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THE BIGGER PICTURE Federated learning (FL) enables training machine learning models on decentralized
medical data while preserving privacy. Despite growing research on FL algorithms and systems, building
real-world FL applications requires extensive expertise, posing barriers for medical researchers. FedEYE,
an end-to-end FL platform tailored for ophthalmologists without programming skills, is developed here
to easily create federated projects on tasks like image classification. The platform provides rich capabilities,
scalability, flexible deployment, and separation of concerns. With user-friendly interfaces and comprehen-
sion of underlying mechanisms, FedEYE strives to democratize FL for ophthalmology.
SUMMARY
Data-drivenmachine learning, as a promising approach, possesses the capability to build high-quality, exact,
and robust models from ophthalmic medical data. Ophthalmic medical data, however, presently exist across
disparate data silos with privacy limitations, making centralized training challenging. While ophthalmologists
may not specialize in machine learning and artificial intelligence (AI), considerable impediments arise in the
associated realm of research. To address these issues, we design and develop FedEYE, a scalable and flex-
ible end-to-end ophthalmic federated learning platform. During FedEYE design, we adhere to four funda-
mental design principles, ensuring that ophthalmologists can effortlessly create independent and federated
AI research tasks. Benefiting from the design principles and architecture of FedEYE, it encloses numerous
key features, including rich and customizable capabilities, separation of concerns, scalability, and flexible
deployment. We also validated the applicability of FedEYE by employing several prevalent neural networks
on ophthalmic disease image classification tasks.
INTRODUCTION

Recent advancements in artificial intelligence (AI) and machine

learning (ML) have revolutionized various industries, including

medical and ophthalmology. The ability to process vast amounts

of data has led to the development of powerful algorithms and

large deep learning (DL)models that can assist in diagnosing dis-

eases accurately and efficiently, identify potential drug candi-

dates, and personalize patient treatment plans. However, the

success of ML models primarily depends on the quality and
This is an open access article under the CC BY-N
quantity of the training data. In ophthalmology, data are generally

stored in data silos with privacy and policy limitations, such as

the General Data Protection Regulation,1 which was published

by the European Parliament and Council of the European Union

in 2016 on data protection and privacy, making it hard to train

models via centralized training across multiple institutions.

Federated learning (FL) or federated ML (FML) is a promising

solution to this issue. It allows multiple institutions to train an

MLmodel collaboratively without sharing data. Instead of relying

on a centralized model, institutions can train the models using
Patterns 5, 100928, February 9, 2024 ª 2024 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:yqchen@ict.ac.cn
mailto:daiweiwei@aierchina.com
https://doi.org/10.1016/j.patter.2024.100928
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.100928&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS Descriptor
their data and local machines. The parameters of all locally

trained models can be aggregated to create a federated global

model. This approach ensures greater data privacy and security,

benefiting institutions from more accurate and robust global ML

models. One of the earliest works in FL is the federated aver-

aging algorithm proposed by Mcmahan et al.2 in 2017. In

addition to these algorithmic advances, there has been

much work on the theoretical analysis of FL, including conver-

gence analysis3,4 and communication complexity analysis.5,6

Many researchers have also studied the practical challenges of

deploying FL systems in real-world settings, such as the hetero-

geneity of devices,7,8 the reliability of wireless networks,9,10 and

the variability of user behavior.11–13

As research on FL progresses, more researchers focus

on studying FL system architecture. Due to the heterogeneity

of FL, unique features of different platforms require the

resolution of heterogeneity issues. Therefore, several FL

frameworks are designed to address these issues, such as Py-

Syft,14 OpenFL,15 FLOWER,16 Fedlearn-Algo,17 FedJAX,18

FedScale,19 and FederatedScope,20 among others. Although

most FL frameworks mentioned above are still in the simulation

stage, the first enterprise-level framework, FATE,21 and the

developing FedML22 are presently designed for practical appli-

cations. FATE21 is an FL framework based on multi-party collab-

orative and secure computing that addresses privacy issues and

data sensitivity in data sharing. The framework protects data pri-

vacy, accelerates training speed, reduces dataset maintenance

costs, and enhances model prediction capabilities. FedML22 is

an open FL research library and benchmark that aims to promote

the development and fair comparison of FL algorithms.

