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1  |  INTRODUC TION

Global surface air temperatures have risen approximately 1°C above 
pre- industrial levels, and the climate warming is expected to reach 
3.3– 5.7°C above pre- industrial levels by the end of the 21st century 
(IPCC, 2021). A growing body of evidence is showing that climate 

warming changes plant sexual reproduction performance, includ-
ing flowering phenology and reproductive effort (the proportion of 
the resources of an organism allocated to reproduction, e.g., flower 
number) and success (the final outcome of resource investment, 
e.g., fruit and/or seed number) (Arft et al., 1999; Bazzaz et al., 2000; 
Dorji et al., 2013; Molau, 1993). Changes in sexual reproduction 
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Abstract
Climate warming is changing plant sexual reproduction, having consequences for spe-
cies distribution and community dynamics. However, the magnitude and direction 
of plant reproductive efforts (e.g., number of flowers) and success (e.g., number and 
mass of fruits or seeds) in response to warming have not been well- characterized. 
Here, we generated a global dataset of simulated warming experiments, consisting of 
477 pairwise comparisons for 164 terrestrial species. We found evidence that warm-
ing overall decreased fruit number and increased seed mass, but little evidence that 
warming influenced flower number, fruit mass, or seed number. The warming effects 
on seed mass were regulated by the pollination type, and insect- pollinated plants ex-
hibited a stronger response to warming than wind- pollinated plants. We found strong 
evidence that warming increased the mass of seeds for the nondominant species but 
no evidence of this for the dominant species. There was no evidence that phyloge-
netic relatedness explained the effects of warming on plant reproductive effort and 
success. In addition, the effects of warming on flowering onset negatively related 
to the responses in terms of the number of fruits and seeds to warming, revealing a 
cascading effect of plant reproductive development. These findings provide the first 
quantification of the response of terrestrial plant sexual reproduction to warming and 
suggest that plants may increase their fitness by producing heavier seeds under a 
warming climate.
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performance may affect plant demographics (Jones & Henry, 2003; 
Walker & Chapin, 1987; Welker et al., 1997), offspring genetic vari-
ability (Steltzer et al., 2008), species distributional range (Dainese 
et al., 2017; Valdés et al., 2019), community composition, and many 
other ecosystem functions (Solomon et al., 2007; Walther et al., 2005). 
However, to date, the influence of climate warming on plant reproduc-
tive effort and success on a global scale remains poorly understood.

Climate warming affects the reproductive efforts in several ways. 
Climate warming often reduces flower number because higher tem-
peratures decrease floral transition by accelerating somatic growth 
(Liu et al., 2012; Tromp, 1984). Warming also decreases flower pro-
duction through a reduction in soil moisture (Hedhly et al., 2009; 
Kuppler et al., 2021), which is associated with flowering requiring 
the consumption of large amounts of water (Burkle & Runyon, 2016; 
Gallagher & Campbell, 2017; Kuppler et al., 2021). In addition to 
changes in environmental conditions, warming may change plant 
reproductive effort via affecting flowering phenology. Rising tem-
peratures in spring tend to advance the onset of plant flowering by 
accelerating ecodormancy breaks in northern high- latitude ecosys-
tems (Wolkovich et al., 2012). Earlier flowering onset favors flower 
production by prolonging the duration of flowering, but negatively 
influences flower number due to the increased risks of frost dam-
age (Cook et al., 2012; Inouye, 2008; Prevey et al., 2019). In con-
trast, winter warming can delay the onset of flowering through 
devernalization, because many temperate and boreal species require 
prolonged winter chilling to initiate flowering (O'Neill et al., 2019; 
Penfield et al., 2021). Late flowering onset negatively influences 
flower formation and development (O'Neill et al., 2019).

