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Abstract
The ability of early lung cancer diagnosis is an unmet need in clinical practice. Lung cancer metabolomic analyses conducted 
so far have demonstrated several abnormalities in cancer lipid profile providing a rationale for further study of blood lipidome 
of the patients. In the present research, we performed a targeted lipidome screening to select molecules that show promise for 
early lung cancer detection. The study was conducted on serum samples collected from newly diagnosed, stage I non-small 
cell lung cancer (NSCLC) patients and non-cancer controls. A high-throughput mass spectrometry-based platform with 
confirmed interlaboratory reproducibility was used. The analyzed profile consisted of acylcarnitines, sphingomyelins, phos-
phatidylcholines and lysophosphatidylcholines. Among the assayed lipid species, the significant differences between NSCLC 
and non-cancer subjects were observed in the group of phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC), 
especially in the levels of lysoPC a C26:0; lysoPC a C26:1; PC aa C42:4; and PC aa C34:4. The metabolites mentioned above 
were used to create a multivariate classification model, which reliability was proved by permutation tests as well as external 
validation. Our study indicated choline-containing phospholipids as potential lung cancer markers. Further investigations 
of phospholipidome are crucial to better describe the shifts in metabolite composition occurring in lung cancer patients.
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Introduction

Due to the high incidence and mortality of lung cancer, 
there is a high demand for identification of cancer biomark-
ers that can contribute clinically relevant information. In 
both sexes combined, lung cancer is the main cause of can-
cer death worldwide (18.4% of the total cancer deaths) [1]. 
It is believed that the study of blood circulating markers 
would offer a chance to detect lung cancer in early stages. 

The results of many studies underscore the potential of 
metabolite analysis to uncover mechanisms of lung cancer 
and markers that could be useful in patients’ identification 
and discrimination. Based on results acquired from global 
metabolomics, it can be stated that the observed distinct 
metabolic profile in lung cancer patients is related to various 
classes of lipids and molecules involved in lipid metabolism 
[2]. Chen et al. [3] reported that sphingolipid metabolism 
was the top-altered metabolic pathway in lung cancer and 
proposed glycerophospho-N-arachidonoyl ethanolamine 
and sphingosine as biomarkers for lung cancer diagnosis 
and prognosis. Most of the differential metabolites identi-
fied by Li et al. [4] in serum profiling of lung cancer were 
associated with the perturbation of lipid metabolism, includ-
ing free fatty acids, lysophosphatidylcholines and choline. 
Orbitrap-based global metabolic profiling revealed some 
putative lung cancer markers belonging to acylcarnitines 
[5]. Dong et al. [6] performed analysis of lysophosphati-
dylcholines in plasma samples of lung cancer patients and 
healthy donors using quadrupole time-of-flight mass spec-
trometry (Q-TOF), and they found abnormalities in five 
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lysophosphatidylcholines species, including isomers. Based 
on lipid metabolite profiles obtained using Fourier trans-
form ion cyclotron resonance mass spectrometry, a model 
of 7 metabolites consisting of 2 fatty acid derivatives, 4 
lysophosphatidylcholines and sphingomyelin was developed, 
which allowed sample classification between lung cancer 
patients and healthy controls [7]. Downregulation of a few 
lysophosphatidylcholines was also demonstrated in MALDI-
TOF-based serum lipid profiling [8]. The above-mentioned 
targeted research showed reliable and accurate metabolite 
identification. However, they did not produce data on analyte 
concentrations. Till now, few studies on quantitative analy-
sis of lipidome of lung cancer patients have been reported 
showing promising results that should be further explored 
and validated [9, 10].

Lung cancer metabolomic analyses demonstrated several 
abnormalities in lipid profile providing a rationale for fur-
ther study of blood lipidome of the patients. We performed 
a targeted, quantitative lipidomic profiling covering such 
metabolite classes as acylcarnitines, sphingomyelins, phos-
phatidylcholines and lysophosphatidylcholines in patients 
with non-small cell lung cancer and a control group. The 
identification of early lung cancer markers is a fundamental 
goal in studies aimed at searching for new diagnostic meth-
ods. Therefore, we applied rigorous inclusion criteria and 
enrolled only patients with stage I lung cancer. The applied 
methodology has already been used in metabolomic studies 
of other tumors: breast cancer [11], colorectal cancer [12], 
prostate cancer [13], pancreatic cancer [14], ovarian can-
cer [15] and bladder cancer [16]; however, it has not been 
applied to lung cancer research so far.

