
Frontiers in Oncology | www.frontiersin.org

Edited by:
Antonina Mitrofanova,

Rutgers, The State University of
New Jersey, United States

Reviewed by:
Jose Eduardo Tavora,

Faculdade de Ciências Médicas de
Minas Gerais (FCMMG), Brazil

Jiayun Li,
Google, United States

*Correspondence:
Baiying Lei

leiby@szu.edu.cn

Specialty section:
This article was submitted to

Genitourinary Oncology,
a section of the journal
Frontiers in Oncology

Received: 08 September 2021
Accepted: 22 February 2022

Published: 08 April 2022

Citation:
Qiu Y, Hu Y, Kong P, Xie H, Zhang X,

Cao J, Wang T and Lei B (2022)
Automatic Prostate Gleason Grading

Using Pyramid Semantic Parsing
Network in Digital Histopathology.

Front. Oncol. 12:772403.
doi: 10.3389/fonc.2022.772403

ORIGINAL RESEARCH
published: 08 April 2022

doi: 10.3389/fonc.2022.772403
Automatic Prostate Gleason Grading
Using Pyramid Semantic Parsing
Network in Digital Histopathology
Yali Qiu1, Yujin Hu1, Peiyao Kong1, Hai Xie1, Xiaoliu Zhang1, Jiuwen Cao2,
Tianfu Wang1 and Baiying Lei1*

1 School of Biomedical Engineering, Health Science Center, Shenzhen University, National-Regional Key Technology
Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound
Imaging, Shenzhen, China, 2 Key Lab for Internet of Things (IOT) and Information Fusion Technology of Zhejiang, Hangzhou
Dianzi University, Hangzhou, China

Purpose: Prostate biopsy histopathology and immunohistochemistry are important in the
differential diagnosis of the disease and can be used to assess the degree of prostate
cancer differentiation. Today, prostate biopsy is increasing the demand for experienced
uropathologists, which puts a lot of pressure on pathologists. In addition, the grades of
different observations had an indicating effect on the treatment of the patients with cancer,
but the grades were highly changeable, and excessive treatment and insufficient
treatment often occurred. To alleviate these problems, an artificial intelligence system
with clinically acceptable prostate cancer detection and Gleason grade accuracy
was developed.

Methods: Deep learning algorithms have been proved to outperform other algorithms in
the analysis of large data and show great potential with respect to the analysis of
pathological sections. Inspired by the classical semantic segmentation network, we
propose a pyramid semantic parsing network (PSPNet) for automatic prostate Gleason
grading. To boost the segmentation performance, we get an auxiliary prediction output,
which is mainly the optimization of auxiliary objective function in the process of network
training. The network not only includes effective global prior representations but also
achieves good results in tissue micro-array (TMA) image segmentation.

Results: Our method is validated using 321 biopsies from the Vancouver Prostate Centre
and ranks the first on the MICCAI 2019 prostate segmentation and classification
benchmark and the Vancouver Prostate Centre data. To prove the reliability of the
proposed method, we also conduct an experiment to test the consistency with the
diagnosis of pathologists. It demonstrates that the well-designed method in our study can
achieve good results. The experiment also focused on the distinction between high-risk
cancer (Gleason pattern 4, 5) and low-risk cancer (Gleason pattern 3). Our proposed
method also achieves the best performance with respect to various evaluation metrics for
distinguishing benign from malignant.
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Availability: The Python source code of the proposed method is publicly available
at https://github.com/hubutui/Gleason. All implementation details are presented in
this paper.

Conclusion: These works prove that the Gleason grading results obtained from our
method are effective and accurate.
Keywords: prostate, gleason grading, histopathology, PSPNet, prostate - pathology
INTRODUCTION

The incidence and mortality of prostate cancer have been
increasing over the past decades (1). With the high risk of
overdiagnosis and overtreatment, there is an urgent need to
accurately assess patient prognosis (2–4). Currently, the effective
diagnostic index of histopathological biopsy of prostate cancer is
still the Gleason grade (5). The Gleason grading system for
prostate cancer refers to observing and scoring the cancer cells
according to the similarity between the normal tissue and cancer
cells (6–9). Pathologists recognize that the prognosis of prostate
cancer is between its primary structure and secondary structure
(10–12). In 2016, pathologists updated the grading system and
redefined the grading criteria 1–5 (13). Although its clinical value
has been widely recognized, the grading system is very complex
and highly subjective. Moreover, the number of the qualified
pathologists is insufficient to meet the global demand for
pathological detection of prostate cancer. Therefore, how to
use the Gleason grading system effectively to realize early
automatic diagnosis and treatment has become an important
research topic (14, 15).