Climate warming can influence plant reproductive success by dis-
rupting fertilization. For instance, high- temperature stress shortens 
the duration when the stigmas of flowers are receptive to pollen, so 
reduces the chances of successful fertilization (Zinn et al., 2010). The 
number of fruits or seeds also decreases if climate warming reduces 
the quality and number of flowers (Bogdziewicz et al., 2020). Fruit 
and seed production requires fully developed flowers, and the num-
ber of flowers and ovules is a prerequisite for fruit and seed set per 
individual plant (Bykova et al., 2012). Additionally, the reproductive 
success of entomophilous species can be regulated by pollinators 
(Bennett et al., 2020; Rodger et al., 2021). When pollinators cannot 
track an earlier flowering phase under warming, the mismatch be-
tween the timing of flowering and pollinator occurrence leads to re-
ductions in seed and fruit production (CaraDonna et al., 2014; Gérard 
et al., 2020; Gezon et al., 2016; Kudo & Cooper, 2019; Rafferty & 
Ives, 2011). In addition to the number of fruits or seeds, climate warm-
ing may influence fruit or seed mass by changing plant phenology. 
An extended growing season under warming conditions enhances 
the investment of resources into reproduction and prompts heavier 
fruits and seeds (Bolmgren & Cowan, 2008; Menzel et al., 2011; 
Moles & Westoby, 2003). Moreover, warming also potentially influ-
ences the fruit or seed mass of plants by altering their reproductive 
strategies. A trade- off between fruit and seed number and mass is 
ubiquitous for terrestrial species (Aarssen & Jordan, 2001; Dani & 
Kodandaramaiah, 2017; Henery & Westoby, 2001).

Previous manipulative experiments have produced inconsistent 
findings regarding how climate warming influences plant reproduc-
tive efforts and success, which may be owing to differences in eco-
logical and experimental factors. For instance, the pollination type 
of a plant regulates the effects of warming on reproductive success, 
as entomophilous species are often more sensitive to warming than 
anemophilous species (Fitter & Fitter, 2002). Reproductive effort 
and success are more affected by long- term than short- term warm-
ing because the former leads to the depletion of plant belowground 
carbohydrates and nutrient stores over time (Arft et al., 1999; Barrett 
& Hollister, 2016; Dorji et al., 2013; Klady et al., 2011; Lambrecht 
et al., 2007). In contrast, an understudied factor potentially influencing 
the responses of plant reproduction to warming is the species domi-
nance in a community. Generally, the dominant species monopolizes 
light, nutrients and water, and enough resources may allow them to 
exhibit a stronger reproductive response to warming than the rare 
species (Avolio et al., 2019; Liu et al., 2012). In addition, it also remains 
unclear whether the phylogenetic relatedness of plants regulates the 
effects of warming on reproductive effort and success, although the 
evolutionary history of a species partly explains its reproductive strat-
egy (Vargas et al., 2018).

Here, we conducted a global meta- analysis of 61 manipulative 
warming studies, focusing on 164 terrestrial species, to examine how 
climate warming influences plant reproductive effort and success 
(Figure 1). We tested the following hypotheses (Table 1): First, we pre-
dicted that warming decreases the reproductive effort (e.g., flower 
number) by reducing plant water availability and devernalization, and 
further reduces the number of fruits and seeds through cascading ef-
fects (Gérard et al., 2020; Kudo & Cooper, 2019; Liu et al., 2012). Second, 
we predicted that warming increases the mass of fruits and seeds, in 
addition to reducing fruit and seed number, because the offspring size 
and number tradeoffs are ubiquitous for many terrestrial species (Dani 
& Kodandaramaiah, 2017; Jakobsson & Eriksson, 2000; Moles, 2018). 
Finally, we predicted that the dominance and evolutionary history of 
species explain the effects of warming on reproductive effort and suc-
cess, as they partly reflect plant resource acquisition ability (Doudová & 
Douda, 2020) and reproductive strategy (Ashman et al., 2004).