Methodology

Patient selection

Twenty patients with histopathologically confirmed 
lung cancer and twenty non-cancerous subjects (a con-
trol group) were recruited at the Department of Thoracic 
Surgery, Poznan University of Medical Sciences, Poland. 
All participants signed an informed written consent for 
this case–control study, which was approved by the Bio-
ethics Committee of Poznan University of Medical Sci-
ences (Decision no. 200/13). All lung cancer patients 
were diagnosed with non-small cell lung cancer (NSCLC) 
(Table 1). Patients pathological stages were determined at 
the Department of Thoracic Surgery, Poznan University of 
Medical Sciences using the TNM system (tumor size, node 
involvement, metastasis presence). Only patients with 
stage I cancer were selected for the study. Blood samples 
were collected before initiation of any cancer treatment. 
The mean age of lung cancer patients was 62 years, and 
45% were female. Control subjects were age- and BMI-
matched and consisted of the individuals of the same eth-
nic origin (Caucasians). The controls donated samples at 
the same time as cancer patients and met criteria for the 
absence of malignant disease, respiratory failure, hepatitis, 
or other diseases that can affect serum lipidome profile. 
Detailed information concerning the case–control set is 
shown in Table 1.

Table 1   Demographic and 
clinical characteristics of the 
study participants

Variable Lung cancer patients Healthy controls

Number of subjects, n 20 20
Age at recruitment, y
 Mean ± SD 62 ± 5 63 ± 6
 Range 53–70 53–74

BMI, kg/m2

 Mean ± SD 26.2 ± 4.8 26.1 ± 3.5
 Range 17.6–33.9 21.1–34.6

Gender
 %Male 55% 40%

Smoking status
 %Current smokers 60% 30%

Histologic subtype, n
 NSCLC, adenocarcinoma 9
 NSCLC, squamous cell carcinoma 11

Clinical stage according to TNM classification, 7th ed, n
 IA 16
 IB 4
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Sample collection and preparation

Blood samples were collected in the morning following an 
overnight fast using tubes with a clotting activator (S-Mon-
ovette system, Sarstedt, Nümbrecht, Germany). Then, serum 
was prepared according to a standardized protocol (centrifu-
gation after 30 min at 4000 rpm for 5 min). The sera were 
aliquoted and stored at − 80 °C.

For serum metabolite profiling, AbsoluteIDQ p180 Kit 
(Biocrates Life Sciences AG, Innsbruck, Austria) was used. 
All assays were carried out on a 96-well plate according 
to the manufacturer’s recommended protocol. The sample 
preparation procedure was previously described in detail 
[17]. The reliability of the methodology was confirmed 
according to FDA guidance [18]. The kit allows the simul-
taneous determination of 145 lipid metabolites: 40 acylcar-
nitines, 15 sphingomyelins and 90 glycerophospholipids (14 
lysophosphatidylcholines (lysoPC) and 76 phosphatidylcho-
lines (PC)). The list of analyzed metabolites is contained in 
Online Resource.

Instrumentation

Samples were analyzed in a random order using a triple 
quadrupole tandem mass spectrometer 4000 QTRAP (Sciex, 
Framingham, MA, USA) coupled with high-performance 
liquid chromatograph 1260 Infinity (Agilent Technologies, 
Santa Clara, CA, USA). The system was operated by the 
Analyst 1.5.2. software. A method based on flow injection 
analysis (FIA) and multiple reaction monitoring mode was 
applied. Injection volume was set at 20 μL. The remain-
ing method parameters were set according to the Biocrates 
instructions. In-house verification of the validated method-
ology was performed with quality control (QC) samples at 
3 concentration levels, which were provided in the kit and 
injected throughout the sequence. All of the measured lipid 
metabolites passed quality control. The measured metabolite 
concentrations were in agreement in with the established 
reference ranges indicating good accuracy. An average 
intra-assay coefficient of variation (CV) calculated from 
five repetitions of the QC sample was 4.4%, which proved 
low analytical variability. To additionally test the reliability 
of the lipid quantitation, we analyzed one serum sample in 
triplicate and the following CVs (%) were obtained: for acyl-
carnitines 13.4%, for lysoPC 11.1%, for PC aa 9.3%, for PC 
ae 11.4%, for sphingomyelins 9.2%.

