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Abstract: Mastitis, inflammation of the mammary gland, is the most prevalent disease in dairy
cattle that has a potential impact on profitability and animal welfare. Specifically designed multi-
omics studies can be used to prioritize candidate genes and identify biomarkers and the molecular
mechanisms underlying mastitis in dairy cattle. Hence, the present study aimed to explore the
genetic basis of bovine mastitis by integrating microarray and RNA-Seq data containing healthy
and mastitic samples in comparative transcriptome analysis with the results of published genome-
wide association studies (GWAS) using a literature mining approach. The integration of different
information sources resulted in the identification of 33 common and relevant genes associated with
bovine mastitis. Among these, seven genes—CXCR1, HCK, IL1RN, MMP9, S100A9, GRO1, and
SOCS3—were identified as the hub genes (highly connected genes) for mastitis susceptibility and
resistance, and were subjected to protein-protein interaction (PPI) network and gene regulatory
network construction. Gene ontology annotation and enrichment analysis revealed 23, 7, and 4 GO
terms related to mastitis in the biological process, molecular function, and cellular component
categories, respectively. Moreover, the main metabolic-signalling pathways responsible for the
regulation of immune or inflammatory responses were significantly enriched in cytokine–cytokine-
receptor interaction, the IL-17 signaling pathway, viral protein interaction with cytokines and cytokine
receptors, and the chemokine signaling pathway. Consequently, the identification of these genes,
pathways, and their respective functions could contribute to a better understanding of the genetics
and mechanisms regulating mastitis and can be considered a starting point for future studies on
bovine mastitis.
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1. Introduction

Over the last decade, advances in high-throughput genotyping and sequencing tech-
nologies [1], along with progress in developing computational methods [2], have led to
a revolution towards a better understanding of the genetic architecture underlying com-
plex traits and diseases, with exceptional depth. To date, several studies have focused on
integrating different information sources (“omics” datasets) to create robust insights into
complex molecular functional mechanisms by reinforcing complementary evidence from
multiple levels [3–5]. In this regard, the results of different types of multi-layer studies have
been reported, ranging from simple combinations (two different kinds of -omics data) to
more comprehensive and computationally demanding ones (multiple kinds of -omics data).
Incorporating two layers under a systems biology framework can involve approaches that
integrate genomics and transcriptomics [6–8], metabolomics and transcriptomics [9–11],
proteomics and transcriptomics [12,13], and proteomics and metabolomics analyses [14,15]
to functionally characterize the interactions at the molecular level for traits of interest in
humans and in livestock species.

Bovine mastitis is a common and costly disease, which has a considerable effect on
the profitability of the production system, owing to its negative impacts on milk yield,
quality, and reproductive performance; early culling; animal welfare issues; and the cost
of treatment [16–19]. The inflammation of the mammary gland occurs in response to in-
fection with pathogenic microorganisms or physiological and metabolic changes [20,21].
Although the heritability of mastitis is low [22], and genetic correlations between mastitis
and production traits are unfavorable [23,24], genetic improvement in terms of mastitis
resistance is a major breeding goal. It is also known that mastitis is highly genetically
correlated with somatic cell count (SCC), which consists of macrophages, lymphocytes,
and epithelial cells, and consequently, this can be used as an important indicator of udder
health [25]. Furthermore, selection for correlated traits, such as reduced SCC (indicating
increased mastitis resistance) could be an interesting alternative, allowing scientists to
infer and comprehend the genetic and molecular mechanisms underlying these traits. In
other words, the discovery of genomic regions, disease-causing genes, and biomarkers
associated with mastitis is of essential importance in improving the diagnosis and treatment
of the disease. In the literature, numerous studies have been carried out to identify func-
tional candidate genes associated with mastitis based on genome-wide association studies
(GWAS) [26–30] and transcriptome studies [6,16,31,32]. On the other hand, concordance
among these studies is low, indicating difficulties in identifying reliable candidate genes for
mastitis. New approaches integrating GWAS results with additional sources of information
can overcome this challenge. Hence, it is worth investigating the molecular regulatory
mechanisms through which mastitis can be developed. Therefore, the objective of this
study was to use the integration of previously published RNA-Seq and microarray data
with GWAS results to identify and prioritize potential hub genes and create reconstructions
of the protein–protein interaction (PPI) and gene regulatory networks, as well as modeling
of the three-dimensional hub protein structure involved in pathological processes related
to mastitis in dairy cattle.

2. Materials and Methods

The overall workflow for the data collection and the analysis of relevant genes related
to mastitis in dairy cattle is presented in Figure 1.
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Figure 1. Schematic of the workflow used to reconstruct the metabolic pathways of mastitis in dairy 
cattle. The main gene list was prepared from RNA-Seq and microarray datasets, and literature min-
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bipartite network of gene–miRNA interactions were reconstructed using Cytoscape. 
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ples of mastitis and healthy Bos taurus species. The accession numbers for the RNA-Seq 
and microarray datasets are shown in Table 1. Six Holstein cows from first to third lacta-
tions and days in milk (DIM) ranging from 7 to 236 were included in the GSE131607 da-
taset. All cows were kept in freestall housing at the University of California–Davis, fed a 
total mixed ration (TMR), and given ad libitum access to water. Two different samples 
were taken from each cow after diagnosis using the California Mastitis Test, one sample 
from the mastitic quarter (n = 6), and the other sample taken diagonally across from the 
mastitic quarter, which was confirmed as the healthy quarter (n = 6), based on having a 
somatic cell count (SCC) less than 100,000 cells/mL milk [16]. The GSE15020 and GSE15022 
datasets were related to microarray analysis from a study by Mitterhuemer et al. [31]. Fif-
teen healthy German Holstein Frisian cows in mid-lactation (3 to 6 months postpartum) 
were included in the study. Quarter milk samples were collected and tested weekly before 
the trial to ensure that they contained <50,000 somatic cells/mL and were free of mastitis 
pathogens. The animals were inoculated in one quarter with E. coli and slaughtered after 
6 h (n = 5) or 24 h (n = 5) in two different infection methods. Five cows, considered as 
controls, received no treatment and were slaughtered after 24 h. In total, 89 healthy and 
75 diseased German Holstein cows were tested for the GSE93082 dataset. Diseases were 
distinguished by either systemic (extra-mammary) occurrence or those affecting the mam-
mary gland (mastitis) to account for influences on the milk composition from local inflam-
matory processes. All cows were examined thoroughly by the dairy herd manager, trained 
staff, or a veterinarian. Healthy animals (2–4 years old, 1st to 3rd lactation, one animal 4th 
and one 8th lactation) which had no clinical signs of disease and no abnormalities in the 
udder or milk, with a reported somatic cell count less than 100,000 cells/mL were chosen 

Figure 1. Schematic of the workflow used to reconstruct the metabolic pathways of mastitis in dairy
cattle. The main gene list was prepared from RNA-Seq and microarray datasets, and literature mining.
The protein–protein interaction network (PPI), gene regulatory network (GRN), and interactive
bipartite network of gene–miRNA interactions were reconstructed using Cytoscape.