2  |  METHODS

2.1  |  Data compilation

We collected data on the effects of experimental warming on re-
productive effort (e.g., flower number) and success (e.g., fruit num-
ber, fruit mass, seed number, and seed mass) from peer- reviewed 
articles published before December 31, 2020. Specifically, we 
conducted a systematic literature search on Web of Science 
(Thompson Reuters), Google Scholar (Google Inc.), and China 
National Knowledge Infrastructure (CNKI) using the terms (warm* 
OR increased temperature OR elevated temperature OR temper-
ature gradient OR heating) AND (reproduction OR seed OR fruit 
OR flower). We used the following criteria to extract data: (1) we 
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included species from natural terrestrial ecosystems, and we ex-
cluded species from agricultural (e.g., transplanted individuals 
and seed germination) or aquatic ecosystems; (2) the biotic (e.g., 
vegetation structure) and abiotic (e.g., climatic and soil proper-
ties) conditions in the control and warming plots were the same 
at the beginning of the experiments; (3) we selected only the data 
from control and warming plots in the multifactor experimen-
tal manipulation studies; and (4) we directly obtained the means, 
standard deviations, and sample sizes from tables or we indirectly 
extracted them from digitized figures. Based on the four standards, 
we obtained a meta- dataset covering 61 published papers, which 
consisted of 477 pairs of observations for 164 terrestrial species 
(Table S1). These observations comprised 177 pairs for flower num-
ber, 48 pairs for fruit number, 16 pairs for fruit mass, 100 pairs for 
seed number, and 136 pairs for seed mass.

As the phenology of flowering often influences reproductive ef-
fort and success, we extracted data on the onset (97 pairs) and du-
ration of flowering (53 pairs) from the 61 selected papers (Table S1). 
In addition, we collected ancillary ecological and experimental in-
formation, including latitude, longitude, elevation, annual mean air 
temperature (MAT), mean annual precipitation (MAP), ecosystem 
types (arctic/alpine tundras, boreal forests, [semi]arid grasslands, 
temperate grasslands, and temperate forests), warming methods 
(open- top chambers, infrared radiators, and greenhouses), warm-
ing season (year- round and seasonal warming), warming magnitude 
(<2 and ≥2°C; holding global warming at 2°C above pre- industrial 

temperature was considered as a “safe level” of warming; Joshi 
et al., 2011), and experimental duration (≤2, 2– 5, and >5 years; 
warming effects on vegetation composition were often detected 
in the first two experimental years (Walker et al., 2006), whereas 
most warming experiments lasted less than 5 years (Liu et al., 2021)) 
(Table S2). We obtained the MAT and MAP from the WorldClim v2.0 
database (http://www.world clim.org/) when they were not reported 
in the source papers (Fick & Hijmans, 2017).

We also collected biological information on the study species, 
including species name, dominance (dominant species and non-
dominant species; the classification was based on the description 
of the study species in the papers), functional group (graminoids, 
leguminosaes, forbs, and woody species), and pollination type (en-
tomophily and anemophily; the study species were classified based 
on the papers or some websites, e.g., https://plants.usda.gov). We 
extracted the phylogenetic tree of these species from a global phy-
logenetic tree using Phylomatic software (version 3.0; http://phylo 
diver sity.net/phylo matic) (Zanne et al., 2014).

2.2  |  Statistical analyses

To quantify the warming effect on plant sexual reproduction, we used 
the Hedges' d metric as recommended by Gurevitch et al. (2001). We 
calculated the Hedges' d value of each reproductive index for each 
study:

F I G U R E  1  Geographical distribution of the experimental warming studies in our meta- analysis.

http://www.worldclim.org/
https://plants.usda.gov
http://phylodiver
http://phylodiver
http://sity.net/phylomatic
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where Xc and Xe are the mean values, Sc andSeare the standard devi-
ations, and Nc andNe are the sample sizes for the control and warm-
ing plots, respectively; Jis a weighting factor based on the sample size 
(Hedges, 1981). For studies that did not report the standard deviations, 
we used the Bracken (1992) approach to impute the missing standard 
deviations (the “impute_SD” function; R package “metagear,” version 
0.7).

We also calculated the within- case variation of Hedges' d:

In this study, we calculated Hedges' d values and their within- case vari-
ations using the “escals” function (R package “metafor,” version 3.0- 2).

As some studies included multiple cases, we used hierarchical 
random- effects meta- analyses to quantify the mean effect sizes 
of warming and their confidence intervals (CIs). We performed the 
meta- analyses using the “rma.mv” function (R package “metafor,” 
version 3.0- 2), taking the variable “Reference/ID” as a nesting fac-
tor (Nakagawa et al., 2017; Viechtbauer, 2010). We considered the 
mean effect sizes of warming to be significant if the 95% CIs did not 
overlap by zero.