Data analysis

The MetIDQ software (Biocrates Life Sciences AG, Inns-
bruck, Austria) was used to conduct automated calculation 
of metabolite concentrations. Concentration values of all 
metabolites were reported in µM. For statistical analyses, 

metabolites determined in at least 80% of the samples were 
chosen. As a result, the lipid metabolite profile was restricted 
to a total of 104 metabolites (7 acylcarnitines, 15 sphin-
golipids and 81 glycerophospholipids) (Online Resource). 
Statistical tests were conducted using MetaboAnalyst 4.0 
platform [19]. Before multivariate analyses, data were log-
transformed and Pareto-scaled. Principal component analy-
sis (PCA) was conducted to identify sample outliers and 
to assess the potential influence of different covariates on 
the obtained metabolic profiles. Before univariate tests, 6 
samples (3 NSCLC and 3 controls) were randomly blinded 
and formed a validation set to assess the reliability of further 
developed multi-marker classification model. The performed 
univariate analyses included Wilcoxon rank-sum test, vol-
cano plot and univariate receiver operating characteristic 
(ROC) curve analysis. Considering multi-testing problem, 
false discovery rate (FDR) was calculated in addition to the 
raw p value. The significance threshold for FDR was set to 
0.05. The most differentiating features were selected to cre-
ate the ROC curve-based model. Multivariate ROC curve 
analysis was performed based on the random forest algo-
rithm, which uses random subsampling cross-validation. 
Finally, the created model was used to predict group for new 
samples (without group labels).

Results

PCA

The non-supervised multivariate PCA was applied to 
examine clustering or separation trends and find potential 
outliers. The obtained score plots indicated sample homo-
geneity (Online Resource). Partially separation of samples 
in line with the presence of lung cancer was discovered. 
Other tested variables (age, sex, BMI, smoking status) had 
no impact on sample clustering (Online Resource). There-
fore, we identified no serious confounders in the dataset and 
found that disease status was the main factor responsible 
for the observed differences in the studied lipid metabolite 
profiles.

Univariate tests

In the comparison between patients with NSCLC and the 
control group, 11 out of 104 features from the obtained 
lipidome dataset had FDR values below 0.05. In the vol-
cano plot, which is a combination of fold change and t tests, 
the following 7 variables met the set criteria (fold change 
threshold 1.5 and the FDR-corrected p value threshold 
0.05): lysoPC a C26:0; lysoPC a C26:1; PC aa C42:4; PC 
aa C34:4; PC ae C42:1; PC ae C44:3; PC aa C40:2. Fig-
ure 1 contains boxplots of those metabolites showing that 6 
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compounds were significantly upregulated and 1 compound 
(PC aa C34:4) was significantly downregulated in samples 
from NSCLC patients compared with the non-cancer group. 
The results of univariate ROC curve analyses, a commonly 
used method for diagnostic biomarker evaluation, are dem-
onstrated in Table 2. The highest AUC value, which is an 
indicator of the highest discriminating potential, was deter-
mined for lysoPC a C26:0.

It should be noticed that the two study groups were bal-
anced in terms of age and BMI, but not in terms of smoking 
status (Table 1). However, none of the significantly dysregu-
lated metabolites discovered in our study is associated with 
smoking status according to the previous cohort studies [20, 
21]. Therefore, we assume that the further proposed multi-
metabolite model is not affected by nicotine-dependent 
potential biomarkers.

