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Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial
physiology to pathogenic processes. As such many lipoproteins, originating from
Brucella are exploited as potential vaccines to countermeasure brucellosis infection
in the host. These membrane proteins are translocated from the cytoplasm to the
cell membrane where they are anchored peripherally by a multifaceted targeting
mechanism. Although much research has focused on the identification and classification
of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of
Brucellosis, the underlying route for the translocation of these lipoproteins to the outer
surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly
unknown. This is partly due to the complexity of the organism and evasive tactics used
to escape the host immune system, the variation in biological structure and activity
of lipoproteins, combined with the complex nature of the translocation machinery. The
biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding
translocation from the cytoplasm, where they are modified by lipidation, sorted by the
lipoprotein localization machinery pathway and thereafter equipped for export to the
OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the
β-barrel assembly complex for translocation. This review provides an overview of the
characterized Brucella OM proteins that form part of the OM, including a handful of other
characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein
localization pathways in gram negative bacteria will be used as a model to identify gaps
in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are
the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza.
The localization and topology of these lipoproteins from other gram negative bacteria
are well characterized and may be useful to infer a solution to better understand the
translocation process in Brucella.

Keywords: Brucella vaccine target, lipoprotein localization, Brucella lipoprotein, lipoprotein secretion, outer
membrane protein, Lol pathway, pathogen-associated molecular patterns, toll-like receptors

Abbreviations: ABC, ATP-binding cassette transporters; Bam, complex, β- barrel assembly; B. abortus, Brucella abortus;
B. melitensis, Brucella melitensis; B. ovis, Brucella ovis; B. suis, Brucella suis; CU, chaperone-usher; E. coli, Escherichia
coli; H. influenza; Haemophilus influenza; IM, inner membrane; Imp, inner membrane protein; Lgt, preprolipoprotein
diacylglyceryl transferase; Lsp, lipoprotein signal peptidase; Lnt, lipoproteinN’N-acyl transferase; Lol, lipoprotein localization
machinery; Lpp, Braun’s lipoprotein; LPS, lipopolysaccharides; MAb, monoclonal antibodies; OM, outer membrane; Omp,
outer membrane protein; PAMPs, pathogens-associated molecular patterns; Pal, peptidoglycan-associated lipoproteins;
POTRA, polypeptide-transport-associated; PRR, pattern-recognition receptors; RGD, Arg- Gly- Asp; Sec, system, general
secretory; Tat system, twin-arginine translocation; T1SS, type I secretion system; T2SS, type II secretion system; T3SS, type
III secretion system; T4SS, type IV secretion system; T5SS, type V secretion system; T6SS, type VI secretion system; T7SS,
type VII secretion system; TCS BvrRS, two-component regulatory system BvrR/BvrS; TLRs, toll-like receptors.
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LIPOPROTEIN LOCALIZATION

Bacteria are classified as gram negative or gram positive based
on the structure of the cell wall. Gram negative bacteria have
a cell envelope composed of the outer membrane (OM), a thin
hydrophilic peptidoglycan layer lining the periplasmic space and
the inner membrane (IM). Whereas, the gram positive bacteria
cell envelope is composed of a thick hydrophilic peptidoglycan
layer and IM. The IM of gram negative bacteria is a phospholipid
bilayer while the OM is composed of an asymmetric lipid
bilayer with lipopolysaccharides (LPS) orientated toward the
outer surface and phospholipids orientated toward the periplasm
(Mitchell, 1961; Bladen and Mergenhagen, 1964). Proteins are
synthesized in the cytoplasm and may either span the IM with
characteristic α-helical stretches causing their retention in the
membrane, referred to as Imps or translocate across the IM
by means of a signal peptide to form complex β-barrels that
span the OM as outer membrane proteins (Omps) (Koebnik
et al., 2000). The characteristic β-barrel of Omp is comprised
of amphipathic β-strands (with alternating hydrophobic amino
acid residues) ensuring their solubility during secretion through
the periplasm (Rosenbusch, 1974; Nakamura and Mizushima,
1976; Pugsley, 1993). Lipoproteins are adept at anchoring to
either the IM or OM by means of the acyl moieties (hydrophobic
interactions) in both gram negative and gram positive bacteria
(Braun and Rehn, 1969; Narita, 2011). This review will focus
upon lipoproteins in gram negative bacteria, which are exported
to the surface of the OM in certain bacterial species. This
provides insight to Brucella lipoproteins and the reason for
their selection as vaccine candidates for treatment against
brucellosis.

THE GENERAL SECRETORY
TWIN-ARGININE TRANSLOCATION
SYSTEMS: INNER MEMBRANE TO
PERIPLASM

In gram negative bacteria, proteins destined for the OM are
exported from the IM to the OM via the type I secretion
system (T1SS), type III secretion system (T3SS), type IV secretion
system (T4SS), or type VI secretion system (T6SS) in a single,
direct step. Other proteins, mostly in gram negative bacteria
that translocate to the OM, can initially be exported from
the IM into the periplasm by means of the general secretory
(Sec) or twin-arginine translocation (Tat) systems as protein
precursors and thereafter translocated to the OM surface by other
systems in a double reaction process. In most gram positive
bacteria, translocation of the proteins to the cell surface is
simpler and occurs via the Sec or Tat systems, with exception
of mycobacteria. Components of the Sec system recognize a
hydrophobic N-terminal sequence of the proteins destined for
secretion and translocation of the protein occurs in an unfolded
state, coupled with ATP hydrolysis and a proton gradient as
the energy source (Sjostrom et al., 1987; Bibi, 1998; Papanikou
et al., 2007). On the other hand, the Tat system identifies a

sequence composed of basic amino acid residues (Ser- Arg-
Arg- x- Phe- Leu -Lys) at the N-terminal end of the protein
and protein export occurs in a folded state making use of
a proton gradient (Pugsley, 1993; Brink et al., 1998; Müller,
2005).

PROTEIN SECRETION PATHWAYS FOR
GENERAL SECRETORY/TWIN-ARGININE
TRANSLOCATION SYSTEMS-
INTERMEDIATES

Secretion can be further branched to the translocation of
Sec/Tat-transported intermediates from the periplasm to external
milieu through the chaperone-usher (CU) pilli pathway required
for the formation of fimbrial adhesion involved in host
attachment and invasion, biofilm formation, cell motility
as well as protein and DNA transport export (Hultgren
et al., 1991; Hal Jones et al., 1997). The other translocation
pathways include the autotransporter (T5SS, type V secretion
system); the type II secretion system (T2SS) and the type
VII secretion system (T7SS), which form a channel utilized
for the translocation of proteins across both the hydrophobic
membrane and the cell in gram positive mycobacteria, and
lastly the lipoprotein localization machinery (Lol) pathway.
No stable intermediates have been identified for T1SS, T3SS,
T4SS, and T6SS in the periplasm. Furthermore, the T3SS,
T4SS, and T6SS pathways make use of a conducting channel
capable of extending from the bacterial membranes to the
host cell membrane specifically allowing for the secretion of
bacterial virulence factors. Established pathways of lipoprotein
secretion from the IM through the OM involve either the
T2SS, T5SS, or Lol, or a model employed by bacteria
of the class spirochetes referred as the spirochetal model
(Pugsley, 1993). The protein secretion pathways extending
beyond the scope of this review, i.e., lipoprotein secretion
in gram negative bacteria, will not be discussed in further
detail.

BACTERIAL LIPOPROTEINS FUNCTION,
MODIFICATION, AND LOCALIZATION

Lipoproteins have the ability to localize to diverse regions
in the cell. In gram negative bacteria, mature lipoproteins
anchor to the IM, the extracellular surface or the peripheral
region of the OM, depending upon the distinct function
performed in the cell (Wu and Tokunaga, 1986; Narita et al.,
2004). Lipoproteins that are anchored peripherally to the
OM play an important role in bacterial physiology including
envelope stability, cell division, sporulation, conjugation,
nutrient acquisition, signal transduction, transport, and
protein folding, and in bacterial pathogenic processes for
example adhesion, colonization, invasion, and persistence
through immune evasion (Mathiopoulos et al., 1991; Sutcliffe
and Russell, 1995; Khandavilli et al., 2008; Hutchings et al.,
2009; Kovacs-Simon et al., 2011). The specific localization
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of lipoproteins is dependent on an effective lipoprotein
modification and transport system, and a precise lipoprotein
sorting mechanism (Hantke and Braun, 1973). In gram positive
bacteria lipoproteins are exported through the IM and acylated
to ensure secure localization on the bacterial cell surface.
However, in gram negative bacteria lipoproteins destined
for the OM must seek guidance from a lipoprotein-specific
chaperoned pathway (Sutcliffe and Russell, 1995; Narita et al.,
2004; Zückert, 2014). It would be naive to mold OM-associated
proteins into a specific group due to their diverse nature and
function, however, both the β-barrel structure of Omps and
lipid modification of lipoproteins are characteristic of OM-
associated proteins. Lipoproteins are generally hydrophilic,
however, due to the N-terminal lipid moiety are hydrophobic.
For this reason the release of lipoproteins does not occur
spontaneously and must overcome the energetically unfavorable
reaction at which they become detached from the IM, and
are transported across the hydrophilic periplasm to reach
the OM. The modification of lipoproteins by attachment
of the hydrophobic lipid moiety occurs in the hydrophilic
periplasm. This alteration does not impede their export
from the periplasm to the surface of the OM (Pugsley, 1993;
Tokuda and Matsuyama, 2004). Unlike Imps, which share
α-helical membrane spanning domains, and integral Omps,
which share the characteristic β-barrel domains, lipoproteins
are structurally diverse and share only the N-terminal lipid
moiety (MacIntyre et al., 1988; Bernstein, 2011; Narita,
2011).