2.1. Data Collection

Collection and evaluation of the available data is the first step in better understanding
the reconstruction of molecular networks and the biological basis in terms of the identifi-
cation of candidate genes, gene regulation, interactions, protein–protein interaction (PPI),
and metabolic signaling networks. In this study, the microarray and RNA-sequencing
(RNA-Seq) datasets, available in the public repository of the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus (GEO), were retrieved for samples
of mastitis and healthy Bos taurus species. The accession numbers for the RNA-Seq and
microarray datasets are shown in Table 1. Six Holstein cows from first to third lactations
and days in milk (DIM) ranging from 7 to 236 were included in the GSE131607 dataset. All
cows were kept in freestall housing at the University of California–Davis, fed a total mixed
ration (TMR), and given ad libitum access to water. Two different samples were taken from
each cow after diagnosis using the California Mastitis Test, one sample from the mastitic
quarter (n = 6), and the other sample taken diagonally across from the mastitic quarter,
which was confirmed as the healthy quarter (n = 6), based on having a somatic cell count
(SCC) less than 100,000 cells/mL milk [16]. The GSE15020 and GSE15022 datasets were
related to microarray analysis from a study by Mitterhuemer et al. [31]. Fifteen healthy
German Holstein Frisian cows in mid-lactation (3 to 6 months postpartum) were included
in the study. Quarter milk samples were collected and tested weekly before the trial to
ensure that they contained <50,000 somatic cells/mL and were free of mastitis pathogens.
The animals were inoculated in one quarter with E. coli and slaughtered after 6 h (n = 5) or
24 h (n = 5) in two different infection methods. Five cows, considered as controls, received
no treatment and were slaughtered after 24 h. In total, 89 healthy and 75 diseased German
Holstein cows were tested for the GSE93082 dataset. Diseases were distinguished by either
systemic (extra-mammary) occurrence or those affecting the mammary gland (mastitis)
to account for influences on the milk composition from local inflammatory processes. All
cows were examined thoroughly by the dairy herd manager, trained staff, or a veterinarian.
Healthy animals (2–4 years old, 1st to 3rd lactation, one animal 4th and one 8th lactation)
which had no clinical signs of disease and no abnormalities in the udder or milk, with a
reported somatic cell count less than 100,000 cells/mL were chosen as controls. Most of
the control samples were taken during early lactation within 10 to 100 days postpartum.
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Diseased animals were in the 1st to 8th lactation period from 10 to 220 days postpartum.
The milk samples of control animals or cows with extra-mammary diseases were collected
and tested from one quarter or a composite milk sample (equal volumes from all 4 quarters
mixed) [32]. In the GSE75379 dataset, sixteen healthy primiparous Holstein cows were
inoculated with live E. coli into one mammary quarter at four to six weeks after parturition.
The cows were housed in straw-bedded tie-stalls, where they were individually fed and
given free access to water. The animals were fed using a TMR based on corn silage, minerals,
and vitamins for ad libitum intake twice daily. Daily feed intake and milk yield at each
milking were recorded. Prior to the start of the study period, cows were considered healthy
and free of mastitis-causing pathogens based on body temperature, white blood cell count
(WBC), California Mastitis Test, glutaraldehyde test, SCC, and bacteriological examinations
of milk samples. Control quarters were selected based on bacteriological tests, in which
quarter foremilk SCCs were <181,000 cells/mL at 24 h post-intramammary infection (IMI).
Biopsy specimens of healthy and diseased udder tissue were performed 24 h post-IMI in
infected and non-infected (control) mammary quarters [33].

Table 1. Summary of the GEO accession numbers for RNA-Seq and microarray data sets.

No. Data Type GEO a Accession Platforms Samples (M:H) b Citation

1 RNA-Seq GSE131607 GPL15749 (Illumina HiSeq 2000) 12 (6:6) Asselstine et al. [16]
2 RNA-Seq GSE75379 GPL15749 (Illumina HiSeq 2000) 18 (6:12) Moyes et al. [33]

3 Microarray GSE93082 GPL2112 ((Bovine) Affymetrix
Bovine Genome Array) 12 (6:6) Zoldan et al. [32]

4 Microarray GSE15020 GPL2112 ((Bovine) Affymetrix
Bovine Genome Array) 10 (5:5) Mitterhuemer et al. [31]

5 Microarray GSE15022 GPL2112 ((Bovine) Affymetrix
Bovine Genome Array) 10 (5:5) Mitterhuemer et al. [31]

a GEO, Gene Expression Omnibus; b M, number of mastitis samples, and H, number of healthy samples.

2.2. Differential Gene Expression Analysis

Microarray data were pre-processed and normalized using the Lumi package [34] and
the GCRMA algorithm (GeneChip Robust Multi-array Averaging) method, implemented in
the Affy package in R software, to remove the variance and to prepare the data for further
analysis [35]. Gene expression analysis was performed in R/Bioconductor software to
screen the significant differential expression genes (DEGs) according to the comparison of
the test and control data using the packages Limma [36], GEOquary [37], Biobase [38], and
Umap [39].