Automatic segmentation has the potential to decrease lag
time between diagnostic tests and treatment by providing a
strong and standardized report of tissue location in a fraction
of the time, which would take a pathologist to do so (16).
However, the diagnostic process highly relies on the
pathologist’s rich personal experience, which is not only time-
consuming and labor-intensive but also suffering from high
subjective errors (17, 18). Moreover, the diagnostic process is
also affected by high interobserver variability from different
pathologists and limits its effect on individual patients. In
order to solve the above problems, doctors often use computer
science and technology to assist diagnosis. Among them, the
deep learning method has been successfully introduced into the
field of medical image analysis (19–21).

Deep learning algorithms have shown their potential for
pathological diagnosis at the expert level in other tasks, such as
diagnosing skin tissue lesions and identifying breast cancer
metastasis. Long et al. (22) proposed a full convolutional
network (FCN), which created a new chapter of semantic
segmentation and improved the generalization of dynamic
objects with an end-to-end way. Liu et al. (23) proved that
FCN with the global average pooling module can enhance the
segmentation performance. Subsequently, Noh et al. (24)
proposed a coarse-to-fine deconvolution network structure for
image segmentation. However, FCN only forecasts on a single
2

scale, which cannot effectively deal with the change of size. Due
to the significant variations in appearances of prostate cancers,
the automatic grading of prostate tissue segmentation is tedious
and troublesome. As histopathology image segmentation and
classification images are usually of high resolution, it is
challenging for the deep learning model to train and learn
discriminative features due to the limited computing resources
(25, 26). The blurred boundaries of some histopathological tissue
may make this task more challenging.

Apart from the existing problems, there are three main
challenges in extracting information from digital histopathology
of prostate cancer. The first challenge is the high heterogeneity of
cells and tissues. The grading of pathological images is complex. It
may have several grades in a histopathology image. The second
challenge is high interobserver variability. Under the huge data
requirements, experts may have different opinions on the
annotation of pictures. The third challenge is to learn features
from high-resolution images. Considering the high heterogeneity
of data and the difference of expert annotation, it is difficult to
extract features in network training. Thus, how to efficiently
extract useful features is quite critical.

To address the above challenges, we propose a new system to
automatically identify prostate histopathology images in this
article. In order to obtain data annotation with high
interpretability and good robustness, we use the Simultaneous
Truth and Performance Level Estimation algorithm (STAPLE)
(27) to synthesize different expert annotations. The STAPLE
algorithm can alleviate the heavy task of experts and deal with
different expert annotations. The proposed system has the
potential to improve prostate cancer prognostics and achieves
a high agreement with the reference standard. The established
benchmark can assess and compare the state of image analysis
and machine learning-based algorithms. It will also help assess
the robustness and accuracy of these computerized methods
against the suggestion of numerous experts. Given the
importance of prostate cancer and challenges of the Gleason
grade system to detect and diagnose prostate cancer,
the promising results can be quite beneficial in the
medical community.

Our main contributions are three-fold:

1. A systematic framework is presented, which is beneficial for
providing pathologists with an adequate and effective
alternative prostate Gleason grading system.

2. An effective feature extraction strategy is proposed based on
the pyramid semantic parsing network, which can extract
April 2022 | Volume 12 | Article 772403
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more effective information and improve the accuracy of
disease diagnosis.

3. Our method is validated via the Vancouver Prostate Centre
and ranks first on the MICCAI 2019 prostate segmentation
benchmark, which is consistent with the diagnosis of
pathologists.
METHODOLOGY

Overview of the Proposed Method
In this paper, we utilize the pyramid semantic parsing network
(PSPNet) to extract features and then refine those features from
different scales via the pyramid pooling module. To boost the
segmentation performance, we get an auxiliary prediction output,
which is mainly the optimization of auxiliary objective function in
the process of network training. The network not only includes
effective global prior representations but also achieves good results
in tissue micro-array (TMA) image segmentation.