LIPOPROTEINS AND THEIR “LIPOBOX”

The first component of lipoprotein secretion translocates
preprolipoprotein precursors from the cytoplasm (where they
are synthesized) through the IM and into the periplasm via
the Sec or Tat systems (Berks et al., 2005; Driessen and
Nouwen, 2008; Zückert, 2014). Lipoprotein genes of bacterial
origin contain a C-terminal lipobox. It is this four-amino-
acid motif, which shapes the molecular platform for in silico
lipoprotein prediction algorithms (Inouye et al., 1977). With
an increase in the number of bacterial genomes sequenced,
more lipoproteins continue to be identified resulting in the
degeneration of the original lipobox. At present the only
conserved residue of the canonical lipobox is cysteine, which
forms the target of acylation and is the new N-terminus
amino acid (residue at position +1) of the mature lipoprotein
(Seydel et al., 1999; Babu et al., 2006; Setubal et al.,
2006). This clearly necessitates the development of new
algorithms to identify lipoproteins. Following the +1 cysteine,
peptide residues comprising the “tether” (second domain) are
occasionally disordered, lacking observed secondary structure
and vary in terms of length. This “tether” domain not
only contains a lipoprotein sorting sequence but connects
the lipid anchor to the third domain, thereby positioning
lipoproteins in the cell envelope for optimal protein function
(Seydel et al., 1999; Schulze and Zückert, 2006; Zückert, 2013,
2014).

PREPROLIPOPROTEIN
DIACYLGLYCERYL TRANSFERASE,
LIPOPROTEIN SIGNAL PEPTIDASE,
LIPOPROTEIN N’N-acyl TRANSFERASE:
LIPIDATION IN THE PERIPLASM

The second component of the biosynthetic pathway of bacterial
lipoproteins yields a mature lipidated protein upon post
translational modifications of prelipoproteins, catalyzed
by three indispensable IM enzymes (Figure 1). In detail,
preprolipoprotein diacylglyceryl transferase (Lgt) catalyzes
diacylation (phosphatidylglycerol attachment to the thiol
group) at the conserved cysteine residue of the lipoprotein
via a thioester bond. This modification process occurs either
within the IM or at the cytoplasmic surface (Tokunaga et al.,
1982; Sankaran and Wu, 1994; Selvan and Sankaran, 2008).
The signal peptide is then cleaved N-terminally of the +1
cysteine residue by a signal peptidase II enzyme, lipoprotein
signal peptidase (Lsp) at the interface of the IM (gram negative
bacteria) upon recognition of the lipobox (Tokunaga et al.,
1982; Munoa et al., 1991; Vidal-Ingigliardi et al., 2007). The
cleavage process avails the N-terminal amine group of the
+1 cysteine residue for modification with a third acyl chain
via an amide linkage by lipoprotein N’N-acyl transferase
(Lnt) thereby completing the membrane anchor in gram
negative bacteria (Gupta et al., 1993). This last process of
the pathway is expendable in certain gram positive bacteria
(Jackowski and Rock, 1986; Vidal-Ingigliardi et al., 2007;
Tschumi et al., 2009; Hillmann et al., 2011). IM lipoproteins
in gram negative bacteria do not interact with downstream
pathways and are retained within the IM. Lipoproteins can
localize either to the IM (toward the periplasm) as with gram
positive bacteria or the OM as with gram negative bacteria.
When translocated to the OM, lipoproteins are anchored to
the OM either facing the periplasm, embedded in the inner
leaflet of the OM (integral membrane proteins, displaying
the C-terminal end to the external surface), anchored to the
OM facing the external milieu or cleaved from the OM and
released to the external milieu (Pugsley et al., 1986; Schulze
and Zückert, 2006; Magnet et al., 2007; Roussel-Jazede et al.,
2010; Bernstein, 2011; Zückert, 2014). In gram negative bacteria,
OM lipoprotein translocation was first speculated to occur
by means of localized fusion of the periplasm (hydrophilic)
in between the IM and OM via Bayer’s junctions due to their
hydrophobic properties (Bayer, 1968; Bayer, 1991). However,
studies conducted by (Tokuda and Matsuyama, 2004), revealed
the existence of the Lol pathway. The Lol pathway, T2SS,
T5SS, and another pathway well characterized in spirochetes,
the spirochetal OM model (involving a specialized flippase
complex) are pathways associated with the final process of
lipoprotein secretion to the OM (Schulze et al., 2010; Chen
and Zuckert, 2011; Chen et al., 2011; Zückert, 2014). These are
established pathways, which diversify among the subclasses of
Proteobacteria. Examples of various types of surface exposed
lipoproteins will be further expounded upon to illustrate these
proposed models.
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FIGURE 1 | The biosynthesis and sorting of bacterial lipoproteins. Prelipoproteins synthesized in the cytoplasm are translocated to the outer surface of the IM
by the general secretory (Sec), two-arginine (Tat) pathways. Prelipoproteins possess a consensus motif termed the lipobox, which is a component of the N-terminal
signal peptide cleavage site. It is the +1 cysteine residue of the lipobox that undergoes lipid modification in a sequential process catalyzed by three periplasmic
enzymes to yield the mature lipoproteins. The first enzyme, preprolipoprotein diacylglyceryl transferase (Lgt) generates a thioether linkage by transferring a
diacylglyceryl molecule to the sulfhydryl group of the +1 cysteine. The second enzyme, lipoprotein signal peptidase (Lsp) catalyzes the cleavage of the N-terminal
signal peptide at +1 S-diacylglyceryl cysteine. Lastly, lipoprotein N’N-acyl transferase (Lnt) catalyzes aminoacylation of the α-amino group of the S-diacylglyceryl
cysteine, producing a mature triacylated lipoprotein. Depending upon the lipoprotein sorting signal the lipoprotein is then targeted for the inner membrane (IM) or the
outer membrane (OM). Abbreviations used: inner membrane (IM), general secretory (Sec), two-arginine (Tat), preprolipoprotein diacylglyceryl transferase (Lgt),
lipoprotein signal peptidase (Lsp), lipoprotein N’N-acyl transferase (Lnt), outer membrane (OM).

THE BACTERIAL LIPOPROTEIN
LOCALIZATION MACHINERY PATHWAY:
PERIPLASMIC SORTING TO THE OUTER
MEMBRANE OF GRAM NEGATIVE
BACTERIA

The periplasmic sorting pathway exports specific lipoproteins
from the IM using chaperones, the ATP binding cassette
(ABC) transporter (LolCDE) and energy generated from ATP
hydrolysis. A carrier protein (LolA) translocates the lipoproteins
through the periplasm, and finally insertion into the inner
leaflet of the OM is mediated by an OM receptor (LolB).
In E. coli, the Lol pathway comprises of LolCDE which is
inserted in the IM; LolA, a soluble chaperone located in the
periplasm; and LolB, an OM lipoprotein receptor anchored to
the inner leaflet of the OM (Matsuyama et al., 1995, 1997;
Yakushi et al., 2000). Lipoproteins that are triacylated (i.e., mature
and catalyzed by Lnt) are identified by the LolCDE complex.
Upon ATP hydrolysis they are transferred to LolA, forming
a water soluble complex. Translocation from the periplasm
to the OM then occurs by means of diffusion (Tajima et al.,
1998; Narita et al., 2002). The lipoprotein-specific periplasmic