We tested the heterogeneity of warming effect sizes across 
studies using Q statistics, which are the weighted square sums com-
pared with the χ2 distribution (Hedges & Olkin, 1985). We divided 
the total heterogeneity (QT) into the heterogeneity explained by the 
predictor variable examined in the model (QM) and residual hetero-
geneity (QE) using the “rma.mv” function (R package “metafor” ver-
sion 3.0- 2; Harrison, 2011). For each continuous variable (latitude, 
MAT, MAP, and elevation), we examined their relationship with the 
effect of warming on reproductive effort and success. For each cat-
egorical variable (e.g., warming magnitude), we compared the warm-
ing effects on reproduction between its different categories (e.g., 
< 2 and ≥2°C). We considered that the predictor variable regulated 
the effect sizes of warming when the p- values for QM were <0.1. In 
addition, we assessed whether evolutionary history was a key pre-
dictor of the effects of warming on reproduction using Blomberg's K 
metric (R package “phytools,” version 4.1.3) (Blomberg et al., 2003; 
Chamberlain et al., 2012; Han & Zhu, 2021). A p- value for Blomberg's 
K lower than .05 indicated that evolutionary history contributed to 
the variance in the warming effect size.

To explore whether the linkages of reproductive indices exist 
under warming, we picked up the two groups of studies: (1) that 
simultaneously containing the data of the onset or duration of 
flowering and the reproductive effort or success and (2) that simul-
taneously including the information of number and mass of fruits 

or seeds. We further examined the relationships between flower-
ing phenology and reproductive effort or success and between off-
spring number and mass using the linear regression.

We tested for potential publication bias using Rosenberg fail- 
safe numbers and funnel plots. If the fail- safe number is larger than 
5 × n + 10, where n is the sample size, publication bias does not exist 
(Rosenberg, 2005). In this study, we did not find any publication bias 
for most reproductive indices (Figure S1; Table S3). We conducted all 
statistical analyses using R 4.1.2 (R Core Team, 2021).

We presented our results using a gradual language of evidence, 
which has been recommended by Muff et al. (2021). Compared to 
significance testing with an arbitrary p- value cutoff, the language of 
evidence allows us to communicate scientific findings in a more nu-
anced form.

3  |  RESULTS

Across all species examined, we found strong or moderate evi-
dence that experimental warming decreases fruit number (Hedges' 
d = −0.65, p = .004) and increases seed mass (Hedges' d = 0.40, 
p = .019; Figure 2). In contrast, we found little evidence that warm-
ing overall influences flower number (Hedges' d = −0.21, p = .135), 
fruit mass (Hedges' d = 0.46, p = .298), or seed number (Hedges' 
d = −0.06, p = .749). However, the Q statistics showed that the evi-
dence is very strong that the variances in warming effects on flower 
number (Qt = 464.80; p < .001), fruit number (Qt = 198.75; p < .001), 
fruit mass (Qt = 91.02; p < .0001), seed number (Qt = 284.77; 
p < .001), and seed mass (Qt = 571.86; p < .0001) were large among 
the different studies (Figure S2).

Variances in the effects of warming on reproductive effort (i.e., 
flower number) across studies could be partly explained by latitude 
and elevation (Table 2). Specifically, we found very strong evidence 

(1)d =
Xe − Xc

√

(Ne − 1)S2e + (Nc − 1)S2c
Ne +Nc − 2

J

(2)J = 1 −
3

4
(

Ne + Nc − 2
)

(3)vd =
Ne + Nc

NeNc

+
d2

2
(

Ne + Nc

)