Concerning RNA-Seq data, the quality of the raw data was assessed using FastQC
software (v0.11.9) [40]. Then, based on the results of the raw data quality control, the
sequences were edited to remove the adapters, PCR primers, and low-quality reads using
Trimmomatic software (v0.38.0) [41]. Alignment sequences and mapping of reads were con-
ducted on the Bos taurus reference genome (http://ftp.ensembl.org/pub/release-103/fasta/
bos_taurus/dna/ (accessed on 20 September 2021)) using HISAT2 software (v2.1.0) [42].
For transcript quantification, featureCounts software (v2.0.1) was employed to measure
the total raw counts of mapped reads [43]. DESeq2 software (v2.11.40.6) was applied for
the measurement of final differences in gene expression [44]. In addition to DEGs, the
identification of miRNAs was also performed in the RNA-Seq datasets, simultaneously.
Finally, the threshold for statistical significance of the differential expression of each gene
was obtained with the criteria of a |log fold-change (FC)| ≥ 2.0 and a false discovery rate
(FDR) ≤ 0.05 in accession numbers related to microarray and RNA-Seq datasets. The gene
lists from the differential expression related to microarray and RNA-Seq analysis were
considered Gene Sets 1 and 2, respectively (Supplementary Materials 1 and 2).

http://ftp.ensembl.org/pub/release-103/fasta/bos_taurus/dna/
http://ftp.ensembl.org/pub/release-103/fasta/bos_taurus/dna/
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2.3. Literature Mining to Discover Candidate Genes for Mastitis

Extensive literature surveys were performed to search for candidate genes using
keywords related to bovine mastitis in the PubMed and Google Scholar databases without
time limitation. GWAS studies were selected for further detailed review. Then, iHOP
(iHOP literature server, http://www.ihop.net.org/ (accessed on 9 October 2021)) was used,
which is a web-based tool that allows the exploration of a network of gene and protein
interactions by directly navigating the pool of published scientific literature [45]. Finally,
the candidate gene list extracted through literature mining was mentioned as Gene Set 3
(Supplementary Material 3).

2.4. Determination of Main Gene List

To identify the relevant candidate genes related to mastitis, 3 datasets (microarray,
RNA-Seq, and GWAS) from the differential expression and GWAS analyses were integrated.
Subsequently, genes that were common to the three gene sets were selected as the main
gene list for further analysis. The number of shared DE genes between the 3 datasets was
analyzed using the R package VennDiagram v1.6.18 [46].

2.5. Functional Enrichment and KEGG Pathway Analysis

Gene ontology (GO) and enrichment analysis were performed using the online
programs DAVID [47] (Database for Annotation, Visualization, and Integrated Discov-
ery), PANTHER [48] (Protein ANalysis THrough Evolutionary Relationships), GeneCards
(www.genecards.org/ (accessed on 9 October 2021)), g:Profiler [49] (https://biit.cs.ut.
ee/gprofiler/gost (accessed on 9 October 2021)), and the STRING database [50] (https:
//string-db.org (accessed on 9 October 2021)), which are comprehensive web tools that help
to explore the biological process (BP), molecular function (MF), and cellular component
(CC) of the mined gene set. The pathway enrichment of the identified genes was provided
in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology terms with FDR
< 0.05 were considered significantly enriched for the identified genes.

2.6. Identification of miRNAs and Target Gene Prediction

The functional annotation of the expressed miRNAs consisted of the functional an-
notation of their potential target genes. The potentially targeted genes were predicted
using miRBase [51] (https://www.mirbase.org/ (accessed on 9 October 2021)) and Tar-
getscan [52]. The predicted target genes were selected and submitted to DAVID, KEGG,
Reactome pathways, and the PANTHER database for the enrichment target genes of
each miRNA.

2.7. Reconstruction of Omics Multi-Layers Networks

The miRNA–gene bipartite network was reconstructed based on the master gene list
and the molecular interactions documented in related papers and in online interaction
databases. Protein–protein interaction (PPI) data were abstracted from the Biomolecular
Interaction Network Database (BIND), the Database of Interacting Proteins (DIP), the
Biological General Repository for Interaction Datasets (BioGRID), and the Mammalian
Protein–Protein Interactions Database (MIPS). Finally, PPI network analysis was performed
using the STRING database to explore interactions between genes, specifically in Bos
taurus species. Each miRNA and target gene was entered into the database and resulting
interactions were imported into the networks using Cytoscape software v3.8.2. (National
Institute of General Medical Sciences, Bethesda Softworks, Rockville, MD, USA) [53]. Genes
and miRNAs in generated networks are represented as nodes and the interactions between
these nodes as edges. Furthermore, the metabolic-signaling pathway enrichment of the PPI
network was reconstructed using ClueGO v.2.5.5 [54].

http://www.ihop.net.org/
www.genecards.org/
https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
https://string-db.org
https://string-db.org
https://www.mirbase.org/
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2.8. Modeling of Three-Dimensional (3D) Structure of Hub Proteins

The SWISS-MODEL template-based approach [55] (https://www.swissmodel.expasy.
org/interactive (accessed on 15 October 2021)) was used to predict the 3D structures of hub
proteins using individual FASTA sequences and reference PDB files. The resulting PDB
files are enclosed in Supplementary Material 4.

3. Results
3.1. Transcriptome Analysis for Identifying Differentially Expressed Genes (DEGs)

To obtain better insights into the molecular mechanism and the genetic basis of mastitis,
we investigated the pattern of transcriptome profiles of mastitis samples versus healthy
samples in dairy cattle. The experimental data used for the study were obtained from the
GEO database, consisting of microarray and RNA-Seq datasets, as presented in Table 1. The
analysis of differentially expressed genes between mastitis and healthy cows was performed
based on a fold change > ±2 and a false discovery rate (FDR) < 0.05. The results of the
statistical analysis of the microarray datasets showed a total of 564 significant genes from
three datasets as follows. The first dataset (GSE93082): 378 DE genes, the second dataset
(GSE15020): 177 DE genes, and the third dataset (GSE15022): nine DE genes. Concerning
the analysis of RNA-Seq, a total of 774 genes were differentially expressed in the mastitic
versus healthy group comparison, of which 442 and 332 genes were detected from accession
numbers GSE131607 and GSE75379, respectively. Gene counts and a detailed summary
of the alignments for all GEO accession numbers are provided as Gene Sets 1 and 2 for
microarray and RNA-Seq analyses, respectively, in Supplementary Materials 1 and 2.