STAPLE Algorithm
For different segmentation tasks, the expert segmentation is
achieved independently, but with the same real segmentation
goal. The STAPLE algorithm is used to compare the differences
of the final segmentation results based on a rapid interactive level
set and hand contours for tumor segmentation (28). The
algorithm segments images and calculates the probability of
true segmentation simultaneously. The STAPLE algorithm not
only takes the systematic deviation caused by the difference of
different experts’ annotations into account but also evaluates the
annotation quality of each expert. The algorithm can balance the
two aspects well and then generate a fuzzy real annotation. We
can extract more critical information with different weights of
each part of the input, which makes the model to have more
accurate judgments and reduces the calculation and storage of
the model. The flowchart of the detailed annotation of TMA core
images provided by different pathologists is shown in Figure 1.

The output of the STAPLE algorithm is a picture with floating
point values from 0 to 1, which represents the probability that the
pixel point belongs to a specific segmentation target. The picture
Frontiers in Oncology | www.frontiersin.org 3
has the same size as the original image. Further, we want to extend
it to multi-category situations. If each pixel has the maximum
probability of belonging to a different category, the category label
of the point is uncertain. At this point, we take the label of the
most experienced expert as the true category label of the point.
After preprocessing, the merged labels can be used for subsequent
network training and verification.

Feature Extraction
Feature extraction is a key step in the field of computer vision
and image processing, which can be used to extract image
information and determine whether the points of each image
belong to the useful features. The purpose of feature extraction is
to divide the points on the image into different subsets, which are
often represented as isolated points, continuous curves, or
continuous regions. The quality of extracted features has a
crucial impact on the performance of the training network (29).

In recent years, the way of feature extraction has developed
from manual design to automatic extraction by the convolution
neural network. Since AlexNet was proposed, researchers have
devised a variety of convolutional neural network architectures
to achieve automatic learning and extraction of features, such as
VGG network (30), residual network (ResNet) (31), and densely
connected network (DenseNet) (32). Different from classic
convolutional neural networks, FCN can handle original input
images from an arbitrary dimension and reserve spatial
information. It classifies the original image pixel by pixel from
the upper sampling and ignores the adjacent information when
unpooling the low-resolution feature images. However, the main
problem of FCN is that it cannot make good use of category
information from a global scene. For the image classification
task, the increase in network depth may bring additional
optimization difficulties.

The residual block can solve this problem by using the long
skip connection in each block and bring good performance. In
the deep residual network, the latter layer mainly learns the
residual thrown from the previous layer. Influenced by the most
widely residual network, our research also uses ResNet as the
skeleton network for feature extraction. ResNet is mainly
composed of residual modules. Unlike the direct use of
convolutional stacking, the residual module introduces residual
FIGURE 1 | Image processing of pathologist annotations of TMA core images. The STAPLE algorithm, the same as pixel-wise majority voting, fuses the annotations
of different pathologists to build the “ground truth label”.
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learning, and hence the network can be made deeper and have
more powerful capabilities of feature extraction. The skeleton
network can effectively extract the tissue structure features using
the prostate cancer pathological slice images and prepare for the
next step of feature learning.

Pyramid Pooling Module
Global pooling has been widely used in the classical complex
digital tissue pathological sections to get global image-level
features (33). The pyramid pooling module (PPM) is a
comparatively good way to fully utilize global information. To
reduce the impact of the loss of contextual information between
different subregions in the stage of training, some researchers
proposed a hierarchical global prior, which contains variations
among different subregions and numerous information with
different scales (34, 35). Different levels of feature mapping
created by the pyramid pool module are ultimately flattened
and then connected to the full connection layer as input. We can
utilize the global prior technique to eliminate the negative effects
of fixed size constraints for the training of the convolutional
network (36). The PPM collects different scales of information,
which is more typical than global pooling (37). This multi-scale
pooling can intuitively maintain global context information and
global information of different scales better than single pooling.