Fig. 1   Box plots showing distributions of the selected lipid species (false discovery rate < 0.05 and fold change > 1.5) across the studied groups

Table 2   List of differentiating metabolites with their serum concentrations determined in the studied groups (mean ± SD, µM) and results from 
univariate statistics

1 Values calculated from combined discovery and validation set
2 Raw p value from Wilcoxon rank-sum test
3 False discovery rate
4 Calculated from the mean values of each group; comparison type: lung cancer group/control group

Metabolite Abbreviation Lung cancer group1 Control group1 p value2 FDR3 Fold change4 AUC (95% CI)

Lysophosphatidylcholine acyl 
C26:0

lysoPC a C26:0 0.53 ± 0.14 0.31 ± 0.14 0.00011 0.01113 1.71 0.87 (0.73–0.96)

Lysophosphatidylcholine acyl 
C26:1

lysoPC a C26:1 0.28 ± 0.07 0.18 ± 0.06 0.00083 0.04337 1.52 0.84 (0.68–0.95)

Phosphatidylcholine diacyl C34:4 PC aa C34:4 0.93 ± 0.40 1.44 ± 0.43 0.00162 0.04529 0.65 0.82 (0.65–0.94)
Phosphatidylcholine diacyl C42:4 PC aa C42:4 0.46 ± 0.22 0.26 ± 0.12 0.00174 0.04529 1.79 0.81 (0.65–0.93)
Phosphatidylcholine acyl–alkyl 

C42:1
PC ae C42:1 0.69 ± 0.14 0.53 ± 0.13 0.00273 0.04729 1.57 0.80 (0.64–0.94)

Phosphatidylcholine acyl–alkyl 
C44:3

PC ae C44:3 0.52 ± 0.21 0.33 ± 0.11 0.00322 0.04789 1.58 0.80 (0.62–0.92)

Phosphatidylcholine diacyl C40:2 PC aa C40:2 0.24 ± 0.09 0.15 ± 0.04 0.00381 0.04904 1.88 0.80 (0.64–0.92)
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Multivariate ROC curve analysis

Metabolites that exhibited the greatest differences between 
the studied groups according to the volcano plot (FDR-
adjusted p value < 0.05 and fold change > 1.5) were selected 
to create the ROC curve-based multi-marker model. The 
model components were: lysoPC a C26:0; lysoPC a C26:1; 

PC aa C42:4; PC aa C34:4. The obtained AUC value of the 
model was based on cross-validated ROC curve. Therefore, 
it is more realistic for lung cancer prediction than in the 
case of univariate ROC curves (Fig. 2a, b). Nevertheless, 
the combination of 4 above-listed features yielded a greater 
AUC value than any single metabolite, providing the evi-
dence that multi-metabolite classifier is more effective in 

Fig. 2   Performance of the 
created multivariate model com-
posed of 4 lipid species: a the 
plot of the ROC curve for the 
model based upon its average 
cross-validation performance, 
b the plot of the predicted class 
probabilities for the samples 
using the proposed model, c 
blinded sample class prediction 
using the proposed model



510	 Clinical and Experimental Medicine (2019) 19:505–513

1 3

sample distinguishing between the two studied groups. The 
performance of the multi-metabolite model was further eval-
uated by performing permutation tests (1000 repetitions). 
The calculated p value was 0.015, which indicates that the 
sample labels are not interchangeable and the model is sig-
nificant. Additionally, we blinded a subset of 6 samples for 
extra validation of the model and all of the samples were 
correctly classified (Fig. 2c).

Discussion

In the present study, we applied a wide targeted lipidome 
profiling, which yielded both a broad overview of the serum 
lipid composition of NSCLC patients as well as quantita-
tion data. Among the assayed circulating metabolites, the 
major differences between cancer and non-cancer subjects 
were observed in the group of phosphatidylcholines and 
lysophosphatidylcholines (Table 2, Fig. 1). It should be 
emphasized that the observed abnormalities in the serum of 
NSCLC patients were found to be present at early disease 
stage (stage I).

Lipids play many roles at cellular and organismal levels, 
being the major structural components of biological mem-
branes and energy storage entities. Moreover, lipids take part 
in signal transduction and can be broken down into bioac-
tive lipid mediators, which regulate some carcinogenic pro-
cesses, such as cell growth, proliferation and migration [22]. 
The analyzed lipidomic profile consisted of acylcarnitines, 
sphingomyelins, phosphatidylcholines and lysophosphatidyl-
cholines. Levels of acylcarnitines, essential compounds for 
energy production, could mirror disturbances in fatty acid 
oxidation and organic acid metabolism in NSCLC patients 
[23, 24]. Although the previous untargeted metabolomic 
studies indicated that lung cancer marker candidates could 
be found in that metabolite class, no significant differences 
in the acylcarnitine profiles were observed in our study. 
However, the potential of short-chain acylcarnitines (car-
bon atoms < 10) should be still verified as they were present 
below LOQ in the majority of studied serum samples.