carrier protein LolA was the first characterized constituent of
the Lol pathway and is vital for lipoprotein export through
the periplasm. By forming a 1:1 stoichiometric ratio of carrier
to lipoprotein, LolA encases the hydrophobic lipid moiety of
the lipoprotein (Matsuyama et al., 1995; Tajima et al., 1998).
LolB, a lipoprotein itself is situated on the inner periphery
of the OM, directing the final step of lipoprotein sorting by
accepting lipoproteins from LolA and anchoring them to the
OM. As with LolA, knockout gene studies using lolB resulted
in the accumulation of lipoprotein-LolA complex within the
periplasm of E. coli (Matsuyama et al., 1997; Tanaka et al.,
2001). A high degree of structural homology exists between
LolA and LolB based on x-ray crystallography, even though a
low degree of identity exists between the primary sequences
(Takeda et al., 2003). Both components possess a hydrophobic
cavity offering a probable binding site for the acyl chain of the
lipoproteins. However, differences in their primary sequences
and secondary structure permit the transfer of lipoproteins
irreversibly from LolA to LolB in the periplasm (Matsuyama
et al., 1997). Hypotheses have been postulated for the interaction
of LolA-LolB with lipoproteins. In Pseudomonas aeruginosa
(γ-Proteobacteria) for example, one acyl chain of the lipoprotein
is bound internally, whereas the other two chains are proposed
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to connect with the proteins using surface hydrophobic patches
(Remans et al., 2010). It has been established that homologs
for LolB are present β-, γ- and δ-Proteobacteria (absent in
α-Proteobacteria). Brucellae are placed taxonomically in the α-
2 subdivision of the class Proteobacteria, which could suggest
that LolA plays a more extensive role in lipoprotein localization.
In Brucella the mechanism of lipoprotein maturation and
translocation has been assumed based on sequence similarity
between species (Supplementary Table S1). Components for
lipoprotein maturation (Lgt, Lsp, and Lnt) have been inferred
by homology (orthologs closely related species) and components
for lipoprotein translocation such as LolA and LolC/E have been
predicted (in the absence of proof at protein, transcript, or
homology levels), whereas LolD has been inferred by homology
(DelVecchio et al., 2002; Halling et al., 2005). The Lol pathway
is considered a general mechanism for lipoprotein transport
given that the genes encoding Lol proteins are conserved in
other gram negative Proteobacteria. It is hypothesized that an
Omp or a lipoprotein with a sequence dissimilar to LolB yet
still retaining its function could exist, or LolA could be dual
functioning, both accepting and incorporating lipoproteins due
to the absence of LolB in α-Proteobacteria (Sutcliffe et al., 2012).
In Mycobacterium tuberculosis for example, a structural LolA/B
homolog interacts with all three acyl chains of the lipoprotein. It
was assumed that the LolA-B fold is flexible, allowing lipoproteins
to encase presenting hydrophobic molecules (Drage et al.,
2010).

Studies conducted by deleting LolA allowed for the
identification of the LolCDE complex in E. coli, which releases
lipoproteins into the periplasm. The LolCDE complex is an
ABC transporter present in the IM, which initiates the coupling
of a lipoprotein to LolA (Yakushi et al., 2000). LolC and LolE
are integral Imps homologous to each other, whereas LolD is
located within the cytoplasmic leaflet of the IM. LolD possesses
ATP-binding domains (conserved Walker A and B motifs) and
forms a 2:1:1 stoichiometric ratio with LolC-LolE (Yakushi
et al., 1998; Yakushi et al., 2000; Ito et al., 2006). Studies
have suggested OM lipoproteins are first retained by LolE
causing allosteric modifications increasing LolD’s affinity for
ATP. Meanwhile, LolC attaches to LolA and as ATP binds to
LolD, lipoprotein interaction with LolE is reduced resulting
in lipoprotein relocation to LolA upon ATP hydrolysis and
finally the lipoprotein-LolA complex attaches to LolB (Ito et al.,
2006; Okuda and Tokuda, 2009; Mizutani et al., 2013; Zückert,
2014).

LIPOPROTEIN SORTING WITHIN THE
PERIPLASM AND THE EVOLUTION OF
THE “+2” RULE

The N-terminal end of the mature lipoprotein (triacylated) has a
sorting signal, i.e., the suggested lipobox, which is recognized by
the Lol pathway for export. In principle, the amino acid residue
(i.e., side chain) at position two of the lipoprotein sequence
determines membrane localization in E. coli. Aspartic acid at +2
functions as an IM retention signal whereas other amino acids

at this position function as an OM targeting signal. The aspartic
acid functions as a LolCDE avoidance signal for lipoproteins by
interfering with the interaction between LolCDE and cysteine
(at +1 position) (Yamaguchi et al., 1988; Gennity and Inouye,
1991; Seydel et al., 1999; Terada et al., 2001). Studies involving
substituting large non-protein molecules to cysteine at position
+2 revealed that LolCDE recognizes the N-acyl S-diacylglyceryl
of cysteine and this appears to be the sole structural requirement
for LolCDE recognition (Masuda et al., 2002; Hara et al., 2003).
Additionally, histidine and lysine at position +3 reduced the
stringency of IM retention by the +2 aspartic acid residue. These
studies among others rendered the +2 rule a guiding standard
instead of a universal rule for lipoprotein sorting by the Lol
pathway (Gennity and Inouye, 1991; Zückert, 2014).

Brucella PATHOGENESIS AND OUTER
MEMBRANE BIOGENESIS

According to the Food and Agriculture Organization (FAO)
and World Health Organization (WHO), brucellosis is one of
the most widespread zoonotic diseases in the world (Lopes
et al., 2010). The disease is caused by bacteria from the genus
Brucella. The main economically important species include
B. abortus (in cattle), B. melitensis (in sheep and goats),
and B. suis (in swine) (Bruce, 1887; Bang, 1897; Traum,
1914). The internalization of Brucella within the host cell is
a regulated system involving interactions between host cell
surface factors and pathogen molecular factors. As part of
the intracellular trafficking in host mammalian cells, protein
substrates for the T4SS are transported to the host cell cytosol
where they allegedly assist translocation and interactions with
the endoplasmic reticulum to reach the replicative vacuole.
In fact Brucella virulence is dependent upon the ability to
survive and replicate in the vacuolar phagocytic compartments
of macrophages (Arenas et al., 2000; Naroeni et al., 2001). T4SS
is categorized as one of the known bacterial secretion systems
(discussed previously) and is one of the most important virulence
systems identified as crucial in the intracellular processing of
Brucella within macrophages, which ultimately controls the
biogenesis of the intracellular compartment where Brucella
will finally take residence (Hong et al., 2000; Xiang et al.,
2006; de Jong et al., 2008). Similarly, the two-component
regulatory system BvrR/BvrS (TCS BvrRS) is another crucial
component of the virulence system. The BvrRS is composed
of a histidine kinase sensor located in the IM (BvrS) and
a cytoplasmic regulator (BvrR). This system controls the
expression of a T4SS component, participates in the homeostasis
of the OM by controlling the structure of the LPS and the
expression of periplasmic proteins and Omps (Omp25 and
Omp22) (Guzman-Verri et al., 2002; Manterola et al., 2005;
Lamontagne et al., 2007). The interaction between T4SS and
BvrRS may epitomize an evolutionarily conserved survival tactic
used by the α-Proteobacteria subclass (Comerci et al., 2001;
Delrue et al., 2001; Martinez-Nunez et al., 2010). Furthermore,
gene expression profiling used to define Brucella pathogenesis
identified the Omps, lipoproteins, stress response proteins,
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chaperones, flagellar genes, ABC transport proteins, and genes
for LPS and fatty acid biosynthesis as key components for
cell envelope or OM biogenesis (Guzman-Verri et al., 2002;
Lamontagne et al., 2007; Manterola et al., 2007; Rossetti et al.,
2009; Viadas et al., 2009). Immunogenic proteins (particularly
Omp25, Omp31, Omp2b) found on the bacterial cell surface
are superior vaccine candidates as they establish the initial
contact site between the pathogen and the host (Delvecchio
et al., 2006). Ultimately the knowledge gained on pathogen-
associated factors (with a particular interest to Brucella Omps
and lipoproteins) have been used for the application of
these factors as antigens in vaccine formulation and studies
have confirmed their ability to confer protective immunity
against Brucella and other intracellular pathogens (Fu et al.,
2012).

Brucella OUTER MEMBRANE VERSUS
OTHER GRAM NEGATIVE BACTERIA
OUTER MEMBRANE

What is known about the Brucella cell envelope is limited
and indirect but does, however, prove the plasticity of its
cell envelope (Moriyon and Lopez-Goni, 1998). Subtle yet
noticeable differences exist between the cell envelopes of
Brucella and those of other gram negative Proteobacteria
used as model organisms. Studies have verified the failure
of using standard bacterial cell fractionation methods for
the Brucella cell envelope extraction and they also exhibit
sensitivity to media classically used in other gram negative
bacteria. Interestingly Brucella cells cultured in media and
within other cells spontaneously release OM components lavish
with LPS, native hapten polysaccharide, phosphatidylcholine,
Omps, and other proteins maintaining cell viability (Gamazo
and Moriyon, 1987). Some of these components inhibit the
fusion of phagosomes with lysosomes thereby enabling virulence
(Moreno et al., 2004). This shedding is associated with the
blebbing of Brucella OM and capture of surface and periplasmic
constituents (Zhou et al., 1998). The Brucella OM tends
to form steadier bilayers compared to other gram negative
bacteria, owing to the major presence of phosphatidylcholine
(lipid) in the OM in contrast to phosphatidylethanolamine
in other gram negative bacteria (Moriyon and Lopez-Goni,
1998). The presence of neutral lipids in Brucella OM suggests
the interaction of positively charged ornithine lipids with
the negatively charged phosphates of the lipid A (Martin
and Hancock, 1990). The fatty acids in Brucella tend to
possess longer acyl chains proposing a greater membrane
span compared to the model gram negative bacteria (Moriyon
and Lopez-Goni, 1998). Contrary to other gram negative
bacteria, stronger hydrophobic interactions exist between the
Brucella Omps and other OM components. The Brucella
Omps also have a hydrophilic domain enabling interaction
with the peptidoglycan layer and surface exposure (Dubray,
1976). However, based on Omp extraction procedures and
similarity to Rhizobium leguminosarum (a member of the α-
2 Proteobacteria subdivision), a portion of Omp could be

covalently attached to the peptidoglycan layer (Roest et al.,
1995; Vizcaino et al., 1996). Previous studies have shown heat
inactivation causes the IM of Brucella to collapse, however, the
OM maintains morphology, suggesting a greater OM stiffness
in Brucella compared to other gram negative bacteria (Rubbi,
1991). The anchorage of the lipid (acyl chains) component of
Brucella lipoproteins is suggested to be stronger too, based
on other lipid components in the OM (Moriyon and Lopez-
Goni, 1998). Another difference proven is that hydrophobic
substrates readily permeate the OM of Brucella compared
to other gram negative bacteria due to characteristics of
the LPS (Douglas et al., 1984; Martinez de Tejada and
Moriyon, 1993). Moreover, resistance to the bactericidal oxygen-
independent systems of phagocytes characterizes the Brucella
OM as a result of the resistance the LPS have to polycations
(Martin and Hancock, 1990; Martinez de Tejada et al.,
1995). The characteristics of the Brucella cell envelope define
its pathogenicity and resistance. These findings will provide
crucial insight into developing an understanding of Brucella
lipoproteins localization within the Brucella OM given their
(Brucella vs. other gram negative bacteria) variation in OM
components.