After using the residual network as the feature extractor to
extract the features, we need to further learn and process the
extracted features to different sizes. These feature maps can be
stacked into spatial pyramid feature maps. The pyramid feature
map is subjected to different convolutions for feature learning
and then resampled to restore the size of the input feature map.
Then, these feature maps are combined with the input feature
maps in a splicing manner. PPM can overcome the problems
such as many parameters, difficult training, information loss, and
overfitting and integrate features from four different pyramid
scales. The gray module in PPM represents the feature map
obtained after network training and continues to extract features
Frontiers in Oncology | www.frontiersin.org 4
with blocks having sizes of 1 × 1, 2 × 2, 3 × 3, and 6 × 6 pixels.
We put these three grids on the feature map and can get 12
different blocks, and extract a feature from each block. Thus, 12
groups of features can be obtained. Obviously, the PPM can
effectively combine features of different scales, including both
deep-level high-level semantic features and low-level structural
features. Accordingly, it can better learn and merge features.

In Figure 2, different levels of output in the PPM contain
different sizes of feature maps. The bold red highlight represents
a single bin output. When the size of the pyramid layers set by
the network is N, the corresponding global size decreases to 1/N
of the initial size, which is sampled to the same size as the
original feature map after low-dimensional feature mapping by
bilinear interpolation. To better weigh the global feature weights,
we add a 1 × 1 convolution layer after the pyramidal pooling
layer. Finally, different levels of features are connected at different
levels as the final global feature.

Auxiliary Branch Network
This auxiliary branch network undergoes operations such as
convolution and upsampling to output a prediction result. Note
that the loss function of the backbone network is L1 and the loss
function of the auxiliary branch network is L2, where the
loss function L of the entire PSPNet network can then be
expressed as:

L = L1 + a · L2 (1)

where a is a weight coefficient that balances the 0two loss
functions, and both L1 and L2 are cross-entropy loss functions.
Finally, we set a = 0.5.

Unlike the traditional backpropagation loss of its auxiliary
blocking relays to the shallow layer of the network, we use two
different loss mechanisms that can pass through all convolution
layers for network calculation. The auxiliary loss can optimize
the network learning without affecting the learning of the main
branch. The combination of local and global information can
FIGURE 2 | The flowchart of our proposed method. We define CNN as the basic feature extraction layer of our proposed network. By giving the original image, we
first obtain the feature mapping of the last network convolution layer using CNN and then make an auxiliary prediction for the feature mapping by upsampling and
concatenation layers. Next, we obtain the final feature representation with local and global information through different subregion representations in the PPM after
upsampling and connection layers. Finally, these representations are fed into a convolution layer to get the final per-pixel prediction.
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effectively avoid information loss and make the diagnosis and
prediction of diseases more reliable. During testing, we use the
main branch with better optimization for final prediction.
Specifically, we obtain the feature map by feeding the
pathological slice image of prostate cancer into ResNet101.
Subsequently, the feature map is fed into the PPM for multi-
scale feature learning, and then the learned features pass through
several convolution layers. Finally, we can get the final
prediction result.

By constructing a feature pyramid to extract features of
different sizes, each feature has rich image information, which
improves the reliability of network feature extraction. The
network model reveals the tradeoff between memory and
accuracy and achieves good segmentation performance.
Aiming at solving the problem of digital histopathological
segmentation of prostate cancer, this method has high
accuracy and robustness. Our method helps us get the
champion of automatic prostate Gleason grading challenge
2019 which placed 1st on the MICCAI 2019 prostate
segmentation benchmark, as well as the Vancouver Prostate
Centre dataset.
1Competition website: https://Gleason2019.grand-challenge.org/Home/
EXPERIMENTAL SETUP AND RESULTS

Dataset
In Figure 3, we can see the differences at each gleason grade groups
in detail. The histopathological data in this article are provided by
the Vancouver Prostate Center, which are collected from different
medical institutions and process tissue microarray blocks. It should
be noted that the prostate tissue microarray is gained from patients
with a suspicion of having prostate cancer. For the training dataset,
the Gleason-level determination of the core image of each tissue
Frontiers in Oncology | www.frontiersin.org 5
microarray is associated with the most prevalent and second
prevalent Gleason grading of expert annotations.