FL’s unique ability to train ML models on decentralized data

sources while preserving user privacy makes it a promising

approach for a wide range of healthcare, finance, smart cities,

and Internet of Things applications. In themedical field, by allow-

ing multiple medical institutions to collaborate and train ML

models on their respective datasets without sharing sensitive

patient information, FL can help overcome the limitations of

data silos and promote knowledge sharing across regions.

Many studies have investigated the use of FL in medical sub-

fields,23–25 including lung cancer,26–28 pneumonia,29–31 kidney

diseases,32,33 and even intensive care unit mortality rate predic-

tion.34 Also, there are many researches in ophthalmology.35–38

The utilization of FL has been acknowledged as a promising

approach inmedical research.However,buildinganFLapplication

requires significant expertise in computer science and ML, and

most of the existing FL systems, which are designed for FL re-

searchers, are not friendly tomedical researchers or ophthalmolo-

gists andare challenging touse,which canbeabarrier for ophthal-

mologists who may not have extensive training in this research.

Hence, we developed FedEYE, a scalable and flexible end-to-

end FL system tailored specifically for medical researchers,

particularly ophthalmologists. This platform tackles these chal-

lenges by providing a user-friendly and parameterized interface.

While ophthalmologists and ophthalmic researchers may not be

versed in ML and AI, these technologies enable them to effort-

lessly launch independent or federated projects with their

research collaborators, encompassing tasks such as fundus im-

age classification, segmentation, and more. FedEYE strives to

democratize the FL process for ophthalmologists by minimizing
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the requirement for intricate programming, facilitating compre-

hension of the underlying mechanism, and providing convenient

access to diverse medical systems. The platform adheres to the

MLDevOps paradigm,39 effectively segregating the algorithmic

layer from the application layer, simplifying management and

maintenance tasks. Additionally, FedEYE supports software

and hardware components, enabling its deployment on various

devices with flexible configurations.

RESULTS

FedEYE represents a federated edge computing platform

meticulously designed for FL, adhering to a set of guiding

principles. It harnesses the power of edge computing capabil-

ities, including privacy preservation, prompt processing, and

offline computing, to facilitate distributed computing of

multi-modal data while upholding robust data security mea-

sures. Moreover, FedEYE provides a user-friendly and easily

comprehensible web interface, empowering medical profes-

sors and researchers to embark on their own federated

training research collaborations. Furthermore, in order to cater

to the specific research requirements of ophthalmologists, the

current platform has already incorporated support for a

diverse array of ophthalmic research tasks, encompassing

but not limited to tabular data categorization, image classifi-

cation, text classification, image segmentation, and object

detection. This comprehensive coverage ensures that a wide

range of ophthalmic research pursuits can be accommodated.

In Table 1, we have conducted a comparative analysis of our

FL platform against existing platforms, evaluating them across

13 dimensions and 46 indicators. This evaluation encompasses

aspects such as deployment support, privacy protection, data

security, availability of built-in ML models, scalability, and

more. The privacy protection section encompasses support for

methods such as differential privacy (DP), multi-party computing

(MPC), and homomorphic encryption (HE). In ML models and

benchmarks sections, it includes the support for tree-based

models, neural network-based models including regression,

convolutional neural network (CNN), recurrent neural network

(RNN), and the quantity of common neural network (NN) for com-

puter vision (CV).

In this section, we will introduce FedEYE, including its guiding

design principles, detailed platform architecture, key features,

and benchmarks.

Design principles of FedEYE
Designing an FL platform for ophthalmology that can accommo-

date the heterogeneity of ophthalmology data and enable effec-

tive collaboration between medical professionals and data sci-

entists presents a significant challenge.

To address this challenge, we propose an FL system FedEYE

that is designed with the following principles.

(1) Low-code programming: the aim is to minimize the need

for complex programming, making it easier for medical

professionals to participate in the FL process and to un-

derstand it better.

(2) Accessibility: the platform needs to have OpenAPI, which

makes it easy to integrate with traditional medical systems.