3.2. Identification of miRNAs

Based on analysis of the RNA-Seq dataset with access number GSE75379, we identified
eight miRNAs out of the 332 DE genes with functions related to mastitis: bta-mir-339a,
bta-mir-24-2, bta-mir-222, bta-mir-27a, bta-mir-146a, bta-mir-23a, bta-mir-142, and bta-mir-
223. Considering the threshold of a fold change > ±2 and FDR < 0.05, all differentially
expressed miRNAs were overexpressed in the mastitic cows compared to the healthy cows
(Table 2).

Table 2. Information about differentially expressed miRNAs between the mastitis and healthy
samples in dairy cattle based on GSE75379.

miRNA Name
miRNA Region Fold

Change p-Value FDR
BTA miRNA Start miRNA End

bta-mir-339a 25 41736134 41736211 2.0472 0.0032 0.0490
bta-mir-24-2 7 11839032 11839103 2.5302 0.0001 0.0056
bta-mir-222 X 98125920 98126030 3.2194 4.88 × 10−6 0.0002
bta-mir-27a 7 11838877 11838949 3.6647 1.13 × 10−8 1.16 × 10−6

bta-mir-146a 7 72071548 72071646 3.9677 2.26 × 10−8 2.20 × 10−6

bta-mir-23a 7 11838702 11838776 3.9826 8.97 × 10−9 9.60 × 10−7

bta-mir-142 19 9301432 9301518 4.2675 2.69 × 10−13 6.83 × 10−11

bta-mir-223 X 94562822 94562929 4.4983 3.05 × 10−11 5.58 × 10−9

3.3. Literature Mining and Identification of Main Gene List

Literature mining was carried out using the iHOP web tool to increase the study’s
accuracy and to obtain previous evidence for associations between the identified genes and
mastitis in dairy cattle. Based on literature mining, 3217 candidate genes were considered
as Gene Set 3 (Supplementary Material 3). The Venn diagram shows the number of genes
that are unique or common among the three gene sets for mastitis (Figure 2). Notably,
there is a remarkably small overlap between the three datasets. Overall, 33 genes were
common in the Gene Sets 1, 2, and 3 relating to microarray, RNA-Seq, and GWAS datasets,
respectively, which were named as the main genes involved in mastitis and were considered

https://www.swissmodel.expasy.org/interactive
https://www.swissmodel.expasy.org/interactive
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for subsequent analysis (Table 3). The results of differential expression analysis of 33
common genes based on the RNA-Seq datasets are presented in Table 3. When comparing
healthy cows to mastitis cows, of 33 DE genes, nine were underexpressed in the mastitis
cows and 24 genes were overexpressed in the mastitis cows, based on their fold-change
values (fold change > ±2).

Curr. Issues Mol. Biol. 2021, 1, FOR PEER REVIEW 7 
 

 

of genes that are unique or common among the three gene sets for mastitis (Figure 2). 
Notably, there is a remarkably small overlap between the three datasets. Overall, 33 genes 
were common in the Gene Sets 1, 2, and 3 relating to microarray, RNA-Seq, and GWAS 
datasets, respectively, which were named as the main genes involved in mastitis and were 
considered for subsequent analysis (Table 3). The results of differential expression analy-
sis of 33 common genes based on the RNA-Seq datasets are presented in Table 3. When 
comparing healthy cows to mastitis cows, of 33 DE genes, nine were underexpressed in 
the mastitis cows and 24 genes were overexpressed in the mastitis cows, based on their 
fold-change values (fold change > ±2). 

 
Figure 2. Venn diagram of significant genes among the three types of dataset, including microarray, 
RNA-Seq, and GWAS data related to mastitis in dairy cattle. 

Table 3. Summary list of 33 common genes (main genes) in the integrated studies of gene expression 
and GWAS associated with mastitis in dairy cattle *. 

  Gene Region    
Gene 

Symbol Gene Name Chr Gene Start Gene End Fold Change p-Value FDR 

CSN3 casein kappa 6 85645854 85658926 −4.1767 8.29 × 10−10 1.55 × 10−6 
CSN1S2 casein alpha-S2 6 85529905 85548556 −3.9696 3.53 × 10−8 1.85 × 10−5 

CSN2 casein beta 6 85449164 85457744 −3.7916 2.92 × 10−8 1.74 × 10−5 

RHPN2 
rhophilin Rho GTPase binding 

protein 2 18 43404074 43474596 −3.4556 1.38 × 10−6 0.0002 

CSN1S1 casein alpha s1 6 85411118 85429268 −3.4530 2.94 × 10−7 7.41 × 10−5 
LALBA lactalbumin alpha 5 31183432 31213145 −3.1099 1.23 × 10−5 0.0009 

ACSS2 acyl-CoA synthetase short chain 
family member 2 13 64186743 64233568 −2.6729 4.02 × 10−10 1.05 × 10−6 

RHOU ras homolog family member U 28 697339 706882 −2.4960 0.0001 0.0047 
KRT7 keratin 7 5 27674854 27689030 −2.3804 0.0003 0.0110 

SGK1 serum/glucocorticoid regulated 
kinase 1 

9 72305979 72418535 2.0107 1.85 × 10−14 5.70 × 10−12 

TRIB1 tribbles pseudokinase 1 14 14779050 14787206 2.0650 4.36 × 10−5 0.0024 
LYST lysosomal trafficking regulator 28 8379173 8523114 2.1066 0.0009 0.0212 

VAV1 
vav guanine nucleotide exchange 

factor 1 7 17664498 17728163 2.1138 3.31 × 10−5 0.0013 
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Table 3. Summary list of 33 common genes (main genes) in the integrated studies of gene expression
and GWAS associated with mastitis in dairy cattle *.