F I G U R E  2  Effect sizes (Hedges' d) of experimental warming on 
reproductive effort and success. Points indicate mean effect sizes 
across all studies, and the bars indicate 95% confidence intervals. 
Values on left represent sample sizes.
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that warming effects on flower number positively correlate with 
latitude (QM = 12.56, p < .001), but negatively correlate with eleva-
tion (QM = 7.94, p = .005; Figure 3). In addition, we noted moder-
ate evidence that warming decreases flower number in (semi)arid 
grasslands (Hedges' d = −1.02, p = .012), but we found no evidence 
of this in other ecosystems (p > .1; Figure 4). There was moderate 
evidence that low- level warming (<2°C) decreases the flower num-
ber (Hedges' d = −0.37, p = .038), but little evidence that high- level 
warming influences the flower number (p = .195). The evidence was 
weak that the flower number reduces in studies that lasted longer 
than 5 years (Hedges' d = −0.63, p = .065), and we found no evidence 
of this in short- term studies (≤5 years; p > .1). We found no evidence 
that phylogenetic relatedness regulates the effects of warming on 
flower number (K = 0.08, p = .142; Figures 5; Table S4).

Key predictors of the effects of warming on reproductive suc-
cess differed among the indices. For fruit number, there was strong 
evidence that the negative effects of warming diminish with increas-
ing MAP (QM = 7.68, p = .006; Figure 3). The evidence was strong 
that warming decreases the fruit number in Arctic/alpine tundras 
(Hedges' d = −0.68, p = .006) but not in other ecosystems (p > .1; 
Figure 4). There was moderate evidence that warming decreases the 
fruit number in studies using infrared radiators (Hedges' d = −0.67, 
p = .042), but no evidence of this in studies using open- top cham-
bers (p = .124). In addition, we found moderate evidence that the 
fruit number decreases under high- level warming (≥2°C) (Hedges' 
d = −0.73, p = .014), but no evidence under low- level warming 
(<2°C) (p = .200; Figure 4). The evidence was very strong that the 
fruit number of entomophilous species reduces under climate warm-
ing (Hedges' d = −0.66, p < .001) and weak that the fruit number of 
anemophilous species decreases under warming (Hedges' d = −1.46, 
p = .059). We also found moderate evidence that warming reduces the 

fruit number of the dominant species (Hedges' d = −0.71, p = .014), 
but not for the nondominant species (p > .1; Figure 4). In contrast, we 
found no evidence that the warming effects on seed number were 
modulated by the examined predictor variables (Table 2).

For fruit mass, we found strong evidence that warming effects 
positively correlate with MAP (QM = 21.12, p < .001) and eleva-
tion (QM = 7.32, p = .007; Figure 3). We noted moderate evidence 
that warming enhances the fruit mass of forb species (Hedges' 
d = 1.21, p = .017), but reduced it for woody species (Hedges' 
d = −0.50, p = .045; Figure 4). In addition, we did not find any 
evidence that phylogenetic relatedness influences the effects of 
warming on fruit mass (K = 0.39, p = .355; Figure 5, Table S4). For 
seed mass, the evidence was strong that warming effects posi-
tively correlate with latitude (QM = 9.95, p = .002) and negatively 
correlate with elevation (QM = 6.70, p = .010; Figure 3). We also 
found strong evidence that warming increases seed mass for ento-
mophilous species (Hedges' d = 0.53, p = .004) and nondominant 
species (Hedges' d = 0.54, p = .009; Figure 4), but no evidence that 
warming influences the seed mass of anemophilous species and 
dominant species (p > .1).

We found weak evidence that warming advances flowering 
onset across the examined studies (Hedges' d = −0.38, p = .056; 
Figure S3). The effect sizes of warming on flowering onset nega-
tively correlated with the effect sizes of flower number (p = .016), 
fruit number (p = .045), and seed number (p = .001) (Figure S4). In 
contrast, there was no evidence that warming changes flowering du-
ration (Hedges' d = 0.05, p = .791; Figure S3). In addition, we found 
very strong evidence that the effect sizes of warming on flower 
number positively correlate with those of fruit number (p < .001) 
and seed number (p < .001), and moderate evidence that the effects 

TA B L E  2  Q- statistics results for whether the effect of experimental warming on reproductive effort and success is regulated by the 
examined predictor variables