OUTER MEMBRANE PROTEINS
ACCOMMODATED IN THE Brucella
OUTER MEMBRANE

The Brucella cell envelope is constituted of an IM, periplasm
(peptidoglycan with soluble components) and OM like other
gram negative bacteria (Dubray, 1976; Moriyon and Lopez-Goni,
1998). The OM of Brucella is riddled with Omps (comparable
with other gram negative bacteria), which were first isolated
during the extraction of the cell envelope in the 1980s. These
Omps were categorized based upon their molecular mass into
group 1 (94 or 88 kDa), group 2 (36–38 kDa), and group 3
(31–34 and 25–27 kDa) with several of them forming tight
complex connections with the LPS and peptidoglycan layer
(Winter, 1987). Group 2 Omp were classified as porins and
lipoproteins bearing similarity to E. coli Braun’s lipoprotein (Lpp)
(Douglas et al., 1984). Further classification of the group 2
(Omp2a and Omp2b) and group 3 proteins (Omp25 for 25–
27 kDa and Omp31 for the 31–34 kDa) designated them as
major Omps (Verstreate et al., 1982). Studies have confirmed the
surface exposure of the major Omps based upon experiments
with the use of monoclonal antibodies (MAbs) (Cloeckaert
et al., 1990, 1991; Bowden et al., 1995). The ability of anti-
Omp MAbs to bind to the OM surface of Brucella Rough (R)
and Smooth (S) strains was assessed using ELISA. Labeling
with MAb specific for the Brucella Omps revealed these Omps
have epitopes that are exposed to the OM surface in S-Brucella
cells. Moreover, this exposure is greater in R-Brucella and
varies at species level. In order to understand the situation
in the OM of the S-Brucella cells, it is thus suggested that
the LPS with shorter O-chains are favored spatially relative
to certain Omps, and/or the native hapten polysaccharides
are irregularly dispersed on the OM surface (Gómez-Miguel
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et al., 1987; Cloeckaert et al., 1990; Bowden et al., 1995).
Previous studies performed in vitro proposed the ability of
antibodies to assist macrophage (cell mediated immune response)
opsonization of Brucella (Ralston and Elberg, 1969). In mice,
high protection was conferred by polyclonal immune sera that
was raised against the peptidoglycan layer (reacted with Omps
and S-LPS using immunoblots). However, protection conferred
by the anti-Omp MAbs was lower in comparison to that
conferred by the anti-S-LPS MAbs. Lower protection could be
correlated to weaker opsonization as a result of low antigen-
antibody accessibility and avidity (Cloeckaert et al., 1991). These
investigations formed the basis of using Brucella Omps to
further probe the effect these Omps would have on Brucella
virulence.

Brucella PORINS (GROUP 2 OUTER
MEMBRANE PROTEINS)

Omp2a forms a monomeric pore in the OM, while Omp2b forms
a trimeric channel composed of oligomers (in the presence of
SDS, it is resistant to heat denaturation), both typical of some
bacterial porins (Marquis and Ficht, 1993). Structural differences
exist between the two Omps but do not differentiate which is
more efficient or demonstrates better activity (Cloeckaert et al.,
2002). However, the expression of Omp2a during intracellular
growth of Brucella species has not been confirmed to date.
Secondary structure prediction methods revealed both these
porins have a 16 stranded β-barrel domain with eight large
surface loop regions that are exposed to the external milieu
(Mobasheri et al., 1997; Paquet et al., 2001). Major differences
in the porins are two insertions and/or deletions which exist at
the surface exposed loop 3 and loop 5, which vary between the
Brucella species. It is suggested that pore constriction of Brucella
porins is most likely exerted by loop 5, instead of the loop 3
(Paquet et al., 2001). Loop 6, loop 7, and loop 8 were identified
as epitopes based on analysis with other chimeric porins and
studies conducted with MAbs indicated a strong surface exposure
of these loops, which is in agreement with the proposed role in
bacterial adhesion of the Arg- Gly- Asp (RGD)-containing L6
loop (Cloeckaert et al., 1990; Campbell et al., 1994; Bogdan and
Apicella, 1995; Bowden et al., 1995).

Brucella Omp25/Omp31 FAMILY
SIMILARITY AND DIFFERENCES

At the level of DNA, a high degree of similarity is observed among
the Brucella species. However, differences in pathogenicity and
host preference that are noted could relate to OM composition.
The Omp25/Omp31 family of Brucella is composed of seven
homologous Omps (Omp22, Omp25b, Omp25c, Omp25d,
Omp31b, Omp31, and Omp25). Some of these Omps may be
involved in virulence with the encoding genes displaying DNA
polymorphisms (Edmonds et al., 2002; Salhi et al., 2003; Vizcaíno
et al., 2004; Martín-Martín et al., 2008). It was speculated that
Brucella Omp25 shares identity with E. coli OmpA and even

though they are not homologous and differ in size, it is suggested
that these β-barrel proteins play a similar function in the OM
(Moriyon and Lopez-Goni, 1998). Topology predictions suggest
Omp25 is composed of eight stranded transmembrane β domains
with large surface-exposed loops. A variation observed in the
binding patterns of anti-Omp25 MAbs to B. ovisOmp25 suggests
an antigenic shift exists due to a 36 bp deletion localized to
the last surface-exposed loop at the C-terminal end (Cloeckaert
et al., 2002). Like E. coliOmpA, BrucellaOmp25 binds detergents
and LPS, causing a characteristic (of β sheets) heat-modifiable
electrophoretic migration (Moriyon and Berman, 1983; Moriyon
and Lopez-Goni, 1998).

Interspecies differences are described for Omp31. Omp31
is absent in B. abortus and a nine nucleotide substitution
is observed between B. ovis in comparison to B. melitensis.
This substitution results in a difference in antigenicity between
B. ovis and B. melitensis (Vizcaino et al., 2001b; Cloeckaert
et al., 2002). Structural differences in the processing of Omps
between gram negative bacteria are evident; an example is the
heterologous expression of B. melitensis Omp31 in E. coli. In
contrast to B. melitensis, in E. coli Omp31 does not seem
to interact with the peptidoglycan. This suggests that the
interaction of the peptidoglycan to the OM allows a greater
“OM stiffness” in Brucella compared to other gram negative
bacteria (Vizcaino et al., 1996). In other Brucella species
Omp31 forms oligomers, which are resistant to denaturation
by sodium dodecyl sulfate at low temperatures and as such is
classified as a porin (since it displays porin characteristics) in
Brucella species with lower omp2 gene expression (i.e., Omp31
compensates for Omp2). Functional studies are required to
explain these porin characteristics of Brucella Omp since in
E. coli porins are homologous, but Brucella Omp2b and Omp31
are divergent (Cloeckaert et al., 1996; Moriyon and Lopez-
Goni, 1998). If porin activity occurs as a result of Omp31, its
absence in B. abortus should have an effect on cell viability.
This function could be compensated for by a similar protein,
which may suggest the high level of Omp2b in B. abortus (Salhi
et al., 2003; Caro-Hernandez et al., 2007; Martín-Martín et al.,
2009). Based on topology predictions, Omp31, like Omp25,
possesses an eight stranded β-barrel domain, however, with
much larger surface exposed loops. Three amino acid residue
substitutions form part of an immunodominant region on the
N-terminal end of surface exposed loop 1 explain the perceived
antigenic variation between Omp31 in B. melitensis and B. ovis
(Vizcaino et al., 2001a,b). Furthermore, Omp25 and Omp31
of Brucella reveal a significant level of identity to Omps of
other members of α-2 Proteobacteria including Rhizobium,
Sinorhizobium, Mesorhizobium, Agrobacterium, Bartonella, and
Rickettsia species (Moreno and Moriyon, 2002). Also, even
though Omp31 is a major Omp, its absence has a compensatory
effect on the Omp25/31 family that does not influence virulence.
Omp31b shares 61% identity with Omp31, however, is absent
in B. melitensis but identified in B. abortus and B. suis (yet to
be identified in B. ovis) using antibody reactivity and protein
detection techniques (Salhi et al., 2003; Martín-Martín et al.,
2009). Mutant BvrRS Brucella strains are avirulent in the mouse
model, which is indicated by decreased cell invasion, inhibition
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of intracellular replication and lysosome fusion and the inability
to replicate intracellularly by Brucella (Sola-Landa et al., 1998).
Studies involving the disruption of BvrR or BvrS resulted in
a reduction of Brucella Omp2b, Omp22, Omp25, Omp25c,
and Omp31b implicating the Omps in Brucella virulence. No
reduction in Omp25d was noticeable, suggesting omp25d was
mostly likely differentially expressed and thus detected at very
low levels (Lamontagne et al., 2007). Even though group 3
Omps are suggested as crucial for the integrity of Brucella
OM owing to their close association with LPS, no fluctuations
were observed (Edmonds et al., 2001; López-Goni et al., 2004).
The homology shared between the Omp25/Omp31 family could
suggest structural and functional interchangeability, maintaining
OM integrity and virulence in Brucella. Due to this redundancy,
investigating single Omp mutants of the Omp25/Omp31 family
would be misleading (Salhi et al., 2003; Caro-Hernandez et al.,
2007; Martín-Martín et al., 2009). These investigations with the
Omp25/Omp31 family and the BvrRS reveal a compensatory
mechanism among the Brucella species and insight into the
combined effort of all OM components of Brucella to maintain
OM homeostasis, which could be speculated to affect lipoprotein
localization.