Gene Symbol Gene Name
Gene Region

Fold Change p-Value FDR
Chr Gene Start Gene End

CSN3 casein kappa 6 85645854 85658926 −4.1767 8.29 × 10−10 1.55 × 10−6

CSN1S2 casein alpha-S2 6 85529905 85548556 −3.9696 3.53 × 10−8 1.85 × 10−5

CSN2 casein beta 6 85449164 85457744 −3.7916 2.92 × 10−8 1.74 × 10−5

RHPN2 rhophilin Rho GTPase
binding protein 2 18 43404074 43474596 −3.4556 1.38 × 10−6 0.0002

CSN1S1 casein alpha s1 6 85411118 85429268 −3.4530 2.94 × 10−7 7.41 × 10−5

LALBA lactalbumin alpha 5 31183432 31213145 −3.1099 1.23 × 10−5 0.0009

ACSS2 acyl-CoA synthetase short
chain family member 2 13 64186743 64233568 −2.6729 4.02 × 10−10 1.05 × 10−6

RHOU ras homolog family member
U 28 697339 706882 −2.4960 0.0001 0.0047

KRT7 keratin 7 5 27674854 27689030 −2.3804 0.0003 0.0110

SGK1 serum/glucocorticoid
regulated kinase 1 9 72305979 72418535 2.0107 1.85 × 10−14 5.70 × 10−12

TRIB1 tribbles pseudokinase 1 14 14779050 14787206 2.0650 4.36 × 10−5 0.0024

LYST lysosomal trafficking
regulator 28 8379173 8523114 2.1066 0.0009 0.0212

VAV1 vav guanine nucleotide
exchange factor 1 7 17664498 17728163 2.1138 3.31 × 10−5 0.0013

GRO1
chemokine (C-X-C motif)

ligand 1 (melanoma growth
stimulating activity, alpha)

6 89072611 89075133 2.2062 0.0003 0.0105

F5 coagulation factor V 16 37159073 37238306 2.2729 3.94 × 10−10 6.01 × 10−8

SERPINE1 serpin family E member 1 25 35596139 35617193 2.3498 0.0002 0.0065

BASP1 brain abundant membrane
attached signal protein 1 20 55908762 55964145 2.4174 3.40 × 10−8 3.14 × 10−6

CD40 CD40 molecule 13 74842191 74853116 2.4243 1.20 × 10−5 0.0005

TNFRSF6B TNF receptor superfamily
member 6b 13 54054302 54055810 2.4416 0.0001 0.0035

SLC16A3 solute carrier family 16
member 3 19 50634317 50642204 2.4821 8.56 × 10−6 0.0004

CXCR1 chemokine (C-X-C motif)
receptor 1 2 106215131 106219158 2.5332 0.0002 0.0065
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Table 3. Cont.

Gene Symbol Gene Name
Gene Region

Fold Change p-Value FDR
Chr Gene Start Gene End

SOCS3 suppressor of cytokine
signaling 3 19 53840159 53840858 2.5589 0.0001 0.0047

CCDC88B coiled-coil domain containing
88B 29 42630756 42645750 2.6392 4.24 × 10−8 3.81 × 10−6

TNFAIP6 TNF alpha induced protein 6 2 44747145 44764214 2.7306 0.0001 0.0040

S100A9 S100 calcium binding protein
A9 3 17115128 17117984 2.9459 5.39 × 10−6 0.0005

PSTPIP2
proline-serine-threonine
phosphatase interacting

protein 2
24 45737786 45832060 2.9685 3.43 × 10−10 1.05 × 10−6

ALOX5AP arachidonate 5-lipoxygenase
activating protein 12 30108987 30138259 3.2299 1.64 × 10−11 3.14 × 10−9

CCL19 C-C motif chemokine ligand
19 8 76054024 76055932 3.5366 4.73 × 10−7 3.31 × 10−5

MMP9 matrix metallopeptidase 9 13 74746976 74754303 3.5921 8.64 × 10−8 7.35 × 10−6

HCK HCK proto-onco, Src family
tyrosine kinase 13 61563070 61608503 4.2225 3.23 × 10−18 1.69 × 10−15

S100A12 S100 calcium binding protein
A12 3 17102722 17104173 4.4133 4.22 × 10−11 7.47 × 10−9

S100A8 S100 calcium binding protein
A8 3 17085577 17086827 4.7179 6.81 × 10−12 1.36 × 10−9

IL1RN interleukin 1 receptor
antagonist 11 46815591 46837831 4.9613 8.55 × 10−16 3.36 × 10−13

* Information on common differentially expressed genes between the mastitis and healthy samples in dairy cattle
provided based on RNA-Seq datasets.

3.4. Functional Annotation and Pathway Enrichment Analysis

The functional annotation of GO terms was performed based on the biological process
(BP), molecular function (MF), and cellular component (CC) to identify the biological mean-
ing and the systematic features of the list of 33 DE genes, using the DAVID, PANTHER, and
g:Profiler databases. Twenty-three biological processes were identified, such as response
to stimulus, defense response, response to stress, immune response, cellular process, and
biological regulation, which were the most significant ones associated with mastitis. The
identified DEGs were significantly involved in the seven following functions: antioxidant
activity, binding, protein binding, zymogen binding, arachidonic acid binding, Toll-like
receptor 4 binding, and RAGE receptor binding for molecular function. Regarding cellular
components, four GO terms, including extracellular region, Golgi lumen, extracellular
space, and cellular anatomical entity, were identified (Table 4). In addition, KEGG path-
way analysis revealed that the identified DE genes involved in mastitis were enriched
in cytokine–cytokine-receptor interaction, the IL-17 signaling pathway, viral protein in-
teraction with cytokines and cytokine receptors, and the chemokine signaling pathway
(Figure 3).

Table 4. Top significant gene ontology (GO) terms enriched using genes associated with mastitis in
dairy cattle.

Category Term_ID Term Count FDR Genes

BP 1_DIRECT GO:0050896 Response to stimulus 20 3.26 × 10−9

CSN2, RHPN2, SGK1, CSN1S2,
LALBA, S100A9, CSN1S1, SOCS3,

S100A8, ALOX5AP, LYST, F5,
RHOU, IL1RN, MMP9, CD40, CSN3,

GRO1, S100A12, CXCR1

BP_DIRECT GO:0032570 Response to
progesterone 5 5.21 × 10−8 CSN2, CSN1S2, LALBA, CSN1S1,

CSN3
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Table 4. Cont.