Predictor variable

Flower number Fruit number Fruit mass Seed number Seed mass

QM p QM p QM p QM p QM p

Latitude 12.56 <.001 1.13 .287 2.61 .106 2.05 .152 9.95 .002

Mean annual temperature 1.87 .172 0.23 .634 0.21 .645 0.57 .449 1.88 .170

Mean annual precipitation 2.52 .113 7.68 .006 21.12 <.001 0.06 .803 0.07 .796

Elevation 7.94 .005 0.01 .919 7.32 .007 0.01 .916 6.70 .010

Ecosystem type 5.89 .207 1.30 .862 — — 0.10 .953 5.31 .151

Warming method 0.27 .602 8.75 .013 13.05 .002 0.03 .985 0.16 .924

Warming magnitude 2.10 .147 0.25 .615 — — 0.01 .921 0.00 .981

Warming season 0.02 .876 1.93 .164 0.54 .464 0.39 .533 1.03 .310

Experimental duration 1.81 .405 1.13 .568 — — 0.90 .235 0.18 .914

Functional group 3.96 .266 1.31 .728 17.58 <.001 1.55 .672 2.66 .447

Pollination type 0.07 .798 1.01 .315 — — 0.50 .481 2.88 .090

Species dominance 1.22 .270 0.21 .645 15.15 <.001 0.00 .986 1.34 .247

Note: Note that bold sizes are shown when there are weak (p < .1), moderate (p < .05), strong (p < .01), or very strong evidence (p < .001) for the 
regulatory effects of predictor variables. “— ” indicates that data are not available because the predictor variables are less than two categories.
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of warming on seed number positively correlate with those of seed 
mass (p = .037; Figure S5).

4  |  DISCUSSION

Our meta- analysis provides the first quantification of the effects of 
climate warming on plant reproductive effort and success on a global 
scale. Our first hypothesis received mixed support from the global 
meta- analysis, with strong evidence that warming overall reduced 
fruit number but little evidence for a reduction in flower number 
(Figure 2). There was moderate evidence that warming resulted in 
heavier seeds across terrestrial species, which supported the sec-
ond hypothesis. Regarding our third hypothesis, we found evidence 
that the dominance of species modulated the effect of warming on 
fruit mass, and no evidence that the evolutionary history of species 
regulated warming effects on reproductive indices. These find-
ings deepen our understanding of plant sexual reproduction in a 
warmer world, and suggest that climate warming may benefit the 

reproduction of terrestrial species by resulting in their producing 
heavier seeds.

4.1  |  Limited change in flower number 
under warming

The results of our meta- analysis showed no evidence that experimen-
tal warming changed the flower number across all terrestrial species 
(Figure 2). This limited warming effect may be related to the num-
ber of flowers set before flowering (Molau, 1993; Sorensen, 1941). 
The flower buds of many species form one or several seasons before 
flowering (Diggle, 1997). This speculation also means that long- term 
experimental warming may produce a more pronounced effect on 
flower number, which is supported by our result that in studies last-
ing longer than 5 years, researchers observed a larger reduction in 
flower number than those conducting short- term studies (Figure 4a). 
In addition, the limited change in flower number may be associ-
ated with our finding that experimental warming did not change 

F I G U R E  3  Relationships between warming effect sizes of reproductive effort and success and latitude, mean annual temperature, mean 
annual precipitation, and elevation. The reproductive indices include flower number (a– d), fruit number (e– h), fruit mass (i– l), seed number 
(m– p), and seed mass (q– t). Point size is proportional to weight in the meta- analysis. Regression lines and 95% confidence intervals are shown 
when there are weak (p < .1), moderate (p < .05), strong (p < .01), or very strong evidence (p < .001) for the regulatory effects of predictor 
variables.
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flowering duration (Figure S3). Flowering duration is an important 
factor influencing the number of flowers because a longer flower-
ing period provides an opportunity for more flowers to be produced 
(Dorji et al., 2020; Nagahama et al., 2018).