LIPOPROTEINS ACCOMMODATED IN
THE Brucella OUTER MEMBRANE

The B. abortus genome contains approximately 80 genes
encoding putative lipoproteins (Chain et al., 2005). Nonetheless,
Omp10, Omp16, Omp19, and Omp89 are the four minor
Omps previously identified by the use of MAbs that have been
examined in much greater detail compared to the other putative
lipoproteins (Cloeckaert et al., 1990). Three of the four minor
Omps (Omp19, Omp16.5, and Omp10) are low molecular weight
proteins, display poor polymorphisms and are expressed in
all six Brucella species including their biovars (Thirkell et al.,
1991; Tibor et al., 1996; Vizcaíno et al., 2000). Based on their
amino acid sequences, they are mainly hydrophilic and display
similarity to the peptidoglycan-associated lipoproteins (Pal) of
other gram negative bacteria hence their association to the
peptidoglycan (Moriyon and Lopez-Goni, 1998). Like E. coli Lpp,
they are lipoproteins (however, Omp89 is not characterized as a
lipoprotein) predicted to have three fatty acids connected to an
N-terminus glycerylcysteine and the N-terminal signal peptides
contain a tetrapeptide with high similarity to the consensus
sequence, i.e., the lipobox (Tibor et al., 1999). It is through these
lipid moieties that they are periplasmically linked to the OM
and it is through these longer acyl chains that these lipoproteins
are more strongly anchored to the Brucella OM in comparison
to other Pal of gram negative bacteria (Moriyon and Lopez-
Goni, 1998). Studies performed revealed a similar pathogenic
mechanism was observed in macrophages when the lipidated
Omp19 (but not the unlipidated form or LPSs) stimulated
dendritic cell maturation thereby producing a Th1 type immune
response (Giambartolomei et al., 2004; Zwerdling et al., 2008).
It is this lipid moiety that is shared by all bacterial lipoproteins
that display the same ability to down-regulate antigen capture

and increase T-cell response (Chain et al., 2005; Zwerdling et al.,
2008). This will be discussed further in the review with regards to
Toll-like receptors (TLRs).

Brucella PHENOTYPIC STUDIES USING
PHAGOCYTIC CELLS TO DETERMINE
THE EFFECT OF LIPOPROTEIN GENE
MUTATIONS

The characteristic and hence pathogenic function of Brucella
lipoproteins has been assessed by introducing mutations in the
genes to determine the resultant phenotype. The model system
used to assess the effect of attenuation caused by Brucellamutant
strains is growth within professional and non-professional
phagocytic cells (bovine macrophage cells and human epithelial
cells), where its replicative niche is established (Stabel and Stabel,
1995; Delrue et al., 2001). Virulent Brucella fail to fuse with
lysosomes; by contrast avirulent Brucella co-localize with the
endosome post-infection (Arenas et al., 2000). By mimicking
in vitro host intracellular defences, such as treatment with a
polycationic peptide (polymyxin B) or with a reactive oxidative
agent (H2O2), resistance conferred can be extrapolated to the
characteristic phenotype of the Brucella cell envelope (Martinez
de Tejada et al., 1995; Freer et al., 1996; Sola-Landa et al.,
1998). Furthermore, virulence in mice, sensitivity to bovine
complement-mediated lysis (extracellular killing) and growth in
minimal media should be assessed in conjunction with in vitro
studies (Corbeil et al., 1988). Deletions of the immunoreactive
lipoproteins, Brucella omp19 and omp10 genes were assessed
previously (Tibor et al., 2002). The omp10 mutant resulted
in decreased survival rates in mice, and defective growth in
media. However, neither in vitro growth nor OM characteristics
were compromised. Thus it is suggested that replication is
impeded in phagocytes during the intracellular stage with
the omp10 mutant. With the omp19 mutant no splenomegaly
(enlarged spleen, clinical symptom) was observed in mice, a
lower growth rate was observed in vitro suggesting sensitivity to
conditions within phagosomes before growth in an intracellular
replication compartment. An increase in sensitivity to bovine
serum complement was also observed for the mutant (Tibor et al.,
2002). Additionally, omp19 deletion in the R-Brucella strain did
not impact the survival of mice (Vemulapalli et al., 2000). These
observations indirectly suggest Omp19 maintains interactions
between OM components and hence the LPS lattice, thereby
affecting the extracellular and intracellular survival of Brucella
(Freer et al., 1996). Brucella lipoproteins continue to be identified
and similar results were obtained with a conserved 20 kDa
lipoprotein mutant (Kim et al., 2013). Mutations were introduced
using a transposon mutagenesis screen (Kim et al., 2012). The
Brucella mutant strain depicted a lower rate of intracellular
replication in comparison to the wild type strain in human
epithelial cells and macrophages. Moreover, fewer mutants were
recovered from the spleen of infected mice compared to infection
with the wild type strain (Kim et al., 2013). These experiments
provide evidence on the possible use of Brucella lipoproteins as
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candidate vaccines; however, results in the natural host would be
crucial. Studies involving the disruption of BvrR or BvrS resulted
in a substantial increase in periplasmic proteins, chaperones,
and transporters (for, e.g., the inorganic ABC transporter family)
with a reduction in Omp25/Omp31 family. The unexpected
increase occurred as a result of nutritional stress displaying
no auxotrophic defects. A substantial increase in Omp19 was
observed. However, Omp10 was mostly likely differentially
expressed at levels too low to be detected (Lamontagne et al.,
2007). This implies that Brucella virulence should be examined
as a multidimensional component where compounds play a
coordinated role to adapt to various environments.

THE TOPOLOGY OF Brucella
LIPOPROTEINS IN THE OUTER
MEMBRANE

The Omp10, Omp19, and Omp16 Brucella lipoproteins were also
suggested to be localized to both sides of the membrane based
on antibody accessibility studies (Gómez-Miguel et al., 1987;
Cloeckaert et al., 1990; Bowden et al., 1995). This unifies strongly
with the existence of dual topology proteins (Lpp, Pal, and P6)
identified in other gram negative bacteria and will be expounded
on further (Bernstein, 2011; Cowles et al., 2011; Michel et al.,
2013, 2015). Omp16 is homologous to the Pals of other gram
negative bacteria, however, no homology has been found for
Omp10 and Omp19 with other bacteria (Tibor et al., 1994, 1996).
Brucella Omp10, Omp16, and Omp19 satisfy the characteristics
of lipoproteins. Studies using an inhibitor of signal peptidase
II resulted in the accumulation of the lipoprotein precursors
and immunoprecipitation studies using anti-OmpMAbs confirm
the lipid modification of these minor Omp. These studies have
provided insight on a proposed topology model for Omp10
and Omp19 where the lipid moiety attached to the lipoprotein
N-terminal end is inserted in the external surface of the OM and
these lipoproteins would be localized at interface of the OM and
the external milieu (Tibor et al., 1999).

DUAL TOPOLOGY PROTEINS IN GRAM
NEGATIVE BACTERIA

It is accepted that E. coli Lppmonomers are anchored to the inner
surface of the OM (with the N-terminal lipid moiety embedded
in the OM) (Yokota et al., 1999). Previous studies suggested that
epitopes for both E. coli Lpp and Pal are exposed on the surface
of E. coli (Hellman et al., 1997). These findings were further
developed when dual topology characteristics were observed for
these E. coli lipoproteins. E. coli Lpp exists in two distinct forms:
a bound form, which resides in the periplasm with its C-terminal
covalently attached to the peptidoglycan by transpeptidases,
and a free form which spans the OM and is surface-exposed
(Magnet et al., 2007; Cowles et al., 2011). Figure 2 provides
insight to a speculated pathway for Lpp translocation in E. coli.
Approximately 500 000 (of 750 000) copies of Lpp exist in
free form in an E. coli cell, proving the importance of these

structures to the E. coli OM bilayer (Braun et al., 1970; Inouye
et al., 1972). Crystallographic studies of the soluble recombinant
protein resolved a parallel three-stranded coiled-coil structure.
The bound form exists as a homotrimer anchored to the OM by
its lipid moieties due to the attachment of three lysine residues
to the peptidoglycan layer. In comparison, the free form, which
also exists as a homotrimer, extends over the OM to form a helix
bundle, bearing similarity to transmembrane proteins (Bowie,
1999; Shu et al., 2000).