Category Term_ID Term Count FDR Genes

BP_DIRECT GO:0032355 Response to estradiol 5 3.34 × 10−7 CSN2, CSN1S2, LALBA, CSN1S1,
CSN3

BP_DIRECT GO:0006952 Defense response 9 3.93 × 10−6
CSN1S2, LALBA, S100A9, S100A8,

LYST, IL1RN, CD40, GRO1,
S100A12

BP_DIRECT GO:0006950 Response to stress 12 7.04 × 10−6
CSN2, CSN1S2, LALBA, S100A9,

S100A8, LYST, F5, IL1RN, MMP9,
CD40, GRO1, S100A12

BP_DIRECT GO:0006955 Immune response 8 2.06 × 10−5 S100A9, S100A8, LYST, IL1RN,
CD40, GRO1, S100A12, CXCR1

BP_DIRECT GO:0051716 Cellular response to
stimulus 14 2.06 × 10−5

CSN2, RHPN2, SGK1, S100A9,
CSN1S1, SOCS3, S100A8,

ALOX5AP, RHOU, IL1RN, MMP9,
CD40, GRO1, CXCR1

BP_DIRECT GO:0030593 Neutrophil chemotaxis 4 6.46 × 10−5 S100A9, S100A8, GRO1, CXCR1

BP_DIRECT GO:0098542 Defense response to
other organisms 7 6.46 × 10−5 CSN1S2, LALBA, S100A9, S100A8,

LYST, CD40, S100A12

BP_DIRECT GO:0006954 Inflammatory
response 6 6.92 × 10−5 S100A9, S100A8, IL1RN, CD40,

GRO1, S100A12

BP_DIRECT GO:0033993 Response to lipids 6 9.95 × 10−5 CSN2, CSN1S2, LALBA, CSN1S1,
CSN3, GRO1

BP_DIRECT GO:0065007 Biological regulation 17 0.00029

CSN2, RHPN2, SGK1, S100A9,
CSN1S1, SOCS3, S100A8,

ALOX5AP, SERPINE1, F5, RHOU,
IL1RN, MMP9, CD40, CSN3, GRO1,

CXCR1

BP_DIRECT GO:0052548 Regulation of
endopeptidase activity 5 0.00063 CSN2, S100A9, S100A8, SERPINE1,

MMP9

BP_DIRECT GO:0045087 Innate immune
response 5 0.0028 S100A9, S100A8, LYST, CD40,

S100A12

BP_DIRECT GO:0023051 Regulation of
signaling 8 0.0041 CSN2, S100A9, CSN1S1, SOCS3,

S100A8, IL1RN, MMP9, CD40

BP_DIRECT GO:0042981 Regulation of
apoptotic process 6 0.0041 S100A9, CSN1S1, SOCS3, S100A8,

MMP9, CD40

BP_DIRECT GO:0050727
Regulation of
inflammatory

response
4 0.0046 CSN2, S100A9, SOCS3, S100A8

BP_DIRECT GO:0070488 Neutrophil
aggregation 2 0.0046 S100A9, S100A8

BP_DIRECT GO:0002523

Leukocyte migration
involved in

inflammatory
response

2 0.01 S100A9, S100A8

BP_DIRECT GO:0009987 Cellular process 18 0.0104

CSN2, RHPN2, SGK1, LALBA,
S100A9, CSN1S1, SOCS3, S100A8,

ALOX5AP, SERPINE1, LYST,
RHOU, IL1RN, MMP9, CD40,

GRO1, S100A12, CXCR1
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Table 4. Cont.

Category Term_ID Term Count FDR Genes

BP_DIRECT GO:0032268
Regulation of cellular

protein metabolic
process

7 0.0221 CSN2, S100A9, SOCS3, S100A8,
SERPINE1, MMP9, CD40

BP_DIRECT GO:0050793 Regulation of
developmental process 6 0.0276 CSN2, CSN1S1, SOCS3, RHOU,

MMP9, CD40

BP_DIRECT GO:0071345 Cellular response to
cytokine stimulus 4 0.0302 SOCS3, CD40, GRO1, CXCR1

MF 2_DIRECT GO:0016209 Antioxidant activity 5 2.82 × 10−5 CSN2, S100A9, CSN1S1, S100A8,
ALOX5AP

MF_DIRECT GO:0005488 Binding 19 0.00034

CSN2, SGK1, CSN1S2, LALBA,
S100A9, CSN1S1, SOCS3, S100A8,
ALOX5AP, SERPINE1, F5, RHOU,

IL1RN, MMP9, CD40, CSN3, GRO1,
S100A12, CXCR1

MF_DIRECT GO:0005515 Protein binding 14 0.00034

CSN2, CSN1S2, LALBA, S100A9,
SOCS3, S100A8, SERPINE1, RHOU,
IL1RN, MMP9, CD40, CSN3, GRO1,

CXCR1

MF_DIRECT GO:0035375 Zymogen binding 3 0.00034 CSN1S2, SERPINE1, CSN3

MF_DIRECT GO:0050544 Arachidonic acid
binding 3 0.00034 S100A9, S100A8, ALOX5AP

MF_DIRECT GO:0035662 Toll-like receptor 4
binding 2 0.007 S100A9, S100A8

MF_DIRECT GO:0050786 RAGE receptor
binding 2 0.033 S100A9, S100A8

CC 3_DIRECT GO:0005576 Extracellular region 13 1.74 × 10−7

CSN2, CSN1S2, LALBA, S100A9,
CSN1S1, S100A8, SERPINE1, F5,

IL1RN, MMP9, CSN3, GRO1,
S100A12

CC_DIRECT GO:0005796 Golgi lumen 4 1.38 × 10−6 CSN2, CSN1S2, CSN1S1, CSN3

CC_DIRECT GO:0005615 Extracellular space 10 2.57 × 10−6
CSN2, CSN1S2, LALBA, CSN1S1,

S100A8, SERPINE1, IL1RN, MMP9,
CSN3, GRO1

CC_DIRECT GO:0110165 Cellular anatomical
entity 22 0.00069

CSN2, RHPN2, SGK1, CSN1S2,
LALBA, S100A9, CSN1S1, SOCS3,

S100A8, ALOX5AP, SERPINE1,
KRT7, LYST, F5, RHOU, IL1RN,

MMP9, CD40, CSN3, GRO1,
S100A12, CXCR1

1 BP, biological process; 2 MF, molecular function; 3 CC, cellular components.
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Figure 3. The KEGG pathway-based network analysis of significant genes related to mastitis in
dairy cattle.