Data Processing
The 2019 MICCAI Gleason Competition provides annotations from
six experts, and the annotations provided by each expert are not
necessarily complete. Fortunately, the annotation by all annotators
completely covers all the data. Therefore, using these annotations
becomes a primary challenge. All TMA core images are annotated as
benign and Gleason patterns 3, 4, and 5. Six pathologists drew
regions (closed contours) on pathological images and labeled each
area with grades. Although all of the TMA core images are annotated
in detail by pathologists, none of them is complete. There are even
two images in the expert’s annotation without a corresponding
image in the training set. However, one real tag is needed for
network training; we need to merge the tags of six experts to
enhance the robustness. Only four of the six pathologists label all
the images, while the other two pathologists label only 191 and 92
images. To make better use of all expert annotations, we use the
STAPLE algorithm to build the finally “ground truth label” via
merging the annotations provided by multiple annotators.

Implementation and Data Augmentation
To demonstrate the effectiveness of our method, we participate
the MICCAI Gleason 2019 Challenge1. A total of 331 images
(including 224 train images and 87 test images) are used from
tissue microarray blocks. These images are manually annotated
by professional dermatologists.

We use PyTorch for the distributed parallel training of
algorithmic models on an Ubuntu high-performance graphic
workstation. The learning rate decay strategy is h = h0(1 −

n
N )b ,
C DBA

G HFE

FIGURE 3 | Examples of digital histopathology images for Prostate Gleason Grading. We list four different Gleason grade groups: (A, B) Benign; (C, D) Grade 3;
(E, F) Grade4; and (G, H) Grade 5. It can be observed that each level has a variety of sizes, shapes, and irregular object boundaries. Gleason Grade 3 consists of
well-formed and well-defined glands with varying sizes but which are smaller and tighter than non-cancerous prostatic tissue. While Gleason Grade 4 is associated
with poorly formed glands, gland fusion is no longer separated by the matrix, even related to a pattern known as cribriform. Gleason Grade 5 includes the worst
differentiated glands.
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where h0 = 0.002 is the initial learning rate, n is the current
training rounds, N = 200 is the total training rounds, and b = 0.9.

Due to the large size of the prostate pathological slice image, it
cannot be directly input to the network for learning. In this
paper, we directly scale the short side of the input image to a size
of 1,024 pixels and then randomly crop an 800 × 800 image patch
as the input of the network. All samples are divided into five
parts (each subset has an approximately equal number of
samples). We repeat the entire process five times to avoid
possible deviation of dataset partition during cross-validation.
The final results are calculated by averaging five group results. To
avoid network overfitting caused by insufficient data, we propose
a data augmentation technique by randomly resizing and mirror
training datasets.

Evaluation Metrics
Performance metrics such as accuracy, mean, entropy, and
standard deviation were used to evaluate performance. In this
article, we evaluate the network performance through the
evaluation metrics such as the distance similarity coefficient
(DSC), Jaccard Index (JA), Hausdorff distance (HD), Cohen’s
kappa coefficient, and F1 score.

The distance similarity coefficient (DSC) is defined as follows:

DSC =
2 A ∩ Bj j
Aj j + Bj j (2)

where │·│ represents a set of pixels, and A and B represent the
real label and segmentation result, respectively. The Hausdorff
distance (HD) is defined as follows:

HD (XS,YS) = max (h(XS,YS),  h(YS,XS)) (3)

where XS and YS represent the point set of the real label and the
segmentation result, respectively. h(XS, YS) and h(YS, XS) can be
calculated as follows:

h(XS,YS) = maxxi∈XS
minyj∈YS

jjxi − yjjj (4)

h(YS,XS) = maxyj∈YS
minxi∈XS

jjyj − xijj (5)

where ║·║ represents Euclidean distance. The average surface
distance is another distance evaluation index. The lower the HD
value, the better the network performance. Cohen’s kappa
efficient k is defined as follows:

k =
p0 − pe
1 − pe

(6)

Where p0 is the relative scoring consistency of raters, and pe
refers to the observed data used to calculate the hypothetical
probability. If the scores of the two scores are the same, then k = 1.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)
Frontiers in Oncology | www.frontiersin.org 6
JA =
TP

TP + FN + FP
(9)

F1 = 2
precision� recall
precision + recall

(10)

where TN, TP, FN, and FP represent true negative, true positive,
false negative, and false positive, respectively.