H. influenza P6 is more complex compared to E. coli Lpp
in terms of structure. It is composed of a mesh of α-helices,
loops, and a single β-sheet (Parsons et al., 2006). It is the
second lipoprotein (next to E. coli Lpp) identified to have
dual orientation characteristic in γ-Proteobacteria class of gram
negative bacteria. P6 was recognized as a vaccine candidate for
the treatment of non-typeableH. influenzae infections in humans
due to its location on the surface of the OM; the gene is also
well conserved among pathogenic strains and was identified as
immunogenic (Murphy et al., 1985; Nelson et al., 1988; Bogdan
and Apicella, 1995; DeMaria et al., 1996). Since P6 is recognized
as one of the Pal, it localizes primarily to the periplasm (Murphy
et al., 2006; Shaw et al., 2013; Shaw et al., 2014). This implies
that, in contrast to E. coli Lpp where more copies of the surface
exposed form exist, a greater portion of P6 was exported to the
inner periphery of the OM (Michel et al., 2013).

The Lol pathway also exports E. coli Pal from the IM into the
OM (Liang et al., 2005; Godlewska et al., 2009). The N-terminal
end of E. coli Pal is suggested to interact with the inner surface
of the OM via the lipid moieties and the C-terminal end
binds to the peptidoglycan layer, thereby allowing Pal to be
located in OM orientated toward the inner surface of the OM
(Cascales and Lloubès, 2004; Parsons et al., 2006; Godlewska
et al., 2009). The E. coli Pal lipoprotein shares similarity in
terms of sequence and structure to P6, which would suggest
that the lipoproteins possibly share function, protein interaction,
and hence localization (Parsons et al., 2006; Godlewska et al.,
2009). Pal is localized like P6 mainly to the periplasm, associated
with the C-terminal domains of OmpA, TolB (periplasmic
protein), TolA, and the peptidoglycan layer (Clavel et al., 1998;
Godlewska et al., 2009). E. coli Pal and H. influenza P6 both
form a monomeric α/β sandwich with the secondary structures
(α-helices, loops, and a β-sheet) and have a high (50%) sequence
identity (Chen and Henning, 1987; Parsons et al., 2006). Recently
evidence of a dual topology role of Pal was established (Michel
et al., 2015). Approximately 25% of the lipoprotein is exposed to
the OM surface (similar toH. influenza P6). The dual orientation
was further implicated in a pathological mechanism since the
surface-exposed Pal may be released from the OM during sepsis
(Hellman et al., 2000).

Brucella LIPOPROTEINS AND THEIR
SIMILARITY TO OTHER GRAM
NEGATIVE DUAL TOPOLOGY PROTEINS

Due to the similarity of Brucella Omp16 with other Pal of gram
negative bacteria, this may imply that Brucella Omp16 may be
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FIGURE 2 | The proposed translocation pathway for the dual topology E. coli Braun’s lipoprotein (Lpp). After generating the mature Lpp (green structure),
the lipoprotein in the inner membrane (IM) interacts with the lipoprotein localization machinery (Lol) located in the periplasm. Adenosine triphosphate (ATP) hydrolysis,
an ABC transporter (LolCDE), a carrier protein (LolA) and outer membrane (OM) lipoprotein receptor (LolB) mediates the “mouth-to-mouth” the transfer of Lpp from
the IM to the OM. Lpp may reside in the periplasm anchored to the inner leaflet of the OM (bound form) or spans the OM resulting in the surface exposure of its C
terminus (free form). Abbreviations used: Braun’s lipoprotein (Lpp), inner membrane (IM), lipoprotein localization machinery (Lol), adenosine triphosphate (ATP), outer
membrane (OM), ATP binding cassette (ABC).

composed of a complex folding involving α/β secondary structure
and like H. influenza P6 it may have surface exposed regions
or be completely exposed to the external milieu. Even though
the idea of a dual orientation lipoprotein might be probable,
immunological studies have not confirmed the existence thereof.
Previous studies in other gram negative bacteria have proposed
the dual orientation of the lipoproteins takes place as a result
of gene duplication followed by divergent evolution of topology;
this may also occur post protein synthesis in the endoplasmic
reticulum (Rapp et al., 2006). The dual orientation of membrane
proteins has been conserved through evolution signifying an
importance for the double orientation of these proteins (Michel
et al., 2013). It is believed that bacterial lipoproteins have
a common post-translational modification pathway (Pugsley,
1993). Based on the successful modification of Brucella Omp10,
Omp16, and Omp19 when expressed in E. coli, it can be assumed
the pathway for lipoprotein maturation is functionally conserved
between Brucella, E. coli and other related gram negative bacteria
(Tibor et al., 1999). The integration of lipoproteins into the
OM could indicate the existence of novel types of membrane
channels. A translocase (or a folding catalyst) reserved for
interconverting the two forms has been implicated (Cowles et al.,
2011).

DUAL TOPOLOGY Brucella
LIPOPROTEINS AND USING
EXPERIMENTAL MODELS DESCRIBED
FOR E. coli OF LOL AND OTHER
PATHWAYS

Surface proteolysis is most commonly used to validate the
surface exposure of a protein experimentally yet some of these
gram negative bacteria proteins are protease resistant. Brucella
Omps are no exception. Group 3 Omps form tight interactions
to LPS, conferring resistance of these Omps to protease
digestion (Gamazo and Moriyon, 1987). Recently dual topology
proteins were identified using a novel, protease independent
method which involved labeling with the water-soluble
biotin reagents succinimidyl-6′-(biotinamido)-6-hexanamido
hexanoate (NHS-LC-LC-biotin) and sulfosuccinimidyl-2-
(biotinamido)ethyl-1,3-dithiopropinate (Sulfo-NHS-SS-biotin),
followed by cell disruption techniques to quantify the population
of cell surface Omps versus periplasmic Omps. These compounds
are impermeable to the E. coli OM due to their relative high
molecular mass and hydrophobicity and therefore surface
exposed E. coli Omps can be labeled (Cowles et al., 2011;
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Michel et al., 2015). In assessing the dual topology of Brucella
lipoproteins on the Brucella OM this would be impractical
since these biotin analogs establish hydrophobic aliphatic biotin
modifications on the proteins. This may alter the characteristics
of surface exposed Omps (in particular lipoproteins as they
are regarded as hydrophilic with the hydrophobic moiety
embedded in the OM) in Brucella since hydrophobic compounds
spontaneously permeate the OM of Brucella (Douglas et al.,
1984; Martinez de Tejada and Moriyon, 1993). Another labeling
reagent, which could be of use in the BrucellaOM, is polyethylene
glycol (PEG)-NHS-biotin. This analog is a primary-amine
reactive, due to the PEG backbone it is hydrophilic and its high
molecular massmakes it inaccessible to the periplasm (Nakae and
Nikaido, 1975; Decad and Nikaido, 1976). Alternately, indirect
visualization of surface-exposed lipoproteins using confocal
microscopy could allow detection using a MAb specific for the
lipoprotein and a secondary antibody conjugated fluorophore.
As a negative control, a lipoprotein mutant strain may be used
(Michel et al., 2015).

Brucella LIPOPROTEINS AND THE
LIPOPROTEIN LOCALIZATION
MACHINERY

Outer Membrane Lipoprotein Carrier,
LolA and LolB?
Brucella lipoproteins like those present in other gram negative
bacteria are transported into the periplasm via the Sec or Tat
pathways. They then undergo the process of lipidation catalyzed
by the Imps, Lgt, Lsp, and Lnt (Figure 1). Depending on the
function of the specific Brucella lipoprotein, the lipoprotein
(like in other gram negative bacteria) is secreted to the OM
(Figure 3). Components of the Lol pathway required for the
modification and translocation of Brucella lipoproteins have
been characterized (Supplementary Table S1). All components,
except for LolB have been identified in Brucella since this
gene is absent in α-Proteobacteria indicating the presence of a
“dual functioning LolA” or another Lol component dissimilar
to the conventional LolB as previously suggested (Narita, 2011;
Sutcliffe et al., 2012). In other gram negative bacteria LolB is
structurally similar to LolA and also possesses a hydrophobic
cavity; however, LolB has a greater affinity for the lipid moiety
due to the predominant presence of smaller hydrophobic amino
acid residues such as leucine and isoleucine as opposed to
bulky aromatic residues present in LolA. An efficient one-way
lipoprotein transfer in the periplasm occurs as a result of the
formation of a hydrophobic channel between LolA and LolB
and the difference in affinity for lipoproteins, since energy
sources are absent in the periplasm (Narita, 2011). If LolA
plays a dual functional role in α-Proteobacteria, how does LolA
translocate lipoproteins to the OM as ATP hydrolysis only fuels
lipoprotein IM detachment and interaction of acyl chain to
LolA? Furthermore, LolB is a lipoprotein anchored to the OM
by a N-terminal acyl chain and LolA is not. This anchorage
was identified as an essential component for incorporation of

lipoproteins to the OM. The presence of extra C-terminal loop
characteristic of LolA, confirms LolA cannot be targeted to
membranes. It was therefore established that although LolA and
LolB are structurally similar they are functionally distinct in the
sorting of lipoproteins (Okuda et al., 2008; Tsukahara et al., 2009).
This evidence suggests the possible existence of another protein
dissimilar to LolB in sequence but which would perform the same
function as LolB in α-Proteobacteria.