Table 1. Comparison with existing platforms/frameworks/libraries

Metrics Platform/framework/library

Information name FedEYE

(ours)

FATE FedML FederatedScope PySyft TensorFlow

Federated

PaddleFL

version 1.0 1.10.0 0.7.502 0.2.0 0.7.0 0.50.0 1.2.0

FL algorithm horizontal FL U U U U U U U

vertical FL U U U U U 7 U

split learning U U U 7 U U U

Benchmarks regression U U U U U U U

NN U U U U U U U

tree-based model U U 7 U 7 7 7

Documentation tutorial U U U U U U U

code example U U U U U U U

API detailed document U U 7 U U U U

Deployment support standalone U U U U U U U

GPU support U U U U U U U

cluster support U U 7 7 7 7 7

container deployment U U U U U U U

heterogeneous hardware U ◗
a

◗ ◗ ◗ ◗ ◗

Privacy and data security DP U U U U U U U

MPC U U U U U U U

HE U U 7 U U U U

distributed storage U 7 7 7 7 7 7

Built-in DL models CNN U U U U U U U

RNN U U U U U U U

custom optimizer U U U U U U U

# NN (CV) 24 <10 <15 <10 <10 <10 <10

DL backend PyTorch U U U U U 7 7

TensorFlow U U U U 7 U 7

PaddlePaddle 7 7 7 7 7 7 U

JAX 7 7 U 7 7 7 7

Caffe 7 7 7 7 7 7 7

Scheduling task scheduling U U 7 7 7 7 7

resource scheduling U U 7 7 7 7 7

task parallelism U U 7 7 7 7 7

Scalability model/data/algorithm U U U U U U U

service U 7 7 7 7 7 7

Logging task logging U U U U U U U

cluster status U U 7 7 7 7 7

device status U U U U U U U

Maintain user management U 7 U 7 7 7 7

role management U 7 7 7 7 7 7

Completeness full-stack implement U 7 U 7 7 7 7

low code U 7 7 7 7 7 7

parameters U 7 U 7 7 7 7

algorithms pool U 7 7 7 7 7 7

model pool U 7 7 7 7 7 7

mission pool U 7 U 7 7 7 7

data pool U 7 7 7 7 7 7

a
◗ means not specifically processed or not mentioned.
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Figure 1. Architecture design overview of FedEYE
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(3) MLDevOps39: the aim is to separate the work of the al-

gorithm layer from the application layer, which can

improve the system’s manageability and maintain-

ability.

(4) Heterogeneous hardware support: the architecture

should support both software and hardware components,

making it possible to run on various devices with hetero-

geneous hardware configurations.

Detailed architecture design of FedEYE
As shown in Figure 1, FedEYE can be divided into four layers

from bottom to top: a platform infrastructure layer; a data,

mission, and algorithm (DMA) layer; a federated mechanism

layer; and a model as a service (MaaS) layer. The DMA layer,

federated mechanism layer, and MaaS layer shall collectively

be referred to as the DMA-MaaS framework.
4 Patterns 5, 100928, February 9, 2024
Platform infrastructure

The platform infrastructure layer provides fundamental com-

puting and storage capabilities to the upper layers. This layer is

comprised of hardware facilities, containers, networks, and

federated components.

FedEYE’s cluster management capabilities rely on Kuber-

netes40 to provide real-time reporting of the running status of

federated devices and services, making it easier for the cloud

control console to monitor them. This platform containerizes

model services, allowing for hosted models to be pushed to

the edge and for integrated, visualized management and flex-

ible scheduling of edge devices and services.

The key design abstracts platform differences through a uni-

fied edge runtime. The edges use CPUs, GPUs, and FPGAs for

training and inference via scheduling and containers. It allows

FL model computation on devices, continuous inference during
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Figure 2. FedEYE deployment with heterogeneous networks
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training, and seamless model upgrades. Models and applica-

tions are containerized plug-and-play modules. Integrating

extended FATE frameworks’ containers enables cloud-edge

collaboration for FL.