The significantly altered lipidome components found 
in the present study were choline-containing phospholip-
ids. Five out of seven differentiating metabolites belong to 
phosphatidylcholines and the remaining belong to lysophos-
phatidylcholines (Table 2, Fig. 1). In a dominant pathway 
of phosphatidylcholine synthesis in humans, diacylglycerol 
combines with cytidine 5′-diphosphocholine (the Kennedy 
pathway). The first reaction of that process involves the 
phosphorylation of choline [15, 25]. It should be empha-
sized that both substrate (choline) and phosphatidylcho-
lines were found to be associated with cancer development 
and progression. Overexpression and activation of choline 
cycle enzymes, such as choline kinase—a key enzyme in the 

biosynthesis of phosphatidylcholines, are emerging as a can-
cer biochemical hallmark [26–28]. Dysregulation of choline 
phospholipid metabolism was demonstrated in many cancer 
biomarker studies [29–31], including studies of lung cancer 
[32]. Analysis of malignant and matched non-malignant lung 
tissue revealed dramatic changes in phospholipid profiles 
of NSCLC [33]. Alterations in serum phospholipid profile 
of oncological patients shown in the current study were not 
so vast as those reported in lung tissue. In the comparison 
between NSCLC patients and the control group, 14% of cho-
line-containing phospholipids quantified in the study were 
significantly (FDR-corrected p value < 0.05) discriminative 
(Online Resource).

Phosphatidylcholines, representing the most abundant 
glycerophospholipids in human plasma, are the main com-
ponent of cell membranes as well as an important source 
of signaling molecules [34, 35]. The increased demand for 
membrane constituents leads to the upregulated synthesis 
of PCs in cancer cells [36]. In the present study, PC aa 42:4; 
PC ae 42:1; PC ae 44:3; and PC aa 40:2 were significantly 
increased in serum of NSCLC patients compared with non-
cancer subjects. Elevated PCs with 40 or 42 carbon atoms in 
lung cancer tissue were previously reported by Marien et al. 
[33]. It indicates that the direction of change of PC levels 
in tumor tissue and blood of lung cancer patients is consist-
ent. Our study revealed a trend for PCs to be increased in 
serum of lung cancer patients, which can relate to upregula-
tion/activation of enzymes involved in PCs synthesis, i.e., 
choline kinase. Moreover, Lv et al. [37] demonstrated cir-
culating levels of PC 40:1 and PC 40:4 as upregulated lipid 
molecular species that are specific for small cell lung cancer 
(SCLC). However, that conclusion was made based on very 
few samples from SCLC subjects. Addressing the question 
of whether the observed changes in lipidome of lung cancer 
patients are histologic-type specific requires large sample 
number and is an aim for future research.

The metabolites with the highest discriminating poten-
tial identified in our study belong to lysophosphatidylcho-
lines (lysoPC 26:0 and lysoPC 26:1). The molecules of 
lysoPCs contain one fatty acyl group bonded to glycerol 
and are formed as a product of ester-bond hydrolysis of 
phosphatidylcholines catalyzed by phospholipase A2 [38]. 
This class of lipids represents approximately one tenth of 
the phospholipid fraction in humans [39] and function as an 
efficient cargo to provide fatty acids to tissues and organs 
(in a dynamic process of the Land’s cycle) [40, 41]. Apart 
from structural functions, lysoPCs have pro-inflammatory 
properties and are involved in signal transduction [42, 43]. 
Although our knowledge of lysophospholipid intracellu-
lar signaling is still growing, many questions remain to be 
answered. LysoPCs were identified among promising lung 
cancer marker candidates. Significantly increased blood 
levels of lysoPCs in lung cancer patients were shown by 
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Li et al. [4], Guo et al. [7] and Dong et al. [44], whereas 
the downregulation of a few lysoPCs was demonstrated by 
Ros-Mazurczyk [8]. In the current study, elevated concentra-
tions of lysoPCs were found among top-altered lipid profiles 
present in the blood of NSCLC patients. The highest dis-
criminating ability in sample classification between NSCLC 
patients and controls had lysoPC 26:0 and lysoPC 26:1—
lysoPCs with a very long acyl chain (C > 20). The increase 
in acyl chain length in cancer tissue was discovered as one 
of the most common traits of lung squamous cell carcino-
mas, found based on phospholipidome profiling [45]. The 
observed acyl chain elongation was accompanied by changes 
in the expression of acyl chain elongases (ELOVLs). Thus, 
it is suggested that inhibition of acyl chain elongation might 
be useful as a target for antineoplastic therapy in patients 
with squamous cell lung carcinomas. The high classifica-
tion ability of lipid species with longer fatty acyl chains 
was also marked in the PC class in our study. Four out of 5 
the most discriminative PCs belong to phospholipids with a 
large total number of acyl chain carbon atoms (≥ 36 carbon 
atoms in the two acyl chains together), which corresponds 
to the research of Marien et al. [45].