LolD-LolC/E LIPOPROTEIN RELEASING
SYSTEM

In Brucella, the lipoprotein releasing system is achieved by
a “LolC/E” complex. This substantiates the likelihood of
lipoprotein release by LolC–LolD heterodimer since LolE is only
present in γ-Proteobacteria and not in the other subdivisions.
Conformational changes in LolA are required to accommodate
the acyl chains of lipoproteins. This change is achieved by
interaction with LolC or LolE; however, LolC and not LolE cross-
links with LolA suggesting the transfer of lipoproteins from
LolA to LolC. This indicates that LolE is not important for
lipoprotein transport in some bacteria since LolC interacts with
LolA and would substantiate the absence of LolE in β-, δ-, and
α-Proteobacteria (Narita, 2011).

ESTABLISHING THE EXISTENCE OF THE
Lol PATHWAY COMPONENTS FOR
Brucella LIPOPROTEIN
TRANSLOCATION USING
EXPERIMENTAL MODELS

In E. coli, lipoprotein components were identified by generating
spheroplasts and observing the effect that periplasmic (e.g.,
LolA) and OM components (e.g., a LolB homolog) have on
the translocation of lipoproteins (Matsuyama et al., 1995, 1997;
Yokota et al., 1999). Spheroplasts, in which the OM is disturbed,
secrete proteins destined for the periplasm or OM. Brucella
lipoproteins destined for the OM surface would therefore remain
intact in the IM, as components for translocation are absent.
In order to assess the periplasmic components required for
lipoprotein translocation, an isolated periplasmic component
(e.g., LolA) combined with the spheroplasts this would result
in the secretion of Brucella lipoproteins. This periplasmic
component would most likely be LolA as identified in other
gram negative bacteria (Matsuyama et al., 1995). These secreted
Brucella lipoproteins form a complex with LolA, which when
isolated and incubated separately with the extracted Brucella
OM component would presumably allow for the translocation
and hence incorporation of the Brucella lipoproteins in the
OM. This would suggest an Omp component is essential for
lipoprotein incorporation in the OM. By solubilizing the Omp
with detergents and addition of phospholipids a proteoliposome
is generatedwhich would determine the OM component required
(since LolB is absent in Brucella) (Matsuyama et al., 1997; Yokota
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FIGURE 3 | The translocation pathways for the surface exposure of lipoproteins in Brucella. Prelipoproteins synthesized in the cytoplasm undergo lipid
modification generating a mature, triacylated lipoprotein. Brucella lipoproteins (orange, green, and blue structures) may be released from the inner membrane (IM) to
the outer membrane (OM) using the lipoprotein localization machinery (Lol) pathway, which is propelled by Adenosine triphosphate (ATP hydrolysis), an ATP binding
cassette (ABC) transporter (LolCDE) and a carrier protein (LolA). LolB is absent in α-Proteobacteria, as such it is proposed lipoprotein flippase located in the OM
transfers lipoproteins to the OM. Another proposed translocation pathway involves the export of the Brucella lipoproteins through the β- barrel domain of β- barrel
assembly complex (Bam) complex embedded in the OM, assisted by the periplasmic chaperones (SurA) to the surface of the OM. The Brucella Bam complex lacks
the BamB and BamC components found in other gram negative bacteria, however, a BamF component with a conserved sequence motif related to the BamC
component may perform a similar role. Abbreviations used: inner membrane (IM), outer membrane (OM), lipoprotein localization machinery (Lol), adenosine
triphosphate (ATP), ATP binding cassette (ABC), β- barrel assembly complex (Bam).

et al., 1999). Similarly the LolD-LolC/E component located in the
IM of Brucellamay be identified.

The Brucella lipoproteins characterized to date have a
peripheral location with the anchorage of the lipid moiety to
either the outer surface or the periplasmic leaflet of the OM as
alluded to with Ab accessibility and similarity with E. coli PAL
and Lpp. If they are anchored to the periplasmic leaflet, it is
likely that the lipoprotein adopts an integral membrane protein
conformation resulting in the surface exposure of its C-terminal
end (like E. coli Lpp). However, it may also be exported to
both the inner leaflet and outer leaflet of the OM (like E. coli
Pal) (Michel et al., 2015). Studies conducted on the orientation
of a Pal present in H. influenza P6, implies the existence of
an energy driven reaction (in order to translocate across the
cell envelope) catalyzed by a “flippase” enzyme to chaperone
the “flipping” of the lipoprotein to the OM outer surface. The
orientation of P6 could possibly occur via the Lol system during
or after translocation into the OM (Michel et al., 2013). These
suggestions seem most likely to exist for the translocation of
Brucella lipoproteins since they are similar to these dual topology
lipoproteins. In order to identify the OM component (an Omp,
or a specific translocase) involved in “flipping” lipoproteins
to the surface of the OM, Brucella knockout mutants (single

mutations) may be created for the OM component. It would be
essential to monitor the integrity of the Brucella cell envelope
(additionally, IM marker detection would be useful). These
results may also vary between using the R- and S-Brucella strains
as previously suggested (Cloeckaert et al., 1990, 1996). Based
on these knockout strains, components essential for Brucella
lipoprotein surface exposure would result in no surface detection
using the hydrophilic biotin analog and immunofluorescence
techniques described previously (Michel et al., 2015).

Brucella LIPOPROTEINS AND THE
β-BARREL ASSEMBLY COMPLEX

The involvement of the Bam (β-assembly machine, consisting
of BamA; BamB; BamC; BamD; and BamE) complex (which
translocates β-barrel proteins in the OM) could perhaps exist in
lipoprotein translocation too (Ruiz et al., 2006; Bernstein, 2011).
This was observed for the Neisseria gonorrhoeae NalP which is an
autotransporter permitting the export of immunogenic proteins
into the extracellular milieu by means of its protease domain
and can itself be exported from the OM after further N-terminal
processing. It is also branded as a lipoprotein with a characteristic
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C-terminal lipobox within the signal sequence (Van Ulsen et al.,
2003). In fact, lipidation was found to be important for NalP’s
autotransporter function (Van Ulsen et al., 2003; Roussel-Jazede
et al., 2013). The export of NalP in an unfolded state is mediated
by the T5SS pathway and includes the Bam complex (lodged in
OM) and the integral membrane protein chaperones Skp, SurA,
and DegP (located in the periplasm). These chaperones enable
NalP’s translocator domain (β-barrel with a narrow hydrophilic
pore containing an N-terminal α-helix) to insert into the OM,
followed by translocation of its N-terminal passenger domain
through the OM and finally its autolytic cleavage. It is suggested
that the lipid anchor is incorporated on the OM surface since the
N-terminal passenger domain is surface localized; however, the
anchor topology is unknown (Oomen et al., 2004; Zückert, 2014).
Gram negative bacteria autotransporters are integrated in the OM
by a common machinery due to a consensus C-terminal sequence
recognized by Omp85, which in turn is responsible for the
translocation of other Omp (Robert et al., 2006). In general, three
possible post-translocations can occur for the secreted proteins.
The protein can remain covalently attached to the translocator
domain, can be cleaved yet still remain connected to the OM or,
as with NalP, it can be released into the external milieu (VanUlsen
et al., 2003; Zückert, 2014).