3.5. PPI Network and Identification of Hub Genes

Protein–protein interaction (PPI) networks for up- and downregulated genes were
reconstructed with the STRING database, which indicated the physical connection between
two or more protein molecules related to biochemical functions (Figure 4). Twenty-one
nodes with 45 connections (edges) were represented in the PPI network, as presented in
Figure 4. Moreover, we considered hub genes based on their higher-degree connectivity
values in the PPI network. A total of seven hub genes, including MMP9, HCK, GRO1,
SOCS3, CXCR1, IL1RN, and S100A9, were identified, all of which were overexpressed
genes. All the hub proteins identified are protein-coding genes. The functional enrichment
analysis demonstrated that hub genes were involved in the majority of molecular functions
and biological processes (Table 4).
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Figure 4. Protein–protein interaction (PPI) network analysis of common differentially expressed
genes associated with mastitis in dairy cattle.

3.6. Prediction of miRNA-Target Genes and Gene Regulatory Network Reconstruction

We also aimed to determine whether the expression of miRNAs was associated with
that of the 33 DE genes in the mastitic and healthy cows. Among the DE miRNAs, bta-mir-
222, bta-mir-27a, bta-mir-23a, and bta-mir-142 suppressed 11 of the identified DE genes
as targets of the selected miRNAs. A target gene search using TargetScan demonstrated
that bta-mir-142 has seven target genes, namely, RHPN2, LYST, SERPINE1, CD40, SOCS3,
TRIB1, and SLC16A3, followed by bta-mir-23a having three target genes, SGK1, TNFAIP6,
and TRIB1. In addition, bta-mir-27a suppressed the PSTPIP2 and VAV1 genes, and bta-
mir-222 suppressed the SOCS3 gene. The TRIB1 and SOCS3 genes displayed the highest
suppression by miRNAs. The identified target genes, associated with their miRNAs, are
visualized in Figure 5. For constructing the gene regulatory network, we compiled a
list of DE genes and miRNAs (as nodes) involved in mastitis based on literature mining
and PPI resources. Briefly, miRNA–gene bipartite networks are commonly represented
in an undirected graph format, with nodes representing miRNAs or genes and edges
corresponding to interactions (genes–genes and miRNAs–targeted genes). In this network,
we identified 30 nodes (26 genes and four miRNAs), with 57 edges interacting with it
(Figure 5).
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role of miRNAs. The edges also represent the gene–gene interactions. The green quadrilateral
nodes represent the hub genes. The quadrilateral nodes that have purple around them are the genes
showing the highest suppression by miRNAs.

3.7. Three-Dimensional Modeling of Hub Proteins

In the present study, we also modeled the 3-dimensional protein structure of the seven
hub genes identified in the PPI network that had the most interaction with other genes
involved in the network (Figure 6). 3D modeling revealed that the predicted structures of
these seven hub proteins were significantly different from each other. Four hub proteins
(MMP9, HCK, CXCR1, and S100A9) had the greatest structural complexity compared to the
three other proteins.
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4. Discussion

Mastitis is a complex trait and is prominent among health-related traits in the cattle
industry, exerting a severe impact on profitability and animal welfare. The identification
of functional candidate genes and molecular mechanisms involved in mastitis is required,
given the persistence of the disease on dairy farms. Moreover, understanding the interplay
between molecular and cellular components, with each component interacting at different
levels that are entangled in several biological pathways, is important. Hence, the present
study provides a general framework to investigate and integrate different sources of
transcriptome data and previous results from GWAS studies to identify the genetic basis
and key pathways associated with bovine mastitis. Numerous studies have demonstrated
that the integration of multiple layers of omics data is a powerful strategy to increase the
efficiency and accuracy of candidate gene and biomarker discovery, detecting molecular
and biochemical interactions, and the relationships between biological variables in different
species [4,7,8,56–58]. In this study, the integrative analysis of multiple datasets resulted in
prioritizing 33 DE genes as the main gene list, of which nine genes were downregulated
and 24 genes were upregulated in the mastitic cows compared with the healthy cows based
on their FC values. A list of main detected genes related to mastitis is provided in Table 3,
with their main functions (biological process, molecular function, and cellular component)
listed in Table 4. Among them, CSN2, CSN3, CSN1S1, CSN1S2, RHPN2, LALBA, ACSS2,
RHOU, and KRT7 genes were underexpressed in the mastitic cows, mostly located on
chromosomes 6. The most important overexpressed genes in cows with mastitis were
GRO1, CXCR1, SOCS3, S100A9, MMP9, HCK, and IL1RN, which were hub genes (highly
connected genes) involved in mastitis in this study. The casein cluster is composed of four
genes; β-casein (CSN2), κ-casein (CSN3), αs1-casein (CSN1S1), and αs2-casein (CSN1S2),
which encode approximately 80% of the protein content of bovine milk [59], and the whey
protein gene (LALBA) was downregulated in inflamed mammary glands. LALBA encodes
α-lactalbumin and is essential for lactose synthesis, which plays an important role in milk
production as an osmotic regulator of milk secretion [60]. A possible explanation for the
lower expression levels of these genes could be that the protein content in mastitic milk
would decrease due to an antagonistic genetic relationship between mastitis and protein
yield [24]. In previous studies, it was also demonstrated that all five genes were observed in
enhanced abundance in the mammary glands of lactating dairy cows [61], dairy sheep [62],
and lactating dairy goats [63]. Interestingly, as presented in Table 4, these genes were found
in a majority of enriched pathways, suggesting possible key regulatory roles for them.
Other noteworthy genes (RHPN2, ACSS2, RHOU, and KRT7) showing lower expression
in cows with mastitis have critical roles in biological pathways, cellular process, fatty
acid synthesis, and metabolism. For instance, ACSS2 (acyl-CoA synthetase short-chain
family member 2) is well known to affect mastitis resistance in dairy cows and plays a
role in the activation of acetate for de novo fatty acid synthesis [64]. Similarly to our
results, Chen et al. [65] reported lower expression for ACSS2 and RHPN2 genes in response
to the intramammary infection caused by two different pathogens (Escherichia coli and
Streptococcus uberis) in dairy cows. As presented in Table 3, in the mastitis cows, 24 genes
were more highly expressed, of which seven genes were considered as hub genes involved
in significantly enriched biological processes and KEGG pathways. Subsequently, the PPI
networks and gene regulatory networks were constructed based on these hub genes, which
showed significant connectivity and which could shed light on the post-transcriptional
regulation of gene expression by the identified miRNAs. Furthermore, the functional
enrichment analysis resulted in four significant KEGG pathways associated with mastitis,
which comprised six hub genes, i.e., GRO1, CXCR1, S100A9, MMP9, HCK, and IL1RN, as
presented in Figure 3. Among these genes, GRO1 and CXCR1 were observed in four and
three pathways, respectively.