2019 MICCAI Automatic Prostate Gleason
Grading Challenge
The 2019 MICCAI prostate grading challenge provides a unique
dataset and strict evaluation conditions of Gleason grading for
the challenging task. During the experiment, each region in the
pathological section is mapped to the Gleason’s mode, and the
low-level mode corresponds to the nearly normal prostate tumor.
The differentiation level with the largest area is registered as the
most important differentiation value, while the differentiation
level with the second largest area is registered as the secondary
differentiation value. The third largest or less than 5% minority is
ignored. The prostate grading challenge includes two different
tasks. One is the prediction of pixel-level Gleason grade, the
other one is the prediction of core-level Gleason grade. Task 1 is
regarded as a segmentation task, and we utilize PSPNet to
accomplish this task. For task 2, we do not train a different
network but provide a prediction of task 1 according to the
Gleason grading system.

1) Pixel-Level Gleason Grade Prediction
In the first task of this competition, the content is segmented into
four pathological sections of different Gleason patterns. The
evaluation metrics in this task provided by the competition-
organizing committee are a combination of F1 scores and
Cohen’s kappa coefficient. The coefficient is considered as an
agreement to evaluate reliability and generally accepted to be a
more robust measure rather than simple percent calculation. We
use this combination score formula to calculate the final score on
each test image. Table 1 shows the predicted results of the pixel-
level Gleason grade (note that the data in Table 1 can be found
on the official website of the competition). Figure 4 shows T-
SNE visualization with four-Gleason grading using our
proposed method.

2) Core-Level Gleason Grade Prediction
In the second task of this competition, the content is transformed
from the segmentation of pathological sections to the classification
of different Gleason patterns. To achieve automatic Gleason
classification of prostate pathological images, we focus on not
only segmentation but also the effect of network grading. We are
interested in screening benign plaques from all biopsy pathological
tissues. In addition, we focus more on distinguishing between high-
grade cancers (Grades 4, 5) and low-grade cancers (Grade 3). Task 2
classifies and grades Gleason according to the results of task 1. Its
classification effect is far more than that of the direct classification of
pathological sections. Ignoring the background part of the image in
the pixel-level Gleason grading result, we get the Gleason grading
April 2022 | Volume 12 | Article 772403
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result with the largest proportion in the image. By comparing the
predicted results with the direct calculation of the image-level
Gleason grading results, we can analyze the image-level Gleason
grading performance of each network. To verify the superiority of
automatic grading of our network, we list the confusion matrix
results of the top four contests. Figure 5 lists the confusion matrix
results for different teams. Note that the confusion matrix is derived
from the whole training and test dataset on the Gleason
grade group.

In Figure 5, the first line of the confusion matrix provided by
group (a) shows that 95.94% of benign pixels are classified correctly;
0.07% of benign pixels are wrongly classified to grade 3, 0.98% to
grade 4, and 3.00% to grade 5. From Table 1 and Figure 5, we can
see that our method consistently obtains good results in terms of the
listed evaluation metrics and achieves the best segmentation results.
Given the validity and reliability of the Gleason grading system in
the detection and diagnosis of prostate cancer, our results are useful
to the medical community in prostate cancer diagnosis.

Comparison of Different Methods
For the training of the deep neural network, the amount of image
information is associated with the size and number of input images.
However, in the process of network training, the increase in network
depth may bring additional optimization problems. According to
Frontiers in Oncology | www.frontiersin.org 7
the previous literature (38), FCN based on the residual network
solves this problem via skipping connection in each block. We
compare the four proposed different classical semantic
segmentation networks, i.e., FCN (22), SegNet (39), U-Net (40),
and DeepLabv3 (41), to verify the segmentation performance. The
results are reported in Table 2.

To maintain consistency, we compare the three networks
based on ResNet or with a network structure like ResNet in our
prediction of pixel-level Gleason grade and core-level Gleason
grades. During the experiment, we quantify Cohen’s quadratic
kappa statistics to compare the consistency among pathologists,
and the annotator consistency between models and pathologists.
The comparison of pixel-level grade prediction of different
methods is shown in Table 3.

As the doctors are concerned about the benignity and the
malignancy of tumors at actual clinical practice, they are
interested to make the distinction between high-risk cancer
(Gleason patterns 4, 5) and low-risk cancer (Gleason pattern
3). Also, the classification results are based on high and low
scores. Comparing the prediction results with the real labels, the
core-level Gleason classification performance of each network is
shown in Table 4. The comparative results of the proposed
method with several recently proposed methods are reported
in Table 5.