Would it be possible for the Bam complex, which mediates
translocation of Brucella Omps to export Brucella lipoproteins
resembling a variation of the T5SS model for Neisseria
gonorrhoeae NalP? Moreover, certain components of the Bam
complex are lipoproteins and in Neisseria meningitidis for
example BamC is regarded a prospective vaccine candidate
(surface antigen). The concept of lipoprotein translocation via the
Bam complex cannot be considered far-fetched as the functions
and interrelation of lipoproteins in the OM of gram negative
bacteria are vast (Pajon et al., 2009). Analysis of bacterial
genome sequences suggests the OM assembly machinery might
be similar in gram negative bacteria (Gatsos et al., 2008).
Supplementary Table S2 consists of the Brucella equivalent
components of the β-barrel assembly pathway that are present
in other gram negative bacteria and have been demonstrated
in Brucella based upon sequence similarity. All components
and processes are similar in Brucella compared to other gram
negative bacteria, preceding delivery of protein substrates to
the Bam complex (Figure 3). SurA is a periplasmic chaperone
mediating the translocation of proteins across the periplasm to
the OM. In Brucella and certain other α-Proteobacteria, SurA
is diminished lacking a periplasmic peptidyl-prolyl isomerase
domain indicating these domains are not essential for binding
protein substrates (Alcock et al., 2008). The main component
of the Bam complex, BamA/Omp85 consists of a N-terminal
end comprised of multiple polypeptide-transport-associated
(POTRA) domains and a C-terminal β-barrel domain embedded
in the OM. Structural analysis of the POTRA domains reveal
a promiscuous binding capability to diverse peptide substrates.
In E. coli BamA forms a complex with other lipoproteins
namely BamB, BamC, BamD, and BamE. The second, third, and
fourth POTRA domains are essential to facilitate interactions
with BamB and the fifth POTRA domain with BamD and
BamE (Kim et al., 2007; Misra, 2007). Interestingly enough,

the Brucella BamA homolog possesses all five POTRA domains,
although in Neisseria meningitides BamA is comprised only of
the fifth POTRA domain and maintains its function like the
other homologs (Robert et al., 2006; Bos et al., 2007). The
lipoprotein components of BamA are assembled and anchored
by the lipid moiety in the inner or outer surface of the OM as
discussed previously. A BamC homolog could not be inferred in
α-Proteobacteria, however, studies conducted using Caulobacter
crescentus (an α-Proteobacterium) identified a novel BamF
component with a conserved sequence motif related to those
present in BamC. BamF is found exclusively in α-Proteobacteria,
hence also in Brucella and is described as having evolved like
BamC from the ancestral Bam complex (Anwari et al., 2012).
Although BamB is present in some species of α-Proteobacteria,
Brucella like Neisseria lacks a homolog for this component (Bos
et al., 2007). It was established that certain protein substrates
interact with BamB whereas with others, SurA carrying other
protein substrates interacts directly with BamA compensating for
the lack of BamB (Vuong et al., 2008). The complete activity
and diversity of the Bam complex is largely unknown and could
perhaps assist lipoprotein translocation too (Ruiz et al., 2006;
Bernstein, 2011).

Brucella LIPOPROTEINS AND OTHER
POSSIBLE MODELS

Various studies have established the existence of different
models for lipoprotein translocation, which directly relates to
the function of the specific lipoprotein. One such example is
the pathogenic bacterial species of the spirochete class Borrelia,
which possess many surface exposed lipoproteins functioning as
major antigens, some being vital in the pathogenesis of Lyme
disease (zoonotic disease) and relapsing fever. Secretion of the
lipoproteins to the external surface is proposed to occur in an
unfolded monomeric state (which can occur at the C-terminal
end) and once at the surface it assembles into a quaternary
structure (Kumru et al., 2011). This development paved the way
for another hypothesis on the existence of a periplasmic “holding”
chaperone, which interacted with the unfolded lipoproteins
as they surface from the IM Sec system into the periplasm.
This chaperone then delivers the lipoprotein to a “flippase”
complex, which in turn exports it to the OM surface with
N-terminal anchored into the OM (Schulze et al., 2010; Chen and
Zuckert, 2011; Chen et al., 2011). LolA may function similarly
to the “holding” chaperone; however, the involvement of the Lol
pathway in this model remains to be resolved (Zückert, 2014).
Other studies further implicate the role of the Bam complex in
translocation of Borrelia burgdorferi lipoproteins (Lenhart and
Akins, 2010). The spirochetal model could seem plausible since
Brucella is absent of LolB, this would suggest the transfer of
the mature lipoprotein from LolA to the holding chaperone
and “flipping” to the OM surface. Furthermore, the T2SS model
has been described for Caulobacter crescentus (classified as an
α-Proteobacterium) under phosphate starvation conditions (Le
Blastier et al., 2010). The T2SS in gram negative bacteria is
a double-step mechanism, allowing for the secretion of folded
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and/or oligomeric proteins to the cell’s external milieu (Filloux
et al., 1990). The proteins are translocated across the IM via
the Sec or Tat systems thereafter the T2SS secreton, which
is composed of three sub-complexes (GspDQ secretin, T2SS
proteins and pseudopilus), recognizes and exports the proteins
across the OM (Pugsley, 1993). Lipoproteins do not possess a
predetermined, universal structure. They vary, from consisting of
a large globular domain (E. coli BamC) to having a translocator
domain (Neisseria autotransporter NalP) to a parallel three-
stranded coiled-coil structure (E. coli Lpp). Barely any detail
on the mechanism of lipoprotein translocation to the OM is
available due to the variation in biological activity elicited by the
lipoproteins and hence the complex machinery associated with
lipoprotein transport in these bacteria. However, the mechanisms
and intricacies illustrated in other gram negative bacteria have
provided a stepping-stone in understanding the translocation of
Brucella lipoproteins. Different models have been suggested for
the translocation of lipoproteins to the OM of gram negative
bacteria. These models interlink in mechanism. The Lol pathway
could integrate the spirochetal model by use of a “flippase”
complex in species devoid of LolB and the spirochetal model
may engage LolA of the Lol pathway or a BamA homolog
used by the T5SS model. Using these and the T2SS models,
a relative understanding and a model for the translocation of
Brucella lipoproteins will be established. To establish whether the
Bam complex or any other model for lipoprotein translocation
may potentially be used by Brucella instead of the Lol pathway,
a knockout mutant Brucella strain of all components of the
Lol pathway should be created. If lipoprotein translocation
and surface exposure occurs without the Lol pathway this
would implicate the role of another translocation pathway. The
interlinking of various pathways may also be established by the
formation of proteoliposomes and including required IM and
periplasmic components (for, e.g., LolD–LolC/E and LolA) and
OM components (e.g., the Bam complex) for Brucella lipoprotein
translocation.

Brucella LIPOPROTEINS ALONE ARE
TOLL-LIKE RECEPTOR 2 AGONISTS AS
VACCINE ANTIGENS

Pathogens, in particular bacteria, display molecular motifs
known as pathogens-associated molecular patterns (PAMPs)
that are recognized by the host’s innate immune system,
thereby protecting the host from infection. The most common
PAMPs are nucleic acids derived from pathogens and molecular
components exposed on the surface, which include LPS,
peptidoglycan, lipoproteins, and flagellin. Pathogens express a set
of PAMPs that interact with multiple host pattern-recognition
receptors (PRR). These receptors are grouped into secreted
molecules and surface receptors for pathogen engulfment (on
phagocytic cells) or the release of cytokines. After the PAMP-
PRR interaction, signal transduction causes the activation of
transcription factors that ultimately proceeds to the expression
of inflammatory cytokines, type I interferon (IFN), chemokines
and other compounds requires to elicit an immune response.

Bacterial lipoproteins, i.e., Brucella Omp16 and Omp19, being
lipoproteins are potent activators of the transmembrane proteins,
TLRs (a group of PRRs) and in particular the cell surface
TLR2, which complexes as a heterodimer with TLR1 or
TLR6. Studies were performed using crystal structures of
TLR2/1 and TLR2/6 (from model bacteria) heterodimerized
with synthetic triacyl and diacyl lipopeptide (modified +1
cysteine residue of the lipoprotein). Crystallography revealed
the triacylated lipopeptides/lipoproteins activate via the TLR2/1
heterodimer and diacylated lipopeptides/lipoproteins via the
TLR2/6 heterodimer (Takeuchi et al., 2001, 2002; Takeda
et al., 2002). Furthermore, it was speculated that the TLR2
bonds with the O-esterified fatty acids, the glyceryl group and
the thioether moiety (S-glycerylcysteine residue of triacyl and
diacyl lipopeptides) and that the TLR1 uses it hydrophobic
cavity to distinguish the amide-linked fatty acid of the triacyl
lipopeptide. TLR6, however, does not possess a distinguishing
cavity. Other studies have elaborated upon this model suggesting
lipidation alone is not solely responsible for TLR2 heterodimer
selectivity, but also the amino acid residues after the +1 cysteine
(lipidated) residue hence acyl chains position and protein/lipid
compositions (Buwitt-Beckmann et al., 2005, 2006; Omueti
et al., 2005; Kurokawa et al., 2009). However, TLR2 alone is
not involved in controlling in vivo Brucella infection. Other
PAMPs, such as B. abortus DNA was recognized as a TLR9
activator and LPS, and unlipidated Omp16, a TLR4 activator.
Furthermore, lipoproteins instead of LPS were identified as the
stimulators of the inflammatory response caused by B. abortus
(Giambartolomei et al., 2004; Kang et al., 2009; Pasquevich
et al., 2010; Pasquevich et al., 2011; Delpino et al., 2012;
Gomes et al., 2012). Therefore, it is speculated that the use of
multiple PAMPs to elicit various components of the immune
system should be investigated further in an effort to design
an effective vaccine that would target Brucella given that the
pathogen already establishes a replicative niche within the
host. At present the superiority of live-attenuated B. abortus
vaccines (e.g., S19 and RB51) to stimulate an effective immune
response (particularly a T-cell response) supersedes currently
developed vaccines against brucellosis, yet at the expense of
a constant serological response (Schurig et al., 2002). This
review has focused upon experimentally characterized and
studied Brucella lipoproteins, which have been regarded as
protective, surface antigens. However, with the advancement
of modern technology such as reverse vaccinology, which
allows for the identification of protective antigens that have
specific structural, immunogenic and functional qualities based
on in silico genome analysis, many more OM constituents
and their biosynthetic pathways will be documented in the
future for the development of a safe and effective Brucella
vaccine.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2015.01189
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