However, we found moderate evidence that flower number de-
creased in response to experimental warming in (semi)arid ecosys-
tems (Figure 4a), which likely occurred because warming reduced 
plant water availability and thus negatively influenced flower pro-
duction (Dolezal et al., 2021; Dorji et al., 2013; Sherry et al., 2007). 
In contrast, we found no evidence that warming changed the flower 
number in Arctic/alpine tundras or temperate grasslands, although 
rising temperatures caused an earlier flowering onset (Figure S6). 
This likely occurred because the positive effect of earlier flower-
ing on flower number was counteracted by the negative effect of 
increased risk of frost damage (Inouye, 2008; Wipf et al., 2009). 
Additionally, we found strong evidence that the warming effect size 
on the number of flowers positively correlated with latitude and 
negatively correlated with elevation (Figure 3a, d), suggesting that 
climate warming may result in a larger flower number shift at lower 
latitudes and higher elevations.

4.2  |  Reduced fruit number and unchanged seed 
number under warming

Our result showed strong evidence that experimental warming 
overall reduced the fruit number, which is consistent with pre-
vious findings in Tibetan alpine (Liu et al., 2012) and semiarid 
Mediterranean grasslands (Valencia et al., 2016). One explanation 
for the negative effect of warming on fruit number is that high- 
temperature stress disrupts the development of the embryo and 
endosperm (Srinivasan et al., 1999). This speculation is supported 
by our finding that a reduced fruit number occurred only when 
experimental warming increased more than 2°C (Figure 4b). This 
reduction in fruit number was also likely related to changes in re-
productive efforts under warming. Although we found that exper-
imental warming caused limited changes in flower number in the 
present meta- analysis, it may have reduced the quality of flowers, 
which, in turn, reduced fruit production. It has been reported that 
climate warming decreases the number of fully developed flow-
ers in the subalpine meadows of the Colorado Rocky Mountains 
(Saavedra et al., 2003).

F I G U R E  4  Comparisons of warming effects on reproductive effort and success among different categories of predictor variables. 
Reproductive indices include flower number (a), fruit number (b), fruit mass (c), seed number (d), and seed mass (e). Predictor variables 
include ecosystem type, warming method, warming magnitude, warming season, experimental duration, functional group, pollination type, 
and dominance of species. Solid points and error bars indicate mean effect sizes and 95% confidence intervals, respectively. Values on left 
represent number of synthesized cases. Black points are shown when there is no evidence of warming effects (p > .1); other colors are shown 
when there are weak (p < .1), moderate (p < .05), strong (p < .01), or very strong evidence (p < .001).
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There was no evidence from our global meta- analysis that 
warming overall changed the seed number, which is inconsistent 
with previous findings based on herbarium specimens in China 
that climate warming has increased the seed number per pod of 
legume species over the past century (Duan et al., 2019). The dis-
crepancy between the two findings may be associated with the 
researchers applying different seed number observation methods. 
Duan et al. (2019) only focused on the number of seeds per pod, 
whereas most researchers in our meta- analysis quantified the 
number of seeds by monitoring the seeds per unit area or per in-
dividual plant.

4.3  |  Increased seed mass under warming

We found moderate evidence that warming increased seed 
mass across terrestrial species, which may have resulted from a 
larger reproductive investment associated with an enhancement 
in biomass production. It is well known that rising temperatures 

stimulate the photosynthetic activity and biomass production by 
accelerating the rate of Rubisco carboxylation (Crous et al., 2018; 
Gunderson et al., 2010). In addition, increased seed mass is likely 
associated with earlier seed development following earlier flow-
ering onset. Seed development often requires completion before 
frost damage occurs in autumn (Ida & Kudo, 2021). Earlier- onset 
seed development can provide plants with more time to produce 
heavier seeds.

Our finding of a positive relationship between seed mass and 
seed number did not support the offspring number and mass trade- 
off. In contrast, the increased seed mass but unchanged seed num-
ber we found revealed another plant reproductive strategy under 
a warmer climate, that is, the mother plants not only allocate more 
resources to reproduction but also prefer to improve seed mass 
(Dani & Kodandaramaiah, 2017). An explanation for the observed 
reproductive strategy is that the offsprings of larger seeds have ad-
vantages in terms of survival and growth potential compared with 
smaller seeds, so have a higher probability of survival (Bergholz 
et al., 2015; Metz et al., 2010; Thompson & Hodgson, 1993). For 