In order to address the challenges posed by heterogeneous

networks in real-world deployment scenarios, FedEYE incorpo-

rates a cloud service layer and an edge device layer, as depicted

in Figure 2. The edge device layer is connected to the cloud

server through an application programming interface (API)

gateway after passing through a firewall. The cloud service layer

includes micro-services such as the cloud control console, the

server side of the edge computing platform, and a cloud-based

model management platform. The edge device layer comprises

client devices participating in FL modeling. Each client device

contains an agent side of the edge computing platform

and federated components and is deployed in a containerized

virtual environment. The network environment of all devices is

composed of virtual private networks (VPNs), which can ensure

the privacy and security of data transmission and prevent hijack-

ing and attacks. For example, Wire-Guard, which implements

encrypted VPNs and is open source, can be used.
DMA-MaaS framework

The DMA layer includes a data pool, mission pool, and algo-

rithm pool, while the MaaS layer mainly provides model ser-

vices for the model market. To ensure data security and pri-

vacy, we store the necessary data, algorithm, and model in a

distributed manner across the edge nodes while providing

external interfaces for data input and management. The algo-

rithms used include feature engineering and federated algo-

rithms such as aggregation optimization and federated transfer.

Upon initiating a task, a parameterized configuration and a

graphical interface are provided for display and participation.

Once the task is completed, the resulting model can be set

to private or added to the model pool for others to use for

research and inference. Our platform offers essential model

management services, which include model inference for verti-

cal and horizontal FL, model upload and download, and model

version management.

We use the federated mechanism layer as the middle layer to

connect the DMA layer and theMaaS layer, mainly by combining

and orchestrating algorithms, data, and models to build two

different types of federated tasks.
Patterns 5, 100928, February 9, 2024 5



Table 2. FedEYE federated learning benchmarks

Dataset Partition Model Accuracy Recall Data size

DR iid Swin-T46 0.9711 0.9653 7901

DR iid ViT47 0.9714a 0.9690a 7901

DR iid ResNet45 0.9099 0.9144 7901

RVO iid Swin-T46 0.9859 0.9466 5547

RVO iid ViT47 0.9496 0.9870a 5547

RVO iid ResNet45 0.9910a 0.9686 5547

AMD iid Swin-T46 0.9422a 0.9344 8261

AMD iid ViT47 0.9268 0.9232 8261

AMD iid ResNet45 0.9072 0.9103 8261

HMCN iid Swin-T46 0.9989a 0.9977a 5369

HMCN iid ViT47 0.9978 0.9971 5369

HMCN iid ResNet45 0.9985 0.9975 5369

PM iid Swin-T46 0.9511 0.8721 5852

PM iid ViT47 0.9552a 0.8767a 5852

PM iid ResNet45 0.9532 0.8794 5852

EDDL iid Swin-T46 0.9607a 0.9293a 712

EDDL iid ViT47 0.9438 0.8905 712

EDDL iid ResNet45 0.9002 0.8783 712

EDDL non-iid Swin-T46 0.9542 0.7784 712

EDDL non-iid ViT47 0.9663a 0.9459a 712

EDDL non-iid ResNet45 0.9052 0.6327 712

OCT17 iid Swin-T46 0.9897a 0.9850a 83484

OCT17 iid ViT47 0.9852 0.9791 83484

OCT17 iid ResNet45 0.9706 0.9734 83484

OCT17 non-iid Swin-T46 0.9949a 0.9850a 83484

OCT17 non-iid ViT47 0.9775 0.9316 83484

OCT17 non-iid ResNet45 0.9865 0.9759 83484
aBest results

DR, diabetic retinopathy classification dataset; AMD, age-related macular degeneration dataset; RVO, retinal vein occlusion dataset; HMCN, highly

myopic choroidal neovascularization dataset; PM, pathological myopia dataset.

ll
OPEN ACCESS Descriptor
Key features of FedEYE
Leveraging the design principles and architecture of FedEYE, the

platform boasts a multitude of key features. These encompass a

diverse range of rich and customizable capabilities, clear sepa-

ration of concerns, scalability, and flexible deployment.

Rich and customizable capabilities

FedEYE is a ML platform that enables both federated and stand-

alone ML tasks across structured data like tabular data as well

as unstructured data such as images and text. The platform facil-

itates secure and privacy-preserving FL by allowing federated

trainingofMLmodelsonsensitivedata that remainsonusers’ local

devices. Beyond FL, FedEYE also supports independent research

tasksonprivatedatasets.Theplatformcanhandleawidevarietyof

tasks, including binary and multi-class classification for tabular

data, image and text data, and object detection for image data.