From Table 3, we can know that the PSPNet used in this
study is superior to other comparative methods, which is
consistent with the scores of six experts (calculated by Cohen’s
kappa coefficient k) or the macro-average and micro-average F1
scores. On the test cohort, the minimum and maximum k of each
of the six experts respectively scored by PSPNet are 0.23 and
0.62, while the minimum and maximum k between the six
experts are 0.38 and 0.70. Therefore, the consistency of the
PSPNet score between each expert and Gleason grade at the
pixel level is within the consistency range of these six
experts’ scores.

As is shown in Tables 4, 5, the proposed PSPNet achieves the
best performance with respect to various evaluation metrics for
distinguishing benign from malignant. For distinguishing high and
low score tumors, most performance metrics of the methods listed
in the table are reduced, indicating that more difficulty existed to
identify the high and low score tumors. However, PSPNet still
acquires the best result, which further illustrates the stability and
reliability of the method.
DISCUSSION

There may be numerous ways to improve this model, ranging from
the overall architecture to the sampling of data. Despite the
promising results of our model, it is not guaranteed that the
application of this model in actual disease diagnosis leaves no
room for errors. In this case, the tumor must be removed as far
as possible without damaging other healthy tissue.

Regarding task 2 core level prediction, we have not directly
calculated it. The final predicted results will be submitted to the
evaluation platform, and the competition organizers will conduct
TABLE 1 | Task 1: pixel-level Gleason grade prediction.

Rank Team Score

10 qq604395564 0.643761
9 jpviguerasguillen 0.649812
8 AlirezaFatemi 0.712537
7 XiaHua 0.716059
6 cvblab 0.757838
5 sdsy888 0.759776
4 zhangjingmri 0.778061
3 ternaus 0.789663
2 nitinsinghal 0.792585
1 Ours 0.845152
FIGURE 4 | Our proposed method for T-SNE visualization with four-Gleason
grading, where 0 represents benignity and 3, 4, and 5 represent Gleason
grading 3, 4, and 5, respectively.
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experimental evaluation. From Figure 5, other participants have
poor predictions on Gleason 5 and miss many high-scoring tumors,
while the PSPNetmethod we use could detect Gleason 5 tumors well,
but the discrimination between Gleason 3 and 4 is not good enough.

We also discuss the poor results of Gleason grade 4 with many
experts and scholars and draw a conclusion that there is a certain
randomness in the testing data selected in the experimental
evaluation (Gleason grade 4 and Gleason grade 5 are very similar
in shape), and the error rate of estimation is very high. However,
pathologists believed that Gleason grade 4 and Gleason grade 5 are
high-risk grades, which threatens the health and prognosis of
patients. Although PSPNet achieves the lowest prediction
accuracy of Gleason grade 4 at the core level, the automatic
grading of prostate pathological images is not affected.
Frontiers in Oncology | www.frontiersin.org 8
To effectively improve the diagnostic accuracy of the
disease, we use a novel model to automatically grade digital
prostate cancer histopathology. To prove the superiority of
the proposed network, we extract feature maps from the
residuals and visualize them, as shown in Figure 6; we can
observe that our method effectively preserves the original
input image information.

Compared to other teams, PSPNet performs the best among
the submissions in MICCAI Automatic Prostate Gleason
Grading Challenge 2019. All dynamic selections are
automatically determined by PSPNet. The overall static design
and dynamic selection are based on rules determined by our
expertise in the field. These segmentation results of some
challenging and representative samples are shown in Figure 7.
C D

BA

FIGURE 5 | Task 2: core-level Gleason grade prediction. We list some confusion matrix results for different teams in this figure. (A) PSPNet (Our), (B) U-net++ (Ni),
(C) U-net++ (Ternaus), (D) U-net (Zhang).
TABLE 2 | Results of different network models (boldface denotes best performance).

Model DSC kappa JA Score HD

FCN (22) 0.784 0.753 0.728 0.717 0.312
U-Net (40) 0.812 0.774 0.742 0.757 0.266
SegNet (39) 0.833 0.788 0.751 0.732 0.242
DeepLabv3 (41) 0.859 0.814 0.821 0.798 0.213
PSPNet (ours) 0.871 0.847 0.836 0.827 0.190
Apr
il 2022 | Volume 12 | Article 7
Bold values represents the best performance.
TABLE 3 | Pixel-level Gleason grade prediction of different methods.