F I G U R E  5  Phylogenetic trees of studied species and effects of warming on their reproductive effort and success. Warming effects on 
flower number, fruit number, fruit mass, seed number and seed mass are shown following the order from inner cycle to outer cycle. Length 
of bar is proportional to effect size of warming, which represents a positive (negative) value if the bar points toward outer (inner) cycle. 
Branch colors of phylogenetic tree represent family. Background colors of tip labels represent plant life form.
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instance, an increase in seed mass may more easily satiate seed 
predators, thus leading to plants to experience a lower proportion 
of seed predation (i.e., “predator satiation hypothesis”; Bogdziewicz 
et al., 2020; Jansen et al., 2004; Janzen, 1971; Linhart et al., 2014). 
In addition, the observed reproductive strategy may favor the mi-
gration and diffusion of species under climate warming. Generally, 
terrestrial plants shift their distribution ranges to keep track with 
their climatic niches by seed dispersal, and most species rely on an-
imals to disperse their seeds because animal- dispersed seeds are 
dispersed farther (Fricke et al., 2022; Gallagher, 2013; González- 
Varo et al., 2017; Tamme et al., 2014). In this study, plant seeds with 
a heavier mass under warming could attract more seed dispersers 
and have wider dispersal and hoard (i.e., “animal dispersal hypothe-
sis”; Fricke et al., 2022; Gallagher, 2013; González- Varo et al., 2017; 
Janzen, 1971; Kelly, 1994; Vander Wall, 2002).

Notably, from this meta- analysis, we found strong evidence that 
warming overall increased the seed mass of the nondominant spe-
cies but no evidence of this for the dominant species. Although this 
result did not derive from the same plant communities, it suggested 
that climate warming may exert different impacts on the fitness of 
the dominant and nondominant species. Further research is required 
to explore how climate warming differentially influences the repro-
duction of dominant species and nondominant species, given that it 
may be a key to shifts in community composition and biodiversity 
under a changing climate. In contrast, we did not find an important 
role for the evolutionary history of species in regulating the effects 
of warming on reproductive effort and success. This indicated that 
the response of plant reproduction to climate warming may not be 
phylogenetically conserved (Liu et al., 2022). Therefore, using simple 
phylogenetic relatedness to predict the dynamics of terrestrial spe-
cies' sexual reproduction and its consequences in warmer climates 
may be inappropriate.

Overall, our global meta- analysis suggested that climate warming 
reduced fruit number of terrestrial plants but increased their seed 
mass. These findings have three important implications. First, our 
findings did not support the trade- off between offspring size and 
mass under warming conditions, but revealed a potentially increased 
fitness of terrestrial species due to their production of heavier 
seeds. Second, our findings provided evidence that the effects of 
warming on plant sexual reproduction are regulated by species dom-
inance. Thus, examining whether the reproduction of rare species 
responds differently from dominant species may improve biodi-
versity conservation outcomes. Finally, we found complex linkages 
between flowering phenology and reproductive effort and success 
(Figure 6), suggesting the necessity of elucidating the whole plant 
life history for predicting the future dynamics of plant populations 
and communities.

However, our dataset lacks evidence from subtropical and 
tropical ecosystems, although it covers a wide range of terres-
trial plants. Our study was also limited by the lack of some po-
tentially important measurements (i.e., height and biomass of 
plant and quantity or quality of pollen) for completely elucidat-
ing the mechanisms underlying the effects of climate warming on 

plant sexual reproduction. For instance, plant height and biomass 
often positively correlate with reproductive effort (Bolmgren & 
Cowan, 2008); however, a reduction in pollen quantity or quality 
reduces reproductive success (Ashman et al., 2004). In addition, 
self- compatibility is an important biological character, and the 
reproduction of only self- incompatible plants may be negatively 
influenced by the phenological mismatch between pollinator oc-
currence and flowering under climate warming. So far, how this bi-
ological character of species regulates the reproductive responses 
of terrestrial plants to warming remains poorly understood. Filling 
these gaps will help us to identify broad patterns of plant repro-
ductive efforts and success in climate warming across geography 
and taxonomy.
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