FedEYE seamlessly integrates popular model libraries such as

timm,41 torchvision,42 transformers,43 and more. Ophthalmic re-

searchers can leverage the capabilities of the platform to engage

in numerous federated tasks, such as the classification and diag-

nosis of fundus images, lesion identification, and analysis of pa-

tient morbidity rates, among other scientific collaborators.
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We develop a web-based interactive interface that schedules

tasks through the edge-cloud subsystem. When creating tasks,

we offer a parameterized task configuration method and a

graphical interface to construct tasks modularly. This makes it

easy for medical staff without solid programming skills.

Clear separation of concerns

Aligned with the design principle of MLDevOps,39 FedEYE em-

powers individuals with distinct responsibilities to indepen-

dently manage various aspects of the platform. For instance,

doctors and patients can create inference tasks and complete

model applications through the MaaS in FedEYE’s web-based

interactive interface. Additionally, doctors can utilize the DMA-

MaaS framework of the platform to initiate tasks and involve

other medical institutions. The maintenance staff of the hospital

system can integrate the system and fulfill specific personal-

ized requirements using the FedEYE API open platform. ML al-

gorithm engineers can focus on the algorithm pool and related

inference task development, while hardware engineers can

concentrate on the infrastructure layer. The platform’s opera-

tions personnel focus on user, role, metadata management,

and platform development.



Table 3. FedEYE independent research benchmarks

Dataset Client 0 Client 1 Client 2 Client 3 FedEYE FL task

EDDL 0.7569 0.7222 0.7361 0.7222 0.9607a

OCT17 0.9566 0.9566 0.9591 0.9542 0.9897a

aBest results

ll
OPEN ACCESSDescriptor
Scalability

The scalability of the FedEYE platform has two key aspects:

the scalability of the cluster nodes and the scalability of the

functionalities.

The cluster nodes’ scalability of FedEYE is due to using

K3s40 as the underlying tool for managing computing nodes.

K3s is a lightweight Kubernetes distribution designed for the

Internet of Things and edge computing. K3s minimizes

external dependencies, requiring only kernel and cgroup

mounting, making it easy to scale computing nodes up or

down. When a computing node needs to join the cluster,

simply install the K3s agent with one command. When a

node becomes unavailable due to a crash or another reason,

the platform automatically migrates the applications on the

node to other healthy nodes. At the same time, the platform

dynamically binds namespaces with computing nodes to

ensure that application components of each federated party

can be migrated to suitable computing nodes during node

scaling.

The functional scalability of FedEYE is due to the micro-ser-

vice architecture. Micro-service architecture involves breaking

down different functional modules of the system into multiple

separate services, each independently developed and de-

ployed. Each service runs in its own process, so updates to

one service do not affect the running of other services.

Because each service deploys independently, it is possible
Figure 3. Federated learning process on FedEYE
to monitor the resource consumption of each service more

accurately and to quickly identify performance bottlenecks

between services. Each service is independently developed

and can use different programming languages, reducing

code conflicts and duplication. This makes the logical pro-

cessing flow clearer and makes maintenance and expansion

easier in the future.

Flexible deployment

FedEYE offers readily available edge computing machines

seamlessly connected to the federated platform once the

network configuration is complete. Moreover, FedEYE pro-

vides a containerized deployment approach facilitated

through Docker.44 Users have the convenience of installing

and upgrading the platform components by simply download-

ing the Docker image.
FedEYE benchmarks
FedEYE provides FL benchmarks on the public and private data-

sets, and the detailed benchmarks are shown in Table 2. We

conducted image classification experiments based on FedAvg

using ResNet,45 Swin-Transformer,46 and ViT47 models on

each dataset. The experimental results display only the top three

highest accuracy rates for each model.

To further illustrate the significance of the platform,

we also conduct experiments on the Eye Disease Deep

Learning Dataset (EDDL) and the Retinal OCT Images Dataset

(OCT17), conducting independent ML experiments on

different clients. It can be seen from the results shown in Ta-

ble 3 that performing federated tasks through the FedEYE

platform can achieve better model performance while protect-

ing data privacy.

