive
to HU value changes. In addition, better image quality
would also generate better DRR images to assist patient
setup.

As shown in the error images in Figure 5–7, all sCT
images have small HU errors in the soft tissue but rela-
tively large HU errors at the tissue interfaces. The larger
error at the interface is partially caused by the non-
perfect registration between the MRI and CT images.
Because the MRI and CT images were not acquired at
the same time, the anatomical structures of sCT which
are derived from the MRI cannot be completely regis-
tered to those in CT,even if the MRI-to-sCT conversion is
perfect. Therefore, the prediction error of sCT inevitably
contains the registration error during the result evalu-
ation and is more notable at the tissue interfaces. In
addition, the blurred boundary at the bone–air interface

in T1-weighted MRI may also result in large HU errors in
sCT generation because bone has a similar appearance
to air in T1-weighted MRI. Its impact on the radiation
dose calculation,especially near the bone–air boundary,
warrants further evaluation.Qi et al.18 showed that using
multiple MRI sequences as model input could obtain
better results than using one single MRI sequence. The
ultrashort echo time (UTE) sequence can provide better
bone signals, so adding UTE sequence MRI to the input
can help distinguish the bone–air boundary in sCT.

Due to the limitation of GPU memory and small
dataset, the three models in this study were all trained
using 2D images,which might result in poor continuity for
the sCT along the image thickness dimension.As shown
in Figures 6 and 7,although the cycleCUT achieves bet-
ter results than cycleGAN and CUT, the sCT images still
have blurs and noise artifacts in the sagittal and coro-
nal planes. In the future, a 3D model using multiple MRI
sequences as input and trained with a larger dataset
may be developed to improve the network performance.
In addition, MRI images from different scanners may
have different image quality. It is unclear how the method
will be affected if the training dataset is from one scan-
ner and the test dataset is from another. Future studies
will incorporate patient images acquired from different
scanners to test the scope of the clinical application of
the proposed method.

5 CONCLUSION

In this study, we proposed a novel deep learning-based
method that integrated CUT and cycleGAN networks to
generate sCT images from MRI. The proposed network
could be effectively trained with unpaired MRI-CT data
and outperformed both cycleGAN and CUT in terms of
both structural details and HU accuracy. This method
could be applied in radiotherapy for sCT generation to
accelerate the MRI-only treatment workflow.
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