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Abstract

The lateral mobility of individual, incoming human papillomavirus type 16 pseudoviruses (PsV) bound to live HeLa cells was
studied by single particle tracking using fluorescence video microscopy. The trajectories were computationally analyzed in
terms of diffusion rate and mode of motion as described by the moment scaling spectrum. Four distinct modes of mobility
were seen: confined movement in small zones (30–60 nm in diameter), confined movement with a slow drift, fast random
motion with transient confinement, and linear, directed movement for long distances. The directed movement was most
prominent on actin-rich cell protrusions such as filopodia or retraction fibres, where the rate was similar to that measured
for actin retrograde flow. It was, moreover, sensitive to perturbants of actin retrograde flow such as cytochalasin D,
jasplakinolide, and blebbistatin. We found that transport along actin protrusions significantly enhanced HPV-16 infection in
sparse tissue culture, cells suggesting a role for in vivo infection of basal keratinocytes during wound healing.
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Introduction

Virus entry into target cells is a multistep process that starts with

the initial binding of incoming particles to cellular receptors and

attachment factors. After binding, animal viruses typically display a

period of lateral movement before viruses are internalized by

endocytosis or penetrate the plasma membrane [1]. The dynamics of

virus movement on the cell surface can be random as described for

murine polyomavirus [2], or highly directional as described for

murine leukemia virus and other enveloped RNA viruses [3]. In the

latter case, movement was observed along actin-rich protrusions

such as filopodia and retraction fibres, and the movement was

dependent on actin retrograde flow that directed the virus toward the

cell body. Here, we have analyzed the surface dynamics of Human

Papillomavirus Type 16 (HPV-16) on tissue culture cells.

HPV-16 is a small non-enveloped DNA virus with an

icosahedral (T = 7) capsid of 55 nm in diameter. HPV capsids

contain two structural proteins, the major protein L1 that

comprise the 72 pentamers, and the minor protein L2 that is

principally located internally within the virion [4]. HPV-16

infection is linked to the development of cervical cancer. Infectious

entry appears to occur specifically in the basal keratinocytes of

mucosal epithelium subsequent to binding of virions to the

basement membrane of a disrupted epithelium [5]. Since HPV

replication and assembly requires infected basal keratinocytes to

undergo the stepwise differentiation program of the epithelium [6],

HPV propagation in cell culture is a major challenge. Surrogate

production systems that generate infectious L1/L2 capsids

containing marker plasmids, termed HPV pseudovirions (PsV),

have been developed and successfully used to study aspects of

HPV attachment and entry [7–13]. In this study, the HPV-16 PsV

contained plasmids that upon successful entry expressed GFP or

RFP.

Attachment and infectious uptake of several different HPV types

requires heparan sulfate proteoglycans (HSPGs) [14–16]. Howev-

er, a specific HSPG protein core does not seem to be required for

HPV infection [17]. Recently, it was shown that HPVs also

interact with extracellular matrix components such as laminin-5 or

HSPGs [10,11,18,19]. Productive entry involves internalization by

endocytosis [20], a process that for HPV occurs slowly and

asynchronously over a period of several hours [9,21].

Prior to internalization, certain neutralizing antibodies no

longer recognize the surface or lead to a release of bound viruses

suggesting conformational changes in the capsid upon binding

[10,11,13,15,21]. In addition, treatment of cell bound virus with

DSTP27, a heparan sulfate binding drug, results in non-infectious

internalization [11,15,21]. Hence, transfer to a secondary receptor

has been proposed.

However, the dynamics of HPV interaction with the cell surface

during the initial stages of infection are not understood. Using

fluorescently labeled HPV-16 PsV that retained their infectivity,

we therefore investigated the lateral mobility of capsids on the cell

membrane by live cell imaging. Interestingly, several distinct

modes of motion were observed including an active tranport

towards the cell center.

Results

Fluorescent labeling of HPV-16 PsV
To visualize the behaviour of cell-bound viruses, purified HPV-

16 PsV were covalently labeled with the fluorophores AF488 or

FITC. About 200 fluorophores per particle were covalently
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attached mainly to the major capsid protein L1 (Fig. 1A, see

Materials and Methods). A homogeneously labeled particle

suspension was obtained as indicated by confocal microscopy of

labeled particles attached to glass coverslips (Fig. 1B, left). The

fluorescent signal intensity profile of spots followed a single

Gaussian distribution, which indicated that light is emitted from

single particles (Fig. 1B, right). The signal had a diameter of 0.2–

0.4 mm, similar to other viruses of a comparable size [22,23]. The

virion structure remained unchanged as judged by negative

staining and electron microscopy (Fig. 1C). To test whether

labeling would affect the entry properties, we compared labeled

and unlabeled HPV-16 PsV in their ability to express RFP

(infection) from the incorporated plasmid by flow cytometry. We

found that the number of infected cells remained virtually

unchanged indicating that the particles labeled with fluorophores

were fully entry competent (Fig. 1D).

Mobility of HPV-16 PsV on the cell surface
When labeled PsVs were added to cells at 37uC, binding was

readily observed by fluorescence microscopy (Fig. 1E). The

majority of virus particles that bound to cells did so within five

minutes (not shown). While most of the viruses bound to the top

surface of cells, some drifted into the narrow space between the

cell and the cover glass, where they bound to cells. These viruses

could be visualized by total internal reflection fluorescence

microscopy (TIRF-M), and their movement could be followed

by video microscopy (Fig. 2A, B).

When HPV-16 particles were bound to the bottom surface of cells,

and followed on the cell body by video TIRF-M at 20 frames per s

for a total of 100 s (Videos S1, S2, S3, S4, S5; Fig. 2A–C), it was

apparent that the movement of individual particles was heteroge-

neous. Trajectories extracted from digital image series using a single

particle tracking (SPT) algorithm [24] showed that the majority of

particles were essentially immobile, or displayed a slow drift (Fig. 2C,

D; 3, 4). Some were, however, highly mobile displaying either

random or relatively linear trajectories (Fig. 2C, D; 1, 2).