The detailed description is in the experimental procedures

section.
Patterns 5, 100928, February 9, 2024 7



Figure 4. The data partition of EDDL and OCT17

The size of the circles represents the volume of data.
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DISCUSSION

The FedEYE platform is designed to address the unique chal-

lenges of training ML models in ophthalmology. By providing a

user-friendly and scalable system that separates the concerns

of data, algorithm, model, and hardware management, we

believe that our platform can enable more effective and efficient

ophthalmology research while protecting patient privacy. How-

ever, FedEYE still has some limitations. We have solely contem-

plated the training and inference process of the model, whereas

the configuration of model parameters necessitates further guid-

ance and expertise. Moreover, data collection and annotation

automation remain focal points for future advancements and

for refinement of the platform.With the development of platforms

such as FedEYE, FL collaborations for ophthalmology research
8 Patterns 5, 100928, February 9, 2024
and data can become more accessible to medical professionals

and institutions, further advancing the field of medical research.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Yiqiang Chen (yqchen@

ict.ac.cn).

Materials availability

This study did not generate new materials.

Data and code availability

The EDDL48 dataset is available at the repositories,48 and the OCT17 can be

found at Mendeley Data.49 All other data reported in this descriptor will be pro-

vided by the lead contact upon request. However, we highly recommend

mailto:yqchen@ict.ac.cn
mailto:yqchen@ict.ac.cn
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contacting the lead contact to access the FedEYE platform and participate in

the federated training to use the complete data.

The FedEYE platform can be accessed at https://fedeye.aierchina.com/. All

original code for platform and data pre-processing is available at GitHub

(https://github.com/beiyuouo/FedEYE) and has been deposited at Zenodo.50

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Experiment setup

To demonstrate the capabilities of the platform, we conducted an FL

experiment on ophthalmic medical images using FedEYE deployed in

the real world. We first introduced the definition of the FL problem, experi-

mental settings, platform deployment, and benchmark experimental results.

Problem definition

FL is a distributed ML approach that enables training MLmodels on decentral-

ized data located on devices like mobile phones or hospital servers without

exchanging local private data samples. This allows collaborative model

training while keeping data localized and private.

The key steps in FL are

(1) Model initialization: a global model is created on a central server with

randomly initialized weights.

(2) Model distribution: the central server distributes the global model back

to all clients.

(3) Local training: each client trains themodel on local private data and up-

dates the model locally.

(4) Server aggregation: the locally updated models are sent back to the

central server. In FedAvg, the server aggregates thesemodels by aver-

aging their weights and creates an improved global model.

(5) Iteration: steps 2–4 are repeated until the global model converges.

The schematic diagram of the FL process is illustrated in Figure 3. The goal is

to collaboratively train an accurate model while keeping data decentralized on

devices. FL preserves privacy and reduces communication costs. It is well-

suited for medical applications where sensitive patient data need to remain

localized. The iterative process allows building a shared global model from

local insights without sharing the data.

Datasets

We used seven datasets, including two public datasets: the EDDL48 and the

OCT17.49 We performed both independently and identically distributed (iid)

data partition and non-independently and identically (non-iid) data partition

based on theDirichlet distribution (alpha = 0.5) for each dataset. The relationship

between the number of data instances and label quantities for each client is de-

picted in Figure 4. In addition, there are five private datasets belonging to Aier

Eye Hospital: the diabetic retinopathy classification dataset, the age-related

macular degeneration dataset, the retinal vein occlusion dataset, the highly

myopic choroidal neovascularization dataset, and the pathologicalmyopia data-

set (note: all of Aier Eye’s data were collected from several natural data centers).

Experiments detailed

For the CNN-basedmodel, ResNet45 employs a learning rate of 1e�4 and con-

ducts training with the Adam optimizer. For the transformer-based model,

Swin-Transformer46 and ViT47 apply a learning rate of 3e�5 and training using

the AdamW optimizer. All models are pre-trained on ImageNet. We utilize a

batch size of 8 for the OCT17 dataset, iterating for 20 rounds, while employing

a batch size of 2 for other datasets, iterating for ten rounds. Before the training

procedure, the platform shall autonomously partition the dataset in an 8:2 ra-

tio, distinguishing between the training and validation datasets. This division

serves the purpose of evaluating the model’s generalization capability and

safeguarding against overfitting.

Deployment detailed

The FedEYE platform is deployed in clusters across five data centers of Aier

Eye Hospital, which include Aier Eye Hospital headquarters, Changsha, Wu-

han, Chongqing, and Shenzhen.
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