Lung cancer diagnosis needs refinement, and therefore, 
efforts should be taken to identify and develop new screen-
ing methods. The study presented here demonstrates that 
lysoPC a C26:0 had the highest discriminating ability in 
sample classification between patients with NSCLC and 
controls (Table 2). However, a question arises as to whether 
one molecule will have sufficient potential in NSCLC 
patients detection. Based on the results of previous cancer 
marker studies, it can be assumed that the most efficient 
sample classification will be obtained using multi-metabolite 
model. Therefore, we built a multivariate model consisting 
of 4 lipid species and tested it with a batch of blinded sam-
ples. The AUC of multivariate ROC curve was higher than 
that obtained for single compounds (Table 2, Fig. 2a) and the 
multi-compound classifier turned out to be robust enough to 
classify a new validation set of samples correctly (Fig. 2c). 
Therefore, our findings support the idea that the application 
of a combination strategy allows for better patients discrimi-
nation and shows promise for early lung cancer detection.

The present research has its own merits and limitations. 
The applied method covers a wide range of lipidome compo-
nents providing data on concentrations of four classes of lipid 
metabolites (Online Resource). We used a high-throughput 
targeted metabolomic platform with proved interlabora-
tory reproducibility [46], which has been previously used to 
catalog other disease states and identify potential biomarker 
profiles. Another strength of the research is patient selection 
and restriction to early NSCLC cases (stage I). Therefore, our 
findings are not biased by metabolic profiles of subjects with 
an advanced tumor and present the potential of lipid metabo-
lites in early NSCLC detection. The application of the strict 

inclusion criteria decreased the number of patients, and the 
next step should involve the inclusion of a multicenter group of 
subjects to better estimate the accuracy of the developed model 
in early lung cancer detection. The reliability of the proposed 
classifier was proved by permutation tests as well as a small 
test set of samples for external validation. Another limita-
tion of our research is related to identification difficulties and 
technical limitation. Lipidomics is one of the most demanding 
fields of metabolomics due to the huge variety of lipid spe-
cies. In our study, the measured metabolites are described by a 
number of carbon atoms in both fatty acyl chains together and 
number of double bonds without their exact position, where 
PC aa and PC ae abbreviations denote diacyl phosphatidyl-
choline and acyl-alkyl phosphatidylcholine, respectively. The 
amazing complexity of the human serum lipidome is a chal-
lenge, but the continuous technological development, mainly 
in mass spectrometry, enables the quantification of lipids with 
increasing depth and accuracy [47].

Concluding remarks

In the present research, we conducted a lipidome screening 
to select molecules that show promise for early lung cancer 
detection. As quantitative metabolomic data are particularly 
desirable in studies on searching for new cancer markers, we 
applied a targeted method covering a wide range of lipidome 
components. Our study indicated choline-containing phospho-
lipids as a promising source of lung cancer markers, especially 
lysoPC aC26:0; lysoPC a C26:1; PC aa C42:4; PC aa C34:4. 
It is anticipated that the use of lipidomics will continue to 
increase in lung cancer biomarker studies and enhances the 
ability of researchers to study dysregulation of phospholipid 
metabolism in cancer patients.
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