Method k Fmacro Fmicro

FCN (22) 0.504 ± 0.128 0.605 ± 0.185 0.835 ± 0.126
DeepLabv3 (41) 0.438 ± 0.119 0.549 ± 0.188 0.773 ± 0.165
PSPNet (ours) 0.524 ± 0.135 0.634 ± 0.198 0.839 ± 0.133
Bold values represents the best performance.
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TABLE 4 | Core-level Gleason grade prediction of different methods.

Method Benign VS. malignant Gleason 3 VS. Gleason 4 and 5

Accuracy Precision Sensitivity Specificity Accuracy Precision Sensitivity Specificity

FCN (39) 0.925 0.963 0.954 0.714 0.813 0.904 0.801 0.835
DeepLabv3 (41) 0.902 0.944 0.944 0.600 0.729 0.840 0.734 0.718
PSPNet (ours) 0.934 0.972 0.954 0.869 0.836 0.904 0.831 0.846
Frontiers in Oncology |
 www.frontiersin.org 9
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Bold values represents the best performance.
TABLE 5 | Comparison of the proposed method with several recently proposed methods.

Method Benign VS. malignant Gleason 3 VS. Gleason 4 and 5

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Arvaniti et al. (42) 0.82 0.85 0.79 0.77 0.81 0.74
Nagpal et al. (43) 0.81 0.81 0.79 0.76 0.77 0.74
Davood et al. (44) 0.85 0.86 0.85 0.82 0.82 0.82
Ours 0.94 0.96 0.87 0.84 0.83 0.85
Bold values represents the best performance.
C EDBA

FIGURE 6 | Results of the feature map visualization. Column (A) is the input image; columns (B–E) show that feature maps are obtained via four convolutional layers
in PPM, respectively.
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PSPNet can effectively learn multi-scale features to accurately
classify prostate pathological images automatically. Even though
this method has achieved good segmentation results, it still has
some shortcomings. The main drawback of our method is that
our training dataset is not enough for disease diagnosis for
medical image analysis. Although the original data set has been
increased 5-fold by data enhancement technology, we are still
unable to guarantee its complete application to feature learning
of deep neural networks. What is more, our method cannot
Frontiers in Oncology | www.frontiersin.org 10
segment some images well, as shown in Figure 8. We can observe
that the three categories of Grade 3, Grade 4, and Grade 5 are
easily confused.

Our proposed network can easily distinguish benign from
malignant, but the differentiation of Gleason grades 3, 4, and 5 is
insufficient. We consider that this may be related to the
imbalance of the data distribution of each score in the dataset.
In our training data, Gleason 5 has a small amount of data, so
there are some errors in the results of network learning.
C DB F GEA

FIGURE 7 | Different segmentation results from FCN, SegNet, U-Net, DeepLabv3, and our proposed method. Column (A) is the input image, column (B) is the
final expert annotation used by the sample algorithm, and columns (C–G) indicate the final segmentation results of FCN, SegNet, U-Net, DeepLabv3, and
PSPNet, respectively.
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CONCLUSION

In this paper, we propose a new automatic identification system for
prostate biopsy tissues and use the STAPLE algorithm to synthesize
different expert labels. The results based on cross validation show that
our method achieves promising results in classification performance.
The system could potentially improve the prognosis of prostate
cancer and is highly consistent with the reference standard.

In the future work, some improvements could be taken into
account from several sides. First, our approach puts particular
emphasis on using image features as input to the network model.
However, this handcrafted feature limits the richness of image
structure information. To make the most of the power of the
convolutional network model to acquire image features, fusing the
hand-crafted features from original data and using more advanced
network models to devise our framework could be tried. Second, we
can bring other sophisticated factors into the proposed framework
to potentially improve performance. Finally, we need to suggest to
better integrate deep learning systems with the diagnosis processes
of pathologists, and the impact of this artificial intelligence-based
auxiliary method on the overall efficiency, accuracy, and prognosis
of Gleason’s score in clinical practice.
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