GRO1 (melanoma growth stimulating activity, alpha) also known as CXCL1, is a
protein-encoding gene and plays an important role in inflammation and immune defense
due to the modulation of leukocyte infiltration [66], which has been previously proposed
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as a biomarker and therapeutic target in mastitis [67]. This gene is also involved in the
metabolic pathways of cytokine–cytokine-receptor interaction, the IL-17 signaling pathway,
the chemokine signaling pathway, and viral protein interaction with cytokines and cytokine
receptors. In the case of the cytokine–cytokine-receptor interaction pathway, other genes,
such as CD40, IL1RN, CXCR1, TNFRSF6B, and CCL19, were found to be involved in mastitis
defense or immune response, as all these genes were upregulated in the mastitic cows based
on their FC values. The significant role of cytokines in the immune response to infectious
agents is well known because they are soluble extracellular proteins or glycoproteins
that are crucial intercellular regulators and mobilizers of cells engaged in innate as well
as adaptive inflammatory host defenses, cell growth, differentiation, cell death, and cell
development and repair processes. It was previously reported that cytokines can participate
in activation of the host defense mechanisms during mastitis [68,69]. The CXCR1 and CCL19
genes were also enriched in two other pathways of the chemokine signaling pathway and
in viral protein interaction with cytokines and cytokine receptors. CXCR1 (chemokine
(C-X-C motif) receptor 1), identified as a hub gene, is a protein-encoding gene for major
pro-inflammatory cytokine receptors [70] that is introduced as a potential genetic marker
for resistance to mastitis in dairy cows [71,72]. In our study, the gene CXCR1 was involved
in seven GO terms—response to stimulus, immune response, cellular response to stimulus,
neutrophil chemotaxis, biological regulation, cellular process, and cellular response to
cytokine stimulus for biological processes (Table 4). In addition, earlier studies have
reported that a non-synonymous mutation, c.365C > T, located in exon II of the CXCR1 gene
is associated with susceptibility to mastitis in different breeds of cattle [73,74]. The viral
protein interaction with cytokines and the cytokine receptor pathway is an immune system
pathway which has a key role in the inflammatory responses to infection and may activate
or inhibit cytokine signaling and possibly affect different aspects of immunity. Furthermore,
the S100A8, S100A9, and MMP9 genes have been recognized as components of the IL-17
signaling pathway. This pathway plays crucial roles in both acute and chronic inflammatory
responses. In fact, the interleukin 17 (IL-17) family, as a subset of cytokines, signals via their
correspondent receptors and activates downstream pathways that include NF-kappaB,
MAPKs, and C/EBPs to induce the expression of antimicrobial peptides, cytokines, and
chemokines. S100A9 and MMP9, which were identified as hub genes and which were
upregulated in the mastitic cows, play key roles in the regulation of immune response and
inflammatory pathways [65,66].

SOCS3 (suppressor of cytokine signalling 3) was another hub gene identified with
higher expression levels, which encodes an intracellular inhibitor of cytokine signaling and
has a crucial role in the initial steps of the recognition of a pathogen-associated molecular
pattern (PAMP) in the innate immune cells [75]. Furthermore, in the regulatory network,
SOCS3 is suppressed by bta-mir-142 and bta-mir-222. These two miRNAs showed upregu-
lation and their target gene, SOCS3, showed the lower expression than them in mastitic
cows. We characterized bta-mir-222, bta-mir-27a, bta-mir-23a, and bta-mir-142 as the major
miRNAs which play a prominent role in regulating this network of genes and these were
upregulated in the mastitic cows. The gene regulatory network showed that the greatest
target genes (seven genes) were suppressed by bta-mir-142. There is evidence that miRNAs
play a critical role in the regulation of inflammation and immune function during infection
with mastitis in dairy cattle [76–79].

Modeling of the 3D protein structure of hub proteins can be an invaluable aid in order
to better understand the details of a particular protein because studies of protein structure
and function are becoming a promising approach in the field of bioinformatics. Functional
characterization of a protein is often facilitated by its 3D structure. Hence, it is necessary
that a 3D structure is determined in examining the proteins’ function at the molecular level.
Sequence identity, as a measure of the expected accuracy of a model represented, >30%
indicates a relatively good predictor of the model [80]. When sequence identity drops
below 30%, the main problem becomes the identification of related templates and their
alignment with the sequence to be modeled. Based on our results, among the seven hub
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proteins, HCK, CXCR1, S100A9, and MMP9 showed the highest structural complexity, with
sequence identities of 94.6%, 75.4%, 69.9%, and 47.5%, respectively, whereas the proteins of
SOCS3, IL1RN, and GRO1 had the lowest structural complexity with sequence identities of
92.6%, 80.1%, and 72.5%, respectively (Figure 6). Consequently, these findings demonstrate
the relevance of integrating results from transcriptomic and functional analyses for a better
understanding of the function of important genes and molecular mechanisms responsible
for mastitis development.

5. Conclusions

The integration of multi-omics data resulted in the identification of 33 common and
relevant genes associated with bovine mastitis. Among these, seven genes (CXCR1, HCK,
IL1RN, MMP9, S100A9, GRO1, and SOCS3) were identified as the hub genes and these
can be explored as potential candidate genes for mastitis susceptibility and resistance.
Functional annotation and enrichment analysis identified 23, 7, and 4 GO terms related to
mastitis in the biological process, molecular function, and cellular component categories, re-
spectively. We identified eight differentially expressed miRNAs, of which four suppressed
11 of the identified genes as their targets. Furthermore, the reconstruction of the regulatory
network of genes associated with their miRNAs sheds light on the post-transcriptional
regulation of this network. Therefore, this study provides a general framework to inves-
tigate and incorporate multiple layers of omics data from high-throughput technologies
or available pathway annotation databases, which has led to the elucidation of molecular
networks, the cellular and molecular-level features, and the genetic and biological basis of
mastitis in dairy cattle.
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