To describe the dynamic events and lateral mobility of bound

HPV-16 PsV more quantitatively, we used a recently described

algorithm that allowed definition of rate and mode of motion for

each particle [2]. For convenient access of data in one graph we

plotted the linear diffusion coefficients (D), a measure of the

particle speed, and the slope of the moment scaling spectrum

(SMSS), a measure for the mode of movement, for each viral

particle. An SMSS value of 0.5 defines random, Brownian

movement, whereas values below and above 0.5 are characteristic

of confined and directed movement, respectively, with an SMSS

value of 0 for immobility [2]. When we plotted the D vs. the SMSS

values for the recorded particles (n = 100), four modes of motion

could be distinguished: (i) confinement (SMSS,0.1; Fig. 2E, 4), (ii)

confinement with a slow drift (D,0.001 mm2/s, SMSS = 0.15–0.35;

Fig. 2E, 3), (iii) fast random motion with transient confinement

(D.0.002 mm2/s, SMSS,0.5; Fig. 2E, 2), and (iv) ballistic, directed

movement of PsV (SMSS.0.5; Fig. 2E, 1). Overall, the modes and

speeds of motion of viral particles on the cell were comparable to

those previously observed for murine polyomavirus [2], a small

nonenveloped DNA virus that binds to the glycolipids GD1a and

GT1b, [25,26]. However, some HPV-16 particles exhibited, in

addition, directed motion such as those shown in Fig. 2D, 1.

When analyzed in more detail, we found that directed motion of

viruses observed on the cell body occured much more frequently

on finger-like cell protrusions such as filopodia or retraction fibres.

Since these protrusions were not always close enough to the cover

glass to be easily visualized by TIRF-M, we used wide field or

spinning disc confocal microscopy, which allowed us to image the

protrusions over their full lengths with only a small decrease in

acquisition speed. Protrusions of HeLa cells with HPV-16 PsV

bound for 5–120 min were imaged at 2–5 frames per s, virus

trajecories were extracted, and their mode of motion was analyzed

quantitatively as described above. When we plotted the D vs. the

SMSS values for the recorded particles, predominantly two modes

of motion along the cell protrusions could be observed regardless

of the time after binding of the virus: (i) directed particle motion

(SMSS.0.5, n = 29) (Fig. 2 F, G, 1), and (ii) random motion

restrained by the width of protrusions to an almost 1-dimensional

diffusion (D.0.002 mm2/s, SMSS,0.5, n = 27) (Fig. 2 F, G, 2),

with the number of confined particles limited to a fraction below

10% (not shown).

HPV-16 moves along actin protrusions on the outside of
the plasma membrane

We surmised that the finger-like cell protrusions constituted

filopodia or retraction fibres, because they contained actin in cells

transiently transfected with GFP-actin (Fig. 2 H, Video S6). The

binding to and movement along actin-rich protrusions of HPV-16

PsV was reminiscent of the retrograde movement described for

several enveloped RNA viruses [3]. These RNA viruses bind to

cell receptors and are transported along actin rich protrusions on

the outside of the plasma membrane.

To determine whether HPV-16 was transported extracellularly

along these protrusions, we tested whether the fluorescence of

FITC labeled HPV-16 migration was diminished by acidification

of the extracellular medium. FITC is a pH sensitive fluorophore

that loses its fluorescent properties, when exposed to a pH below

6.0 due to protonation [27]. Since the fluorescence of particles was

quenched upon acidification, we concluded that the HPV-16 PsV

were moving along the outside of the actin protrusions (Fig. 3A, B,

Video S7).

Thin section electron microscopy confirmed that the particles

were located exclusively on the outside of the plasma membrane

when associated with these narrow cell protrusions (Fig. 3, C–G).

Unlike Simian Virus 40, a structurally similar polyomavirus that is

observed juxtaposed to the plasma membrane [28], a gap of

12 nm64 nm was seen between the surface of the particle and the

plasma membrane arguing that they had bound to a membrane

receptor with a large or extended ectodomain (Fig. 3, E–G).

Occasionally, strands of electron dense material were observed

inbetween virus and the plasma membrane most likely represent-

ing receptor molecules (Fig. 3G, arrowheads).

Author Summary

To replicate, viruses have to enter into host cells. Since
they have no means of locomotion, they rely entirely on
cellular transport systems to access the cellular compart-
ments where replication occurs. Following individual virus
particles by video microscopy, we found that human
papillomavirus type 16, the main causative agent of
cervical cancer, bound to long finger-like protrusions of
cells. There, they were transported from the periphery to
the cell body. The transport was mediated by a process
termed actin retrograde flow, where viruses bound to cell
surface molecules hooked up to filamentuos actin and
were dragged along with the actin-like items on a
transport belt. Entry into the cell occured at the cell body.
The results raised the interesting possibility that viruses
use retrograde flow when they infect wounded epidermal
keratinocytes, where finger-like protrusions of cells are
abundant.

HPV-16 Retrograde Cell Surface Transport
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Figure 1. Covalent labeling of HPV-16 PsV with fluorophores. Purified HPV-16 PsV were covalently labeled with fluorophore-(AF488, FITC)-
succinimidylester as described in Materials and Methods. After purification the labeled PsV were analyzed as follows. (A) SDS-gel electrophoresis of
AF488 labeled HPV-16 PsV, from left to right: coomassie staining, UV emission, western blot with an antibody directed against L1. (B) AF488 labeled
HPV-16 PsV particles bound to glass coverslips, confocal microscopy image (left). Depicted is a representative fluorescence intensity profile (right) of
the white encircled AF488 labeled HPV-16 particle (left). The fluorescent signal of AF488 HPV-16 particles matched the signals of labeled Simian Virus
40 particles that are similar in size indicating the absence of bigger aggregates (not shown). (C) Electron micrographs of negatively stained HPV-16
PsV (top), or AF488 labeled HPV-16 PsV (bottom). Bars represent 40 nm. (D) HeLa cells were inoculated with either unlabeled or fluorophore labeled
HPV-16 PsV (each about 50 particles/cell) to result in about 30% RFP expressing cells. The percentage of cells expressing RFP (infected cells) was
determined by flow cytometric analysis 24 h post inoculation after trypsinization and subsequent fixation by 4% formaldehyde. The graph shows the
relative amount of infected cells normalized to the unlabeled virus preparation. Error bars represent the standard deviation of three independent
experiments. Numbers below the graph indicate unnormalized infection data (infection). (E) Wide field microscopy of a HeLa cells inoculated for
5 min (37uC) with AF488 labeled HPV-16 PsV (100 particles/cell) with DIC image (left), and AF488 fluorecence (right).
doi:10.1371/journal.ppat.1000148.g001

HPV-16 Retrograde Cell Surface Transport
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Figure 2. HPV-16 cell surface dynamics. HeLa cells were inoculated on 18 mm coverslips with HPV-16 PsV (about 100 particles/cell) for 5 min (A–
E, H), or for 5–120 min (F, G) at 37uC prior to acquisition of images. (A) Differential interference contrast (DIC) picture of the cell shown in (B). (B) TIRF-
M image from a time series (20 Hz, 1000 frames). (C) Trajectories of surface bound HPV-16 PsV from the inset (A, B) were detected by AF488

HPV-16 Retrograde Cell Surface Transport
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HPV-16 transport kinetics coincide with actin retrograde
flow

HPV-16 transport along actin protrusions on the outside of the

plasma membrane is reminiscent of the transport of polyethyle-

nimine-coated beads [29], of murine leukemia virus [3], and the

epidermal growth factor (EGF) receptor [30,31]. These transport

phenomena have been attributed to actin retrograde flow, which

causes the net transport of actin molecules within filaments from

the plus end at the tip of an actin protrusion towards the minus

end at the cell body. To find out whether HPV-16 transport may

equally be powered by actin retrograde flow, we analyzed the

speed of HPV-16 transport and compared it to the speed of actin

retrograde flow.

To determine the speed of virus movement, we analyzed time

lapse movies of individual viruses using kymographs. Individual

actin protrusions were oriented such that they reflected a linear

track with the tip at the top and the cell body at the bottom.

Images were assembled consecutively. The mode of motion could

easily be distinguished in the kymographs: directed transport

towards the cell body is marked by virus particles on a straight line

with a negative slope, particles diffusing randomly are visible as

ragged, horizontal line, and confined particles appear aligned on a

straight horizontal line (Figure 4A). Interestingly, when fluores-

cently labeled vesicular stomatitis virus (VSV, not shown), Semliki

Forest Virus (SFV, not shown), or Simian Virus 40 (SV40, Fig. 4B,

Video S8) were added to cells, only diffusive motion was observed

suggesting that the directed motion of HPV-16 was a specific

receptor-mediated process. The slope of HPV-16 particles in

kymographs represented the speed of particle movement.

Figure 4A shows the movement of several virus particles along a

single actin protrusion. The speed of virus particles was slow and

averaged 2.260.8 mm/min (n = 242). The speeds for actin

retrograde flow and RNA viruses moving along actin protrusions

are 1–5 and 2 mm/min, respectively [3,29,32], in line with our

assumption that HPV-16 PsV were transported by actin

retrograde flow.

Short stationary periods were also observed for single particles

while other particles continued to move (Figure 4A, arrows). These

stationary periods may have resulted from obstacles or interactions

of virus with extracellular matrix components. However, when

virus particles continued to move, they exhibited exactly the same

speed as before.

Since the speed of virus particles in directed motion was always

identical on the same actin protrusion (Figure 4A), we plotted the

speed versus particle number, and found a bipolar speed

distribution with two maxima at 1.6 and 2.9 mm/min. The result

suggested that two kinds of actin protrusions in HeLa cells existed,

and that viruses moved on one kind at about half of the speed than

on the other.

Occasionally, we observed HPV-16 particles moving in a

diffusive mode of motion, which subsequently switched to directed

motion (Fig. 4A, asterisk). The opposite was never observed under

unperturbed conditions. However, the switch from diffusive to

directed motion was observed at different times post addition of

virus, and several particles exhibited diffusive motion as long as

2 h post addition of virus. This indicated that HPV-16 particles

required a trigger for directed motion, but possibly not all particles

were able to switch from diffusive to directed motion.

To compare virus transport with the speed of actin retrograde flow

we made use of a photoactivatable GFP-actin (PAGFP-actin) fusion

construct. Activation of PAGFP was achieved by a brief pulse of

short wavelength light, after which the illuminated PAGFP exhibited

the fluorescent properties of normal GFP [33]. Expression of

PAGFP-actin resulted in incorporation of the molecules into actin

filaments (Fig. 4C). When we now activated a spot of PAGFP-actin

in actin protrusions and followed the GFP spot over time, we found

that this spot moved towards the cell body (Fig. 4D). The fluorescent

intensity of the spot decreased over time, which was probably due to

photobleaching and diffusion of G-actin. However, we consistently

observed a retrograde movement of the spot, that represented

activated PAGFP-actin molecules present in the actin filaments, and

that could be used to analyze the speed of actin retrograde flow

(Fig. 4D, Video S9). When we analyzed the speed of actin retrograde

flow as before, we found a bipolar speed distribution of actin

retrograde flow with maxima at 1.7 and 3.2 mm/min (average

2.560.9 mm/min, n = 63) that matched the speed of virus particle

movement (Fig. 4A, D).

That virus transport and actin retrograde flow occured at the

same rate was also suggested by the movement of EGFP-actin

speckles infrequently observed in our virus transport kymographs.

These speckles resulted from a patchy incorporation of EGFP-

actin molecules into actin filaments [34], which, in turn, gave rise

to an increased EGFP-actin fluorescence in certain regions of cell

protrusions (Fig. 4A, arrowhead). Taken together, these results

support the concept that virus transport was connected to the net

transport of F-actin.

Decrease of actin retrograde flow results in abrogation of
virus transport

Actin retrograde flow is the result of basically three processes.

First, actin polymerisation occurs at the tip of filaments and this

pushes the filaments towards the cell body. Second, anchored

myosin II pulls actin filaments towards the cell body. And third,

depolymerisation and fragmentation of actin filaments reduces the

barrier tension of the actin cortex-filament interface at the cell

body and thus facilitates filament transport towards the cell body.

When the three processes are in balance, the length of the actin

filaments remains constant with a net transport of individual actin

molecules present in the filaments towards the cell body [29,35].

To functionally adress the role of actin retrograde flow in virus

transport along actin protrusions, we analyzed the contribution of

ATP production, actin polymerisation, depolymerisation, myosin

II function, and, as a control, microtubule stability using

pharmacological inhibitors. We found that microtubule dissocia-

tion by nocodazole had no effect on virus transport (Fig. 5A, Video

S10). However, cytochalasin D, which inhibits actin polymerisa-

tion by binding to the barbed ends of F-actin, and leads to actin

depolymerisation by fragmentation of F-actin upon longer

fluorescence (Scale bar for A–C 10 mm). (D) Representative trajectories of the four different modes of motion: (1) directed movement, (2) constraint
diffusion, (3) slow drift, and (4) stationary particle (scale bar 1 mm). (E) Scatter plot of the diffusion coefficient versus the slope of the moment scaling
spectrum (SMSS) of HPV-16 PsV trajectories. Every point represents one trajectory. The dots marked 1–4 represent the virus trajectories shown in (D).
(F) Representative trajectories of HPV-16 PsV on cellular extensions in two different modes of motion: (1) directed movement, (2) constraint diffusion
(Scale bar 1 mm). (G) Scatter plot of the diffusion coefficient versus the slope of the moment scaling spectrum (SMSS) of HPV-16 PsV trajectories on
cellular extensions. Points represent the median of all trajectories that have a value for the SMSS either above or below 0,5. Error bars represent the
lowest or highest respective values of the two populations (SMSS.0.5, n = 29; SMSS,0.5, n = 27). (H) Confocal images of HeLa cells expressing EGFP-
actin, with (right, 50 particles/cell) or without (left) HPV-16 PsV bound.
doi:10.1371/journal.ppat.1000148.g002
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Figure 3. HPV-16 binds to and is transported on cell protrusions extracellularly. HPV-16 PsVs were covalently labeled with FITC and about
40 particles /cell were added to HeLa cells for 5 min. prior to image acquisition by epifluorescence microscopy at 2 fps. After 200 frames the
extracellular medium was acidified to pH 5.5. (A) Stills show the FITC channel prior to and after acidification. (B) The boxed area of (A) was converted
to a kymograph over 240 frames showing every fourth frame with the bottom representing the cell body. (C–G) HeLa cells were inoculated with HPV-
16 PsV for 10 min (C, E, F) or 1 h (D, G) and processed for thin section electron microscopy. Viral particles were found to bind to cellular protrusions
exclusively outside of the plasma membrane. Bars represent 500 nm (C, D) or 100 nm (E–G).
doi:10.1371/journal.ppat.1000148.g003

HPV-16 Retrograde Cell Surface Transport
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Figure 4. Directed virus movement along actin protrusions is slow and coincides with actin retrograde flow. HeLa cells were
transfected with EGFP-actin and subsequently inoculated with AF488 labeled HPV-16 PsV (20–100 particles/cell) or SV40 (10 particles/cell). 20 min
after virus addition cells were imaged at 2 fps with spinning disc confocal microscopy. (A) Kymograph shows pictures of a single actin protrusion of
HeLa cells with several HPV-16 particles bound from time series (2 s intervals) oriented such that the tip of a protrusion is at the top and the cell body
at the bottom. The slopes of viral particle location over time reflect the speed by which particles moved from the tip to the bottom of an actin
protrusion. The speeds for 242 particles in directed motion from 35 movies were calculated, and displayed as the number of particles moving within a
certain speed category. (B) Kymograph shows pictures from time series of a single actin protrusion of HeLa cells with a SV40 particle bound. (C)

HPV-16 Retrograde Cell Surface Transport
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exposure, decelerated virus transport over a time period of 5–

40 sec. Afterwards the virus particles frequently exhibited

stationary behaviour or diffusive movement along the actin

protrusions (Fig. 5B, Videos S11, S12). The same was observed

when jasplakinolide (Fig. 5C, Video S13), a F-actin stabilizer and

inducer of actin polymerisation, or sodium azide (ATP depletion,

not shown) were added. The strongest effect was observed when

myosin II function was inhibited by either blebbistatin (Fig. 5D,

Videos S14, S15) or the myosin light chain kinase inhibitor ML-7

(not shown); virus transport stopped almost instantaneously and

the frequency of particles that switched to a random diffusive

mobility was the highest. Seldomly, particles were observed to

move in an outwards direction, which was probably due to

filopodial outgrowth induced by inhibition of myosin II [36,37].

When we analyzed how many of the directionally mobile particles

switched to a confined or diffusive mode of motion, we found that

50% or more virus particles lost their directed motion pattern within

80 s after treatment with inhibitors of actin retrograde flow, as

compared to 7% in the nocodazole treated control samples (Fig. 5E).

This indicated that virus transport was, indeed, functionally linked to

actin retrograde flow. It was interesting to note, that on a single

filopodium virus transport was either abrogated for all particles or all

particles continued to move with decelerated speeds. With respect to

inhibitor sensitivity, there was no significant difference for particles

that moved at 1.6 mm/min or 2.9 mm/min suggesting that both

forms of actin retrograde flow, the slower and the faster, are

mechanistically similar.

Virus tranport along filopodia contributes to infection
To determine whether the movement of virus particles along

actin protrusions was involved in productive infection, we tested

the effect of the myosin II inhibitor blebbistatin on infection.

When actin retrograde flow was inhibited, virus particles could

not be actively transported along actin rich protrusions. However,

in confluent tissue culture and in epidermal tissues in vivo cells do

not usually form long actin protrusions. Accordingly, HPV-16

infection of confluent HeLa cells was insensitive to inhibition of the

actin retrograde flow-mediated transport by blebbistatin (Fig. 6B,

white bars). This result suggested, in addition, that neither actin

transport nor myosin II were required once viruses had bound

directly to the cell body in contrast to other viruses such as

vaccinia virus [38]. However, when subconfluent cells, that formed

actin protrusions, were infected with HPV-16, and virus transport

was blocked, infectivity was reduced by 36% (Fig. 6B, black bars).

HeLa cells were used throughout this study for ease of live cell

microscopy. To address whether the observed phenomena also

occurred in keratinocytes, we analyzed transport of viral particles

along actin rich protrusions in HaCaT cells using the methods

described previously. Directed transport and diffusion of HPV-16

PsV was observed on stable actin-rich protrusions. PsV exhibiting

directed transport moved with a speed of 261 mm/min (Fig. 6A,

n = 32; Video S16). Infection of confluent HaCaT cells was

insensitive to blebbistatin inhibition, but infection of sparse

HaCaT cells was reduced by 50% similar to what we observed

in HeLa cells (Fig. 6B).

That infection was not entirely blocked by abrogation of

transport was most likely due to a significant portion of virus

particles binding directly to the cell body as opposed to actin rich

protrusions. Particles binding directly to the cell body would be

able to access the endocytic machinery for entry whereas particles

binding far from the cell body would not. Hence, active transport

was not required for infection but had the ability to facilitate

infection, and increased the number of infected cells as compared

to cells that had no transport (cells in the presence of blebbistatin).

This may be an important factor for HPV infection in vivo, where

the initial infection occurs only in basal keratinocytes most likely

after wounding of the epidermal tissue, and where only few viruses

may have access to the target cells.

Discussion

The cell surface dynamics of HPV-16 indicated that the virus has

co-opted a transport mechanism along actin rich cell protrusions to

access the endocytic machinery present at the cell body, and thus to

enhance infectious entry. The transport was facilitated by binding to

receptors that, in turn, were likely to interact with actin filaments to

mediate the transport towards the cell body powered by retrograde

flow. This mechanism is not without precedent; several enveloped

RNA viruses have been found to use a similar mechanism [3].

However, HPV-16 is the first nonenveloped virus found to use such a

mechanism. It is to be expected that many other viruses are capable

of using this cellular mechanism.

We found that certain dynamic properties of HPV-16 on the

cell body are similar to murine Polyomavirus (mPy) particles: while

some particles displayed random, diffusive motion most particles

displayed rapid confinement [2]. It is interesting to note, that

disruption of actin filaments eliminates the confinement of mPy, as

if confinement would depend on a link with actin similar to what

we observed for the transport of HPV-16 along actin protrusions.

Alternatively, HPV-16 confinement on the cell body may be the

result of binding simultaneously to both, extracelluar matrix

components and cell surface receptors, or it may be due to limited

virus receptor diffusion caused by actin dependent confinement

zones [39]. While HPV-16 binds to diverse HSPGs [15–17], mPy

binds the glycosphingolipids GD1a and GT1b [25,26], which

implies that these structurally distinct and differentially localized

receptors exhibit similar diffusion properties. Hence, the diffusive

properties of HPV-16 alone cannot be responsible for the

unusually slow internalisation kinetics. However, we cannot

exclude an interaction of HPV-16 with a putative secondary

receptor that may be responsible for cell surface motion and/or

subsequent internalization.

Our findings showed, however, that HPV-16 binding provided

a cellular system where viruses were actively transported along

actin protrusions towards the cell. This transport was specific to

HPV-16, since SV40, a structurally similar nonenveloped DNA

virus, displayed only random motion on the protrusions. HPV-16

transport was sensitive to inhibitors of actin polymerisation and

depolymerisation, of myosin II and myosin light chain kinase, and

of ATP synthesis. These properties are consistent with a transport

mechanism based on actin retrograde flow [35,36]. The study of

Lehmann et al. [3] showed that murine leukemia virus shares the

same properties. We could demonstrate, moreover, that HPV-16

transport coincided with the net transport of actin molecules in the

Confocal image of a single HeLa cell expressing beta-actin tagged with photoactivatable GFP prior to and after activation of PAGFP with short
wavelength (405 nm) light. (D) Kymograph of a single protrusion of a HeLa cell expressing PAGFP-actin that was spot-activated with focussed short
wavelength (405 nm) laser light. The GFP emission of the single spot showed an F-actin patch moving towards the cell body (bottom) reflecting
retrograde flow. The speed of actin retrograde flow within protrusions was calculated and displayed as the number of spots moving within a certain
speed category.
doi:10.1371/journal.ppat.1000148.g004
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Figure 5. Pertubation of actin polymerisation dynamics and myosin II function abrogates virus transport. HeLa cells were transfected
with EGFP-actin and subsequently inoculated with HPV-16 PsV (20–100 particles/cell). 5–15 min after virus addition cells were imaged at 2 fps with
spinning disc confocal microscopy. About 1 min after image acquisition started various inhibitors were added as indicated. Kymographs show
pictures of single actin protrusions of HeLa cells from time series (2 s intervals) oriented such that tip of protrusions are at the top and the cell body at
the bottom. (A) Addition of the microtubule dissociating agent nocodazole (5 mM) does not perturb directed virus movement or protrusion structure.
(B) Addition of the actin depolymerising agent cytochalasin D (2 mM) slows directed virus movement over a time period of 10–60 s whereafter the
virus is either stuck or switches to random diffusion. (C) Addition of the actin stabilizing drug jasplakinolide (300 nM) similarly slows directed virus
movement over a time period of 10–60 s whereafter the virus is either stuck or switches to random diffusion. It is interesting to note that the signal
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for actin frequently increased in the lower half of the protrusion. (D) Addition of the specific myosin II inhibitor blebbistatin (30 mM) almost
instantaneously abrogated directed virus movement whereafter the virus more frequently diffused randomly on the protrusion. (E) Summary of the
effects of inhibitors: The number of virus particles initially detected in directed motion was set to 100% and compared to the number of particles that
still moved in a directed fashion after 80 s (inhibitor concentrations: 50 mM for ML-7, 10 mM for sodium azide). The number of particles analyzed was
as follows: nocodazole, n = 143; cytochalasin D, n = 262; jasplakinolide, n = 33; blebbistatin, n = 219; ML-7, n = 39; sodium azide, n = 27.
doi:10.1371/journal.ppat.1000148.g005

Figure 6. Inhibition of virus transport in keratinocytes and HeLa cells reduces the efficiency of infection. (A) HeLa cells were infected
with HPV-16 PsV (about 50 particles/cell) expressing GFP with or without inhibition of actin retrograde flow by blebbistatin. Cells were grown as
confluent monolayers without the presence of long actin protrusions or subconfluently exhibiting frequently actin protrusions. The number of cells
showing GFP expression (infected cells, about 30%) was scored 24 h after addition of virus and the data was normalized to the unperturbed controls.
The graph shows the relative amount of infected cells normalized to virus infection in the absence of blebbistatin. Error bars represent the standard
deviation of three independent experiments. Numbers below the graph indicate unnormalized infection data. (A) HaCaT cells were transfected with
EGFP-actin and subsequently inoculated with AF488 labeled HPV-16 PsV (100 particles/cell). 30 min after virus addition cells were imaged at 1 fps
with spinning disc confocal microscopy. Kymograph shows pictures of a single actin protrusion of HaCaT cells from time series (5 s intervals) oriented
such that tip of protrusions are at the top and the cell body at the bottom. (B) HeLa or HaCaT cells were infected with HPV-16 PsV expressing GFP (50
or 30 particles/cell, respectively) with or without inhibition of actin retrograde flow by blebbistatin. Cells were grown as confluent monolayers
without the presence of long actin protrusions or subconfluently exhibiting frequently actin protrusions. The percentage of cells showing GFP
expression (infected cells, 30–40%) was scored 36 h after addition of virus and the data was normalized to the unperturbed controls. The graph
shows the relative amount of infected cells normalized to virus infection in the absence of blebbistatin. Error bars represent the standard deviation of
three independent experiments. Numbers below the graph indicate unnormalized infection data (infection).
doi:10.1371/journal.ppat.1000148.g006
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respective cell protrusions, and that depending on the protrusion

the movement of actin and the virus could each occur at two

different rates.

All these findings supported a mechanism where viruses bind to

a cellular receptor, which in turn must somehow bind to F-actin in

order to be pulled by actin retrograde flow towards the cell body.

Lehmann et al [3] showed that for transport of murine leukemia

virus its receptor (mCAT-1) is clustered by the virus. Clustering of

the receptor most likely combined with signal transduction elicited

by this event would then provide the cue for a link to actin as has

been proposed for the movement of anti-apCAM-antibody-coated

beads. These beads cluster the cell adhesion molecule apCAM and

are transported along filopodial growth cones by actin retrograde

flow [40]. However, extensive clustering itself may not be a

prerequisit for the signal transduction event. Using single molecule

tracking of epidermal growth factor (EGF), Lidke et al. [31]

showed that dimerization of receptors by an EGF molecule is

sufficient to trigger transport along filopodia. That such ’cues’

existed for the transport of HPV-16, and that events leading to a

link between the HPV-16-receptor complex and actin occurred,

was suggested by the observed switch from diffusion to directed

motion. However, switches were observed infrequently and

asynchronously after binding of viruses to protrusions. Some

particles displayed random motion for as long as 2 h after addition

of HPV-16 PsV to cells, indicating that not all particles located on

actin protrusions may encounter the ’cue’ for active transport.

The interaction of a receptor with actin may occur either

directly by the receptor through its cytosolic tail or indirectly

through binding to an actin binding protein. The receptor and its

ligand–in this case HPV-16–would then be linked to actin

retrograde flow. A variety of HSPGs can serve as binding

receptors for infectious HPV-16 entry [17]. Of these, the syndecan

family member are likely candidates as receptors for transport, as

they in contrast to glypicans have a large cytosolic domain known

to interact with actin binding proteins [41–43]. However, it cannot

be excluded that other molecules in the plasma membrane serve as

co-receptor for HPV-16, and that engagement of co-receptors

provides the ‘cue’ for active transport.

Although our results favour a transport mechanism based on

actin retrograde flow rather than transport by an unconventional

myosin, some unanswered questions remain. Actin retrograde flow

is the result of balanced actin polymerisation, depolymerisation,

and myosin II function [29,35]. Why did pertubation of one of the

three processes abrogate directed virus transport altogether? When

actin polymerisation is blocked, several studies show that cell

extensions shrink due to continued myosin II function, actin

depolymerisation, and actin retrograde flow. Actin depolymerisa-

tion agents and myosin II inhibitors, as expected, induce increased

growth of actin protrusions. However, in all cases, retrograde flow

is reduced, but not blocked [29,35]. Thus, one would expect that

viruses would be transported to the cell body, but at reduced

speeds. We hypothesize that a reduction of force generation due to

reduced actin retrograde flow weakens the connection between

actin and the receptor, until the connection is lost and viruses start

to diffuse again. Our hypothesis is supported by the finding that

when weak forces as low as 10–50 pN are applied to receptor-actin

linkages such as the fibronectin-integrin-actin link or the cell

adhesion molecule apCAM-actin link the interaction is strength-

ened [40,44].

A variety of cell surface molecules such as members of the

immunoglobulin family (apCAM), the EGF receptor, mCAT-1,

the receptor that facilitates murine leukemia virus entry, or

potentially HSPGs support transport of ligands along filopodia

[3,30,31,40]. The mobility of filopodia and the retrograde

transport of receptors allow the cell to sense its environment. In

sparse tissue culture, viruses can use receptor transport along

filopodia, gain access to cellular entry sites, and thus enhance the

probability of infection. In dense cultures, our results show that the

effect is not important. During in vivo transmission of HPV-16,

infectious particles are shed after abrasion of terminally differen-

tiated, infected keratinocytes. Viruses will be able to access the

target cells (basal keratinocytes) most likely in wounded tissue [5].

Since wounding of mucosal or skin epidermis results in upregula-

tion of syndecan-1, a HPV-16 receptor candidate [17,45,46], and

in filopodia formation of the basal keratinocytes that it is essential

for reepitheliasation [47], HPV-16 could use actin retrograde flow

for efficient transport towards entry sites on the cell body and thus

facilitate infection.

Clearly, many interesting questions remain: How does actin

retrograde transport of HPV-16 translate into kinetics of infection?

Are the viruses internalized immediately after reaching the cell

body? How important is actin retrograde transport in vivo? How

many other viruses use this translocation system? Is there a

common linker protein between viral receptors and actin?

Materials and Methods

Cells, viruses, and drugs
HeLa and HaCaT cells were cultured in DMEM (Invitrogen)

containing 10% fetal calf serum. (-)-Blebbistatin, cytochalasin D,

ML-7, nocodazole, and sodium azide were from Sigma.

Jasplakinolide was from Molecular Probes. HPV-16 PsV contain-

ing the pCIneo-mRFP plasmid was produced with the p16L1L2

plasmid by the propagation method described by Buck and

Thompson [48]. The PsV was matured for 24 hours in the

presence of RNase A to maximize the purification of pseudovirions

containing the reporter plasmid, resulting in an improved particle

to infectivity ratio [48]. All plasmids and production methods are

fully described on the Schiller laboratory’s website (http://ccr.

cancer.gov/staff/staff.asp?profileid = 5637). SV40 was produced

as described [49].

Plasmids
The plasmid pEGFP-actin was from Clontech. The plasmid

pmPAGFP-actin was constructed as follows: the EGFP sequence

was excised from pEGFP-actin by NheI/XhoI digestion and

replaced by ligation of the mPAGFP sequence from pmPAGFP

(kind gift of George H. Patterson, NIH, Bethesda, USA).

Fluorescent labeling of HPV-16 PsV and of SV40
SV40 was covalently labeled with fluorophores as described

[49]. HPV-16 PsV labeling followed essentially the same protocol.

Briefly, purified HPV-16 PsV were incubated for 1 h at room

temperature in PBS with a ten-fold molar excess of Fluorescein or

Alexa Fluor (AF) succinimidylesters (Molecular Probes) over the

major capsid protein L1. PsV were separated from the labeling

reagent by size exclusion chromatography using NAP5 columns

(GE Healthcare) and stored at 4uC. The degree of labeling (DOL)

was determined by spectophotometry using DOL = (Amax6MW)/

([protein]6edye), with Amax = absorbance of dye at absorbance

maximum, MW = molecular weight of a virus particle, [pro-

tein] = protein concentration, and edye = extinction coefficient of

the dye at its absorbance maximum. Please refer to the

manufacturer’s instructions for further details.

Transient expression
For transfection, cells were trypsinized, pelleted, washed with

PBS and transfected with expression plasmids in Nucleofector
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solution R (Amaxa) utilizing program I13 of the Amaxa

Nucleofector according to the manufacturer’s instructions. Cells

were seeded on 18 mm coverslips and used for live cell imaging

experiments at 6–14 h post transfection.

Single particle tracking
Microscopy was performed on a custom modified Olympus

IX71 inverted microscope. Modifications included a heated

incubation chamber that surrounded the microscope stage set to

37uC, an objective-type total internal reflection fluorescence

microscopy setup from TILL Photonics (Grafeling, Germany),

and a monochromator for epifluorescence excitation with a

controller allowing hardware-controlled fast switching between

total internal reflection fluorescence and epi-fluorescence excita-

tion and acquisition (TILL Photonics). Images were acquired using

a TILL Image QE chargecoupled device camera and TILLVI-

SION software (both from TILL Photonics). The total internal

reflection angle was manually adjusted for every experiment. Live

HeLa cells on 18-mm coverslips were mounted in custom-made

chambers. To avoid changes in membrane or cytoskeleton, the

medium was not exchanged when mounting cells. HPV-16 PsV

were added at 0.1 mg/ml into the 0.5 ml of medium on the stage.

Movies were recorded at a rate of 20 frames per s for 1,000 or

2,000 frames in TIRF mode. After each experiment, the cells that

had been recorded were imaged by differential interference

contrast microscopy to check for viability. Trajectories were

harvested and analyzed using a tracking program [24]. The

position accuracy for the particles allowed by this program was on

average 26 nm (see Figure S1).

Live cell imaging of virus transport and image processing
Epifluorescence microscopy was performed on a Zeiss 200 M

inverted microscope with a heated objective and a heated stage

holding the cell chamber. Cells and objective were kept at 37uC,

and cells were incubated in CO2-independent medium (Invitro-

gen). Images were acquired with Openlab Software (Improvision).

Spinning disc confocal microscopy was performed on a Zeiss

200 M microscope with a Visitech spinning disc setup. The

spinning disc confocal microscope was equipped with heated

incubation chamber that surrounded the microscope stage set at

37uC. Images were acquired with MetaMorph Software (Visitron).

Live cells that had been transfected with EGFP-actin were

mounted on 18-mm coverslips in custom-made chambers, and

cells were incubated with normal growth medium. HPV-16 PsV

were added at 0.1 mg/ml into the 0.5 ml of medium on the stage.

After 5 min–2 h of binding virus particles to cells image

acquisition was performed. Inhibitors were always added directly

into the medium during acuisition of images to the final

concentrations given. Images were imported into ImageJ (NIH)

and kymographs of single actin protrusions were assembled

showing every second or fourth image as indicated in the figure

legends.

Imaging of actin retrograde flow
Microscopy was performed on a Leica SP2 AOBS scanning

confocal microscope equipped with a solid state laser (405 nm

excitation) and a heated incubation chamber that surrounded the

microscope stage set at 37uC. Live HeLa cells that been

transfected with pmPAGFP-actin on 18-mm coverslips were

mounted in custom-made chambers, and cells were incubated

with normal growth medium. After a 500 ms pulse of 405 nm light

(either point or frame), images were acquired at 0.5 Hz.

Electron microscopy
HPV-16 PsV (300 ng) were added to 16105 cells for 10 min or

1 h at 37uC, and unbound virus was removed prior to fixation

with 2% glutaraldehyde / 2% osmium tetroxide. Sample

preparation and thin section electron microscopy was performed

according to standard electron microscopy procedures. For

negative staining, 0.4 mm mesh copper grids were coated with a

4 nm carbon film. Sample containing AF488 labeled or unlabeled

HPV-16 PsV was added for 30 s, drained of excess liquid, and

stained for an additional 30 s with 2% uranyl acetate in distilled

water. After transmission electron microscopy, images were

exported as 8-bit TIFF files and processed in PHOTOSHOP

8.0 (Adobe Systems).

Infection studies
HeLa cells were seeded on 24 h prior to experimentation to

result in 20 or 100 % confluency. HPV-16 PsV were added to cells

with or without pretreatment of blebbistatin (30 min.) at 0.1

transducing particles/cell (20 ng or 100 ng) to result in 30%–40%

XFP expressing cells in the unperturbed control. 24 h after

addition of virus, cells were trypsinized, fixed in 4% formaldehyde,

and analyzed for XFP expression by flow cytometric analysis.

Supporting Information

Figure S1 The mobility of HPV 16 particles immobilized on

coverglass. The position accuracy of the tracking software is

dependent upon the signal to noise ratio for the individual particle.

The signal to noise ratio is different for each particle in each frame

and a theoretical position accuracy can be calculated for each

particle and frame. The performance of the particle tracking

software is described in detail in [2,24]. Since other factors such as

vibrations of the microscope stage contribute to the position

accuracy of the actual measurement, we performed single particle

tracking of HPV particles attached to coverglass that considered

them immobile. Particles with a mobility comparable to that of

these particles were discarded from analysis. The radius of the area

covered by trajectories of particles adsorbed to the coverglass was

taken as position accuracy. Shown is a scatter plot of the diffusion

coefficient versus the slope of the moment scaling spectrum (SMSS)

of HPV-16 PsV trajectories on coverglass. Every point represents

one trajectory. The black circles represent individual particles

bound to coverglass imaged and analyzed in the same way as

particles bound to cells. The red error bars represent the standard

deviation of the mobility of such particles. The particles at the left

edge exhibit a negative D, so that the imaging noise completely

obscures the observable mobility.

Found at: doi:10.1371/journal.ppat.1000148.s001 (5.2 MB TIF)

Video S1 Directed movement of HPV-16 on the cell body.

Movie from a TIRF-M time series showing one AF488 labeled

HPV-16 particle in directed, ballistic motion with the assigned

trajectory on a HeLa cell over 288 frames played at realtime

(14.4 s). Particle corresponds to Fig. 2C, D, 1.

Found at: doi:10.1371/journal.ppat.1000148.s002 (2.5 MB MOV)

Video S2 Diffusive movement of HPV-16 on the cell body.

Movie from a TIRF-M time series showing one AF488 labeled

HPV-16 particle in diffusive motion with the assigned trajectory

on a HeLa cell over 354 frames played at realtime (17.7 s). Particle

corresponds to Fig. 2C, D, 2.

Found at: doi:10.1371/journal.ppat.1000148.s003 (3.7 MB MOV)

Video S3 Slow drift of HPV-16 on the cell body. Movie from a

TIRF-M time series showing one AF488 labeled HPV-16 particle

with a slow drift with the assigned trajectory on a HeLa cell over
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969 frames played at realtime (48.45 s). Particle corresponds to

Fig. 2C, D, 3.

Found at: doi:10.1371/journal.ppat.1000148.s004 (3.3 MB MOV)

Video S4 Confined HPV-16 particle on the cell body. Movie

from a TIRF-M time series showing one confined AF488 labeled

HPV-16 particle with the assigned trajectory on a HeLa cell over

1561 frames played at realtime (78.05 s). Particle corresponds to

Fig. 2C, D, 4.

Found at: doi:10.1371/journal.ppat.1000148.s005 (6.4 MB MOV)

Video S5 HPV-16 particles on the cell body. Overview movie

from a TIRF-M time series showing several AF488 labeled HPV-

16 particles on a HeLa cell over 2000 frames played at realtime

(100 s). Particles correspond to Fig. 2B, C.

Found at: doi:10.1371/journal.ppat.1000148.s006 (5.0 MB MOV)

Video S6 HPV-16 motion on actin-rich protrusions of HeLa

cells. Movie from an epifluorescence microscopy time series

showing several AF488 labeled HPV-16 particles moving along

actin-rich protrusions on HeLa cells expressing EGFP-actin.

Acquisition of images occured at 2 frames per s, movie played at

10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s007 (8.2 MB MOV)

Video S7 HPV-16 moves along actin protrusions extracellularly.

Movie from an epifluorescence microscopy time series showing

several FITC labeled HPV-16 particles moving along protrusions

on HeLa cells. 100 s after image acqusition start the extracellular

medium was acidified to pH 5.5 as indicated by the white flash.

Note, that the fluorescence of all particles was quenched indicating

their extracellular localization. Acquisition of images occured at 2

frames per s, movie played at 20 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s008 (2.3 MB MOV)

Video S8 SV40 diffusive motion on actin rich protrusions.

Movie from a spinning disc confocal microscopy time series

showing one AF488 labeled SV40 particle moving along an actin-

rich protrusion on HeLa cells expressing EGFP-actin. Note, that

the particle detached from the protrusion towards the end of the

movie indicating the relatively weak affinity for binding.

Acquisition of images occured at 5 frames per s, movie played at

10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s009 (1.2 MB MOV)

Video S9 Actin retrograde flow. Movie from laser scanning

confocal microscopy time series showing several activated PAGFP

spots in protrusions of HeLa cells transfected with PAGFP-actin

after spot activation by 405 nm wavelength light. Note, that all

spots move towards the cell body. Acquisition of images occured at

1 frames per 2 s, movie played at 5 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s010 (0.49 MB

MOV)

Video S10 Effect of nocodazole on virus transport. Movie from

spinning disc confocal microscopy time series showing several

AF488 labeled HPV-16 particles on an actin-rich protrusion of

HeLa cells transfected with EGFP-actin. Addition of nocodazole

to 5 mM concentration is indicated by a white flash. Acquisition of

images occured at 4 frames per s, movie played at 10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s011 (0.90 MB

MOV)

Video S11 Effect of cytochalasin D on virus transport. Movie

from spinning disc confocal microscopy time series showing several

AF488 labeled HPV-16 particles on an actin-rich protrusion of

HeLa cells transfected with EGFP-actin. Addition of cytochalasin

D to 2 mM concentration is indicated by a white flash. Acqusition

of images occured at 4 frames per s, movie played at 10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s012 (0.64 MB

MOV)

Video S12 Effect of cytochalasin D on virus transport (overview).

Movie from spinning disc confocal microscopy time series showing

several AF488 labeled HPV-16 particles on actin-rich protrusions

of a HeLa cell transfected with EGFP-actin. Addition of

cytochalasin D to 2 mM concentration is indicated by a white

flash. Acquisition of images occured at 4 frames per s, movie

played at 10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s013 (13.6 MB

MOV)

Video S13 Effect of jasplakinolide on virus transport. Movie

from spinning disc confocal microscopy time series showing several

AF488 labeled HPV-16 particles on an actin-rich protrusion of

HeLa cells transfected with EGFP-actin. Addition of jasplakinolide

to 300 nM concentration is indicated by a white flash. Acquisition

of images occured at 4 frames per s, movie played at 10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s014 (0.65 MB

MOV)

Video S14 Effect of blebbistatin on virus transport. Movie from

spinning disc confocal microscopy time series showing several

AF488 labeled HPV-16 particles on an actin-rich protrusion of

HeLa cells transfected with EGFP-actin. Addition of blebbistatin

to 30 mM concentration is indicated by a white flash. Acquisition

of images occured at 4 frames per s, movie played at 10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s015 (0.34 MB

MOV)

Video S15 Effect of blebbistatin on virus transport (overview).

Movie from spinning disc confocal microscopy time series showing

several AF488 labeled HPV-16 particles on actin-rich protrusions

of a HeLa cell transfected with EGFP-actin. Addition of

blebbistatin to 30 mM concentration is indicated by a white flash.

Acquisition of images occured at 4 frames per s, movie played at

10 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s016 (13.5 MB

MOV)

Video S16 HPV-16 motion on actin-rich protrusions of HaCaT

cells. Movie from an epifluorescence microscopy time series

showing several AF488 labeled HPV-16 particles moving along

actin-rich protrusions on HaCaT cell expressing EGFP-actin.

Acqusition of images occured at 1 frames per s, movie played at

5 Hz.

Found at: doi:10.1371/journal.ppat.1000148.s017 (7.0 MB